歡迎使用 FreeBSD！本使用手冊涵蓋範圍包括了 FreeBSD 12.0-RELEASE 與 FreeBSD 11.3-RELEASE 的安裝與平日操作的說明。這份使用手冊是很多人的集體創作,而且仍然『持續不斷』的進行中,因此部份章節可能尚未仍未完成,如果您有興趣協助本計畫的話,請寄電子郵件至 FreeBSD 文件專案郵遞論壇。在 FreeBSD 網站可以找到本手冊的最新版本,舊版文件可從 https://docs.FreeBSD.org/doc/ 取得。本文件也提供各種格式與不同壓縮方式的版本可自 FreeBSD FTP 伺服器或是其中一個鏡像網站下載。列印出來的實體書面資料可在 FreeBSD 商城購買。此外,您可在搜尋頁面中搜尋本文件或其他文件的資料。
目錄

1. FreeBSD 範例使用手冊
2. FreeBSD 介紹
3. FreeBSD 基礎
4. FreeBSD 系統件與應用程式安裝
5. X Window 系統件與應用程式安裝

自第一版後的主要修訂
自第二版後的主要修訂（2004）

給讀者的話

概況
處損壞的 Port 理

安裝後的注意
件編譯套 Poudriere 套使用
件使用套 Binary pkg

體軟安裝概述

操作手冊

3.12.
3.11.
3.10.
3.9. Shell 程序與載與
3.7.
3.6.
3.5.
3.4.
帳號使用者與基礎
與虛擬 Console 端機終
3.1.

2.10.
2.8.
事項安裝後注意
安裝
開始
2.3.
2.2.
2.1.

1.3.
FreeBSD 划
FreeBSD 欢迎使用!
1.1.
新與

使用與安裝

在

化

其他

案系統

18. GEOM: 模組化磁碟

FreeBSD

23. 新

分

追蹟

支

新文件集

23.3. 更

新

FreeBSD

23.2. FreeBSD

述

概

23.1. 設定

的

特

言

22.4. 系

應

22.3. 用程式

22.2. 系

概

為

作

端

FreeBSD

bhyve

以

FreeBSD

主

作

FreeBSD

使用

VirtualBox™

主

21.6. 端

作

21.5. 為客端

VirtualBox™

VMware Fusion

在

安裝

21.4.

為客端

的

21.3.

安裝

Virtual PC

Window™

為客端

21.2.

在

安裝

Mac OS™

21.1.

述

概

19.8. ZFS

與

階

主

題

進

委

連

立

獨

串

獨

過

GEOM

裝

磁碟

18.7.

籤

18.5.

RAID

軟

裝

置

體

驗

位

元級

連

校

奇

串

獨

(Mirroring)

18.3. RAID1 -

18.2. RAID0 -

連

(Striping)

18.1.

可用

存儲

間

(HAST)

空

17.13.

加密

空

交換

間

割區加密

17.12.

磁碟配額

档

快照

案系统

体

备

份基础概念

17.7.

软碟

17.6.

建

体

DVD

17.5.

建

体

立

建
路網

29. 電子郵件
28. PPP
27. USB Device Mode / USB OTG
26. iSCSI Initiator
25. NTP
24. Microsoft™Windows™(Samba)
23. 報表
22. inetd
21. fetchmail
20. Sendmail
19. 直接輸入
18. PPP (PPPoA)
17. PPP (PPPoE)
16. PPP
15. Console
14. 網路
13. 介面
12. USB 網路
11. DTrace
10. 使用
9. 支援
8. 差異
7. 追蹤
6. 機設置
5. 服務
4. 傳輸協定
3. 伺服器超級
2. 伺服器
1. 網路

...
序

給讀者的話

若您是第一次接觸 FreeBSD 的新手，可以在本書第一部分找到 FreeBSD 的安裝程序，同時會逐步介紹 UNIX™ 的基礎概念與一些常用、共通的東西。而閱讀這部分並不難，只需要您有探索的精神和接受新概念。

讀完這些之後，手冊中的第二部分花很長篇幅介紹的各種廣泛主題，相當值得系統管理者去注意。

在閱讀這些章節的內容時所需要的背景知識，都註釋在該章的大綱裡面，若不熟的話，可在閱讀前先預習一番。

延伸閱讀方面，可參閱 參 考 書目。

自第三版後的主要修訂

您目前看到的這本手冊代表著上百位貢獻者歷時 10 年所累積的心血之作。以下為自 2014 年發佈的兩冊第三版後所做的主要修訂：

• DTrace 增加說明有關強大的 DTrace 效能分析工具的資訊。

• 其他檔案系統增加有關 FreeBSD 非原生檔案系統的資訊，如：來自 Sun™ 的 ZSF。

• 安全事件稽查增加的內容涵蓋 FreeBSD 的新稽查功能及其使用說明。

• 虛擬化增加有關在虛擬化軟體安裝 FreeBSD 的資訊。

• 安裝 FreeBSD 增加的內容涵蓋使用新安裝工具 bsdinstall 來安裝 FreeBSD。

自第二版後的主要修訂 (2004)

您目前看到的這本手冊第三版是 FreeBSD 文件計畫的成員歷時兩年完成的心血之作。因文件內容成長到一定大小，印刷版需要分成兩冊發佈。新版的主要修訂部分如下：

• 設定與調校已針對新內容作更新，如：ACPI 電源管理、 crontab 以及其他更多的核心調校選項說明內容。

• 安全性增加了虛擬私人網路 (VPN)、檔案系統的存取控制 (ACL)，以及安全報告。

• 強制存取控制 (MAC) 是此版本新增的章節。該章介紹：什麼是 MAC 機制？以及如何運用它來使您的 FreeBSD 系統更安全。

• 儲存設備新增了像是：USB 隨身碟、檔案系統快照 (Snapshot)、檔案系統配額 (Quota)、檔案與網路為基礎的檔案系統、以及如何對硬碟分割區作加密等詳解。

• PPP 增加了疑難排解的章節。

• 電子郵件新增有關如何使用它的傳輸程式、SMTP 證認、UUCP、fetchmail、procmail 的運作以及其它進階主題。

• 網路伺服器是該版中全新的一章。這一章介紹了如何架設 Apache HTTP 伺服器、ftpd 以及用於支援 Microsoft™ Windows™ 客戶端的 Samba。其中有些段落來自原先的進階網路設定。

• 進階網路設定新增有關在 FreeBSD 中使用藍芽™ 裝置、設定無線網路以及使用非同步傳輸模式 (Asynchronous Transfer Mode, ATM) 網路的介紹。

• 增加詞彙表，用以說明全書中出現的術語。

• 重新美編書中所列的圖表。
每個章節均加入概述，以便快速的浏览该章节内容摘要、读者欲了解的部分。

内容架构重新组织成三大部分：“入門”、“系统管理”以及“附錄”。

FreeBSD 基础新増了程序、Daemon 以及信号（Signal）的介绍。

安装应用程式：套件与 Port 新增了介绍如何管理 Binary 套件的資訊。

X Window 系统经过全面改写，著重於在 XFree86™ 4.X 上的现代桌面技术，如：KDE 和 GNOME。

FreeBSD 开機程序更新相关內容。

储存設備分别以两个章節“磁碟”与“備份”来撰写，我们認為这样子会比单一章節来得容易瞭解。

还有關於 RAID（包含硬體、軟體 RAID）的段落也新増上了。

序列通訊架构重新改写，并更新至 FreeBSD 4.X/5.X 的內容。

PPP 有相当程度的更新。

進階網路設定加入許多新內容。

電子郵件大增了设定 sendmail 的介绍。

Linux® Binary 相容性增加许多有關於安装 Oracle™ 以及 SAP™ R/3™ 的介绍。

此外，第二版还新増章節，以介绍下列新主题：

- 設定與調校。
- 多媒体。

本書架构本書主要分为五大部分，第一部分“入門”：介绍 FreeBSD 的安装、基本操作。

读著可根據自己程度，循序或者跳過一些熟悉的主題来閱讀；第二部分一般作业：介绍 FreeBSD 常用功能，这部分可以不按顺序来读。

每章前面都会有概述，概述会描述本章節涵盖的内容和读著应该已知的，这主要是让读著可以挑喜好的章節阅读；第三部分“系統管理”：介绍 FreeBSD 老手所感兴趣的各种主題部分；第四部分“網路通訊”：则包括网络和各式伺服器主题；而第五部分则为附錄包含各種有关 FreeBSD 的資源。
列印
介紹如何在 FreeBSD 管理印表機，包含幅頁面、列印帳務以及初始設定等資訊。

Linux® Binary 相容性
介绍 FreeBSD 的 Linux™ 相容性功能，同时提供许多热门的 Linux™ 应用程式详细的安装操作说明，例如 Oracle™ 及 Mathematica™。

設定與調校
介绍可供系统管理者用来调校 FreeBSD 系统的可用参数来最佳化效率，同时也介绍 FreeBSD 用到的各种设定档以及到何处寻找这些设定档。

FreeBSD 開機程序
介绍 FreeBSD 開機流程并说明如何使用设定选项目控制開機流程。

安全
介绍许多让您的 FreeBSD 系统更安全的各种工具，包含 Kerberos, IPsec 及 OpenSSH。

Jail
介绍 Jail Framework，以及 Jail 改进那些 FreeBSD 传统 chroot 不足的地方。

強制存取控制(MAC)
说明什么是强制存取控制（Mandatory Access Control, MAC）及这个机制如何用来确保 FreeBSD 系统的安全。

安全事件稽查
介绍 what FreeBSD 事件稽查，如何安装与设定，以及如何检查与监控稽查线索。

儲存設備
介绍如何在 FreeBSD 管理储存媒体及档案系统，这包含实体磁碟、RAID 陣列、光碟与磁带媒体、記憶体为基础的磁碟以及网络档案系统。

GEOM.
模組化磁碟转换框架
介绍在 FreeBSD 中的 GEOM Framework 是什么，以及如何设定各种支援的 RAID 阶层。

其他檔案系統
查看 FreeBSD 还支援那些非原生档案系统，如 Sun™ 的 Z 檔案系统。

虛擬化
介绍虛擬化系统提供了那些功能，以及如何在 FreeBSD 上使用。

在地化-i18n/L10n
使用与安装介绍如何在 FreeBSD 使用非英文的语言，这涵盖了系统及应用层的在地化。

更新與升級
说明 FreeBSD-STABLE、FreeBSD-CURRENT 以及 FreeBSD 发佈版之间的差异，并介绍那些使用者适合追踪开发系统以及程序的概述，这涵盖了使用者更新系统到最新安全性发佈版本的方法。

DTrace
介绍如何在 FreeBSD 設定及使用 Sun™ 的 DTrace 工具，动态追踪可以透过实时执行真实时系统分析来协助定位效能问题。

序列通訊
介绍如何使用拨入及拨出连线到您的 FreeBSD 系统的終端機与數據機。

PPP
介绍如何在 FreeBSD 使用 PPP 来连线远端的系统。
組成電子郵件伺服器的各種元件，並深入說明如何設定最熱門的郵件伺服器軟體：sendmail。

網路伺服器提供詳細的操作說明與範例設定檔，讓您可安裝您的FreeBSD機器為網路檔案伺服器、網域名稱伺服器、網路資訊系統伺服器或時鐘伺服器。

防火牆說明軟體為基礎的防火牆背後的理念，並提供可用於FreeBSD中的不同的防火牆設定的詳細資訊。

進階網路設定介紹許多網路主題，包含在您的區域網路（LAN）分享網路際網路纜線給其他電腦、進階路由主題、無線網路、Bluetooth™、ATM、IPv6以及更多相關主題。

取得FreeBSD列出取得FreeBSD CDROM或DVD媒體的各種來源，以及在際網路路上的各種網站，讓您可以下載並安裝FreeBSD。

參考書目本書觸及許多不同主題，可能會讓您想深入了解，參考書目列出了在文中引用的許多優秀書籍。

網路資源介紹了可讓FreeBSD使用者提出問題以及參與有關FreeBSD技術討論的多個論壇。

OpenPGP金鑰列出了數個FreeBSD開發人員的PGP指紋。

本書的編排裁為了提供有一致性且易於閱讀的內容，以下是一些本書所遵循的編排裁。
範例

以 `C:` 作為開頭代表 MS-DOS™ 的指令。若沒有特殊情況的話，這些指令應該是在 Microsoft™ Windows™ 環境的 "指令提示字元 (Command Prompt)" 視窗內執行。

```
E:\> tools\ddimage floppies kern.flp A:
```

範例

以 `#` 為開頭代表在 FreeBSD 中以超級使用者權限來執行的指令。你可以先以 `root` 登入系統並下指令，或是以你自己的帳號登入再使用 `su(1)` 來取得超級使用者權限。

```
# dd if=kern.flp of=/dev/fd0
```

範例

以 `%` 為開頭代表在 FreeBSD 中以一般使用者帳號執行的指令。除非有提到其他用法，否則都是預設為 C-shell 語法，用來設定環境變數以及下其他指令的意思。

```
% top
```

銘謝

您所看到的這本書是經過數百個分散在世界各地的人所努力而來的結果。無論他們只是糾正一些錯誤或提交完整的章節，所有的點滴貢獻都是非常寶貴有用的。

• 介紹 FreeBSD 給您。
• 在安裝過程中給您指引。
• 教您 UNIX™ 的基礎及原理。
• 展示給您看如何安裝豐富的 FreeBSD 的應用軟體。
• 向您介紹 X, UNIX™ 的視窗系統及詳細的桌面環境設定，讓您更有生產力。
入門

這部份是提供給初次使用 FreeBSD 的使用者和系統管理者。這些章節包括:

• 介绍 FreeBSD 给您。
• 在安装过程给您指引。
• 教您 UNIX® 的基础及原理。
• 展示给您看如何安装丰富的 FreeBSD 的应用软体。
• 向您介绍 X, UNIX® 的视窗系统及详细的桌面环境设定,让您更有生产力。

我们试着尽可能的让这段文字的参考连接数目降到最低,让您在读使用手册的这部份时可以不太需要常常前后翻页。
Chapter 1. Introduction

1.1. What Is FreeBSD?

FreeBSD is a complete reimplementation of the BSD family of UNIX-like operating systems. It is derived from 4.4BSD-Lite, with enhancements for robustness, scalability, and security. FreeBSD was also intended to be a flexible base for other systems, and while it is not a standard UNIX, it is a complete single-user operating system. The FreeBSD kernel is derived from the Berkeley University BSD, with modifications to improve its performance and reliability. FreeBSD is designed for use as a network operating system, as a server operating system, and as a workstation operating system. It is available in binary form and can be used as-is, or it can be customized to meet the needs of the user. FreeBSD is free software and is distributed under the terms of the GNU General Public License. FreeBSD has a large and active user community, and there are many books and other resources available for learning more about it.
FreeBSD
開源
也
的
個相
劃:
代現
體。計來取
門設
ZRouter
pfSense
能給所有使用者,專
門設
計來
它帶
功
擁
業
能。
有的
昂
建
為
路
平
。OPNsense
基礎的,
FreeBSD Jail
還
SMB/CIFS
為
、
FTP
簡化
、
FreeNAS
能
ZFS, GELI, Capsicum, HAST
在其系統中作
錄
包商與管理
承
安
業
及稽查
的
每
250
接
萬
伺服器
的平
。著
也
ZFS
DTrace
支援
便
且
人
有
的
原
型
的文件、
除
員環境
擁
盡
點故障
單
施
運
設
FreeBSD
Verisign
設備便
是使用
視
線
運
路
報
被
The Weather Channel
發
社
讓
大
他
量
合
產
授權
展
回饋
敏
及
資
惡
出站郵件中的
軟
智慧
了
以
所有的網
也
致力
線
於
FreeBSD
修
做
Netflix
的
BSD
條款
能,包括新
NetApp
McAfee
改
未來新
開發
複雜
的
JunOS
Juniper
進
內容會
生
展
間
現
商之
Juniper
應
廠
的共
業
係
為
多
便
。這

兩
個
開發
的
主
修改
作。
Voxer
從
Solaris
動
使用
讓
驅
通
來
改

基礎。
Netflix
是以
客戶
影
業
的基礎,其中包
,也是以
-SecurOS
製
产品
的
-Sophos
是以
FreeBSD
此之外,
Data ONTAP GX
NetApp
-
為其樣將使打算”任做什麼是的用這些程式碼求偶爾但有一些資我們要因此當然不介意打算堅決補償，都有入非，文。於意用之中碼提供可作附帶任對在條
劃目標快照分10.X快照發佈時以來，速度及功FreeBSD稳那改年。1995年6發更易FreeBSD 2.0.5好行了糙義但式以路富移常不完1112整非年才CD-平年完成了這個轉的。劃若Intel一個可以執於求“Lite”的版本是不完了這艱FreeBSD發月為是對於佔的程式”之訴訟大部份的形Net/2定的確之後這個在的個時那的網器以想法路，同時提供了一那的FreeBSD行行通贊FreeBSD找了著進Jordan 如何改討問越。在來手進行定便開了最
名字的三們這這可，且臨其。然而，於快照的”助Bill Jolitz們舒業服，他問做便個386BSD 0.5工具(Patchkit)修工具組一
年起方三386BSD 1.3.1. FreeBSD含歷史劃、計劃目標在會網站FreeBSD。
貢獻名檔

核心

SVN

它封閉單獨開發式的瞭解 FreeBSD 作, 多程會是不者或者劃的人也是相當有用的。些度有興趣也經對我們興趣的新開發著的許開發際開發網架構計的工協同過由全所發且性開放發佈軟體。上幹複雜軟對更較業的途, 因此, 如果可以的話, 的碼限發佈附加 (LGPL) 鬆我們通用中, 有若樹共授權條款幹我認為由倡導目標我們我們

貢獻相當長且不斷成長中, 只要有考會就

就會。董相當家 FreeBSD 把成是一把事情目前未來的使用者自。與己最大的絕非, 但每兩年目 72018 是在者員開發職責也加入之一, 敬此外, 請的此計正確架構。會。董相當家 FreeBSD 把成是一把事情目前未來的使用者自。與己最大的絕非, 但每兩年目 72018 是在者員開發職責任加入了, 這一

報問 FreeBSD 真認錯誤題的是一個選者們就域入生本的、個人其他。前面用會 "被誤證支援並未從本計承已數的" 核心

貢獻名檔

核心

SVN

它封閉單獨開發式的瞭解 FreeBSD 作, 多程會是不者或者劃的人也是相當有用的。些度有興趣也經對我們興趣的新開發著的許開發際開發網架構計的工協同過由全所發且性開放發佈軟體。上幹複雜軟對更較業的途, 因此, 如果可以的話, 的碼限發佈附加 (LGPL) 鬆我們通用中, 有若樹共授權條款幹我認為由倡導目標我們我們

貢獻相當長且不斷成長中, 只要有考會就

就會。董相當家 FreeBSD 把成是一把事情現在未來的使用者自。與己最大的絕非, 但每兩年目 72018 是在者員開發職責任加入了, 這一
總而言之，我們的開發模式像是由鬆散的同心圓所組織。這個集中的模式設計的是讓 FreeBSD 的使用者更便利，可以很容易地追蹤同一個中央的程式庫，避免把潛在的貢獻者排除在外！而我們的目標是提供一個穩定的作業系統，並有大量相關的應用程式，讓使用者能夠輕鬆的安裝與使用——而這個開發模式對我們要完成這個目標來說運作的非常好。

我們對於那些想要加入 FreeBSD 開發者的期待是：請保持如同前人一樣的投入，以確保繼續成功！

1.3.4. 第三方程式

除了基礎發行版之外，FreeBSD 提供了擁有上千個常用的程式的移植軟體的套件集，在撰寫本文的同時，已有超過 24,000 個 Port！Port 的範圍從 HTTP 伺服器到遊戲、語系、編輯器，幾乎所有東西都在裡面。完整的 Port 套件集需要將近 500 MB。要編譯一個 Port 您只需要切換目錄到您想安裝的程式目錄，然後輸入 `make install`，接著系統便會處理剩下的動作。您編譯的每個 Port 完整原始發行版內容是動態下載的，所以您只需要有足夠的磁碟空間來編譯您想安裝的 Port。幾乎所有 Port 都提供已經預先編譯好”的“套件”，您可以透過簡單的指令來安裝 (`pkg install`)，提供那些不想要自行從原始碼編譯的人使用。更多有關套件與 Port 的資訊可於安裝應用程式：套件與 Port 取得。

1.3.5. 其他文件

一種的架構下列述如下：硬碟8 GB多的資會需要錯。起點更近源空間少，2-4 GB RAM上只入。然而，如此及磁碟硬碟般客的的嵌桌間用面系途設備。一用空空體的在製適合少記憶的應，如1.5 GB安裝程序需要至少的RAM及96 MB FreeBSD。何議映如使用的也有在不同像檔的選正確擇建架構的發支援架構體會列在和裝置行版硬體FreeBSD的FreeBSD隨而不同。硬FreeBSD的版本和體需求2.2.低體需最硬求在開始：閱讀這章之前，您需要了讀完這章，您將做敘視為全照著，而不是完將，所以請微差異的內容可能會有些。來安裝程式和本章所本章通用的指引述，會列來說，本章所針對架構一將的安裝說明是其他平和。如果可以用表台般i386™於使用文，說明如安裝四例。介面個案為何基礎的安裝程式此章接下來的部份會介紹第bsdinstall FreeBSD字會。根據含：環境，包可以有多種不同的方FreeBSD執，所在2.1.概述Chapter 2.安裝FreeBSD立何的安裝如建FreeBSD媒體。
查以下的項目準備好這些之前,先清單核對否做安裝確認硬符合媒準備的最體。可以下載安裝案並系統就定檔FreeBSD安裝的低旦求,一體需準備工

2.3.作安裝前

sparc64 powerpc ia64 i386

磁碟此時。需要專用的SMP系統共用系統,因為和其他作業磁碟所有支援處超一個理器的系統都有過系統列在支援FreeBSD/sparc64的元核心RAM只能使用前2 GB。32位在多機New World ROMApple™ Mac™的CPU系統都有支援器都有SMP。USB支援建的。所有內支援。設定處。理器E8870(Symmetric Multi-processor, SMP)理器和稱多對處單(Uniprocessor, UP)和目前晶片和支援的包括Itanium™ 2支援Intel™ 460GX Itanium™。組Intel™理器是HP zx1,處的的超驅制過裝但會體能的FreeBSD及使用夠被PAE記憶限來的會4 GB PAE用該的優點帶。有偵測超功啟核心過開能所支援的位可在有址實體CPU功(Physical Address Extensions, PAE)延伸FreeBSD支援能的浮幾支援。所有單乎的的含理器也有i386所有元Intel™ 486相容。算或是處更高點支援理器都有處運。常使用此與腦舊桌電腦筆記型電架構32-bit, x86的處理器。與之後的Intel™ Core™ 2含:處核心amd64相容的例以理器範與及AMD Athlon™64, AMD Opteron™, 包Intel™ Xeon™多Intel64型該為則造。製稱類,其他x86-64型該為則造。製



GPT比格式。如果系統,像是Windows™ XP割表一些舊的作並不相容分業較

pae(4)

要先重要資料。要資料份所有備要資料重份在,而是不要系統前,業作何任安裝

備要資料。備份上儲存備磁碟儲存資料上除,像是在可安裝的系統USB移將份在,而是不要系統前,業作何任安裝
一種安裝方式是給使用 UEFI (Unified Extensible Firmware Interface) 许可的電腦類型的不同而電異有。安裝依據架構及媒多種可用的格式, 所以安裝依循。然後使用來燒檔插入手開機, 並案到這個 dvd1.iso DVD DVD 系統, 需下載到 amd64 FreeBSD 10.2 [filename]#FreeBSD-10.2-RELEASE-amd64-DVD 组及档取得。安装档安装例发布会架構型的 a> 所在名稱由、以舉 FreeBSD 案成, 版本、要從...
本節會介紹其中隨身碟兩映

2.3.1.1. 檔寫入 檔不相 損壞 檔再 碼案中的值,
全 的,若 驗符 必須 校比對 碼後的
像 的目錄 拆之中

• Procedure:
使用可路-mini-memstick.img 檔依到應以下操作
案燒這個路窗可從無一些連體安裝完及用程式,如此網管理程式以
須-dvd1.iso 燒用程式
-disc1.iso CD 使用。燒燒
can 案以完成 CD 連安裝時需要網際案來下載所需的
-bootonly.iso -bootonly.iso

工具以系統會在份 USB 上隨身碟案是
類的程式。系統也會有業似這個 FreeBSD 檔始碼

-conv=sync
dd if=FreeBSD-10.2-RELEASE-amd64-memstick.img of=/dev/da0 bs=1M

既備在份 USB 上隨身碟上
隨身碟上

檔案是\n檔案不\n檔案重\n檔案後\n檔案有所有安裝\n案門有所有安裝
安裝程式。檔案

- Port:
含原含案檔套 Port

• Linux™
檔案所需的及含原這個 FreeBSD 檔始碼
案務,是檔案

- CHECKSUM.SHA256
sha256(1)

此將寫入案的說明 USB

像映插錄

。
Procedure:

使用 Windows™ 來寫入映象檔

1. 取得 Image Writer Windows™

Image Writer Windows™ 是一個免費的應用程式，可以正確地將映像檔寫入隨身碟。可從 https://sourceforge.net/projects/win32diskimager/ 下載，並解壓縮到一個資料夾。

2. 用 Image Writer 寫入映象檔

雙擊 Win32DiskImager 圖示啟動程式。確認 Device 显示的磁碟機代號是隨身碟的磁碟機代號。

按下列資料夾圖示選擇要寫入隨身碟的映像檔。按著下 [Save] 按鈕確定映像檔名。

確認所有東西都正確，隨身碟的資料夾並沒有在其他視窗開啟。所有東西準備好後，按下 [Write] 將映像檔寫入隨身碟。

您現在可以開始安裝 FreeBSD。

2.4. 開始安裝

預設安裝程序在下列訊息顯示之前不會對磁碟做任何更動:

Your changes will now be written to disk. If you have chosen to overwrite existing data, it will be PERMANENTLY ERASED. Are you sure you want to commit your changes?

在這個警告訊息之前可以隨時中止安裝，若有任何設定錯誤的疑慮，只需在此時關閉電腦，將不會對系統磁碟做任何更改。

本節將介紹如何使用根據準備安裝的媒體指示所準備的安裝媒體來開機。要使用可開機的 USB, 請在啟動電腦前插進 USB 隨身碟。要使用 CD 或 DVD，則可啟動電腦後在第一時間插進媒體。如何設定系統使用插入的媒體開機依不同的系統架構會有所不同。

2.4.1. 在 i386™ 及 amd64 開機

這兩種架構提供了 BIOS 選單可選擇開機的裝置，依據要使用的安裝媒體類型，選擇 CD/DVD 或 USB 裝置做為第一個開機裝置。大多數的系統也會提供快速鍵可在啟動時選擇開機裝置，而不需要進入 BIOS, 通常這個按鍵可能是 F10, F11, F12 或 Escape 其中之一。

若電腦仍載入現有的作業系統，而不是 FreeBSD 安裝程式，原因可能為:

1. 执行開機程序時安裝媒體插入主機的時間不夠早，請讓安裝媒體留在電腦中並重新啟動電腦。
2. 未正確修改 BIOS 或未儲檔，請再三檢查第一個開機裝置選擇了正確的裝置。
3. 系統太舊，無法支援使用選擇的開機媒體開機，發生這個情況可以使用 Plop Boot Manager (http://www.plop.at/en/bootmanagers.html) 來從選擇的開機媒體開機。

2.4.2. 在 PowerPC™ 開機

在大部份機型，可於開機時按住鍵盤上的 C, 便可從 CD 開機。若在非 Apple™ 的鍵盤則可按住 Command + Option + O + F 或 Windows + Alt + O + F, 出現 0 > 提示時, 輸入 24
在SPARC64™開機時，大多數SPARC64™系統會自動從磁碟開機，要從CD安裝FreeBSD需要進入PROM。

要進入PROM，需重新開機系統然後等候開機訊息出現。訊息會依機型而有所不同，但大致結果會如：

若系統繼續從磁碟開機，此時按下鍵盤上的L1+A或Stop+A或透過序列Console送出BREAK。當使用tip或cu，~#發出一個BREAK後，PROM的提示會在單CPU的系統出現ok，SMP的系統出現ok{0}，其中的数字代表啟動的CPU數。

此時，放入CD到磁碟機然後在PROM提示畫面輸入boot cdrom。

2.4.4. FreeBSD開機選單

從安裝媒介開機之後，會顯示如下的選單：

1. Boot Installer [Enter]
2. Boot Single user
3. Escape to loader prompt
4. Reboot
5. Cons: Video

Options:
6. Kernel: default/kernel (1 of 1)
7. Boot Options

Autoboot In 7 seconds. [Space] to pause
網路到載入程式提示（Escape to loader prompt）：這個選項會開機進入修復提示。這個模樣有有限數量的低階指令。這個模樣詳細說明於階段三。可按 3 或 Esc 進入這個提示。

• 重新開機（Reboot）：重新啟動系統。

• 設定開機選項（Configure Boot Options）：啟動內部選單，詳細說明於 FreeBSD 開機選項選單。

FreeBSD 開機選項選單分成兩個部份。第一個部份用來返回主開機選單或重設任何已切換的選項回預設值。第二個部份用來切換可用的選項為開（On）或關（Off），透過按下選項明顯標示的編號或字元。系統將會一直使用這些選項開機，直到選項被修改。有數個選項可以在這個選單做切換：

• ACPI 支援（ACPI Support）：若系統在開機時卡住，可嘗試切換這個選項為關（Off）。

• 安全模式（Safe Mode）：若系統在 ACPI 支援（ACPI Support）設為關（Off）時開機時仍然會卡住，可嘗試將此選項設為開（On）。

• 標準使用者（Single User）：切換這個選項為開（On）來修正已存在的 FreeBSD 如標記使用者模式所描述問題。修正後，將其設回關（Off）。

• 詳細資訊（Verbose）：切換這個選項為開（On）來查看開機程序中更詳細的訊息。這在診斷硬體問題時非常有用。

在做完所需的選擇後，按下 1 或 Backspace 返回主開機選單，然後按下 Enter 繼續開機進入 FreeBSD。FreeBSD 執行裝置偵測及載入安裝程式時會顯示一系列的開機訊息，開機完成之後，會顯示歡迎選單如歡迎選單。
圖3. 歡迎選單
按<Enter>選擇預設的【Install】進入安裝程式，接下來本章將介紹如何使用這個安裝程式。

若要選擇其他項目，可使用右或左方向鍵或顏色標示的字母選擇想要的選單項目。

【Shell】可用來進入FreeBSD的Shell使用指令列工具在安裝之前準備磁碟。

【Live CD】選項可用來在安裝之前試用FreeBSD，Live版本的詳細說明於使用Live CD。

要重新檢視開機訊息，包含硬體裝置偵測，請按大寫或小寫S然後再按<Enter>進入Shell。在Shell提示之後輸入more /var/run/dmesg.boot然後使用空白鍵來捲動訊息。當查看完畢後輸入exit返回歡迎選單。

2.5. 使用bsdinstall
本節將告訴您在系統安裝之前bsdinstall選單的順序及會詢問的資訊類型，可使用方向鍵來選擇選單的選項，然後按下Space選擇或取消選擇選單項目。當完成之後，按下Enter儲存選項然後進入下一個畫面。

2.5.1. 鍵盤對應表選單
依據使用的系統Console，bsdinstall可能一開始顯示的選單會如鍵盤對應表選擇。
To set a non-default key mapping for your keyboard, select [YES] and press Enter. You will then see a menu to choose the keyboard configuration. If you wish to use the default configuration, select [NO] and press Enter to skip this menu. Press Esc to leave this menu and use the default keyboard configuration. If you are unsure about the keyboard configuration you want to use, the United States of America ISO-8859-1 is also an option.

In FreeBSD 10.0-RELEASE, you can choose from several keyboard layouts, including:
- Armenian phonetic layout
- Belarusian Codepage 1131
- Belarusian Codepage 1251
- Belarusian ISO-8859-5
- Belgian ISO-8859-1
- Belgian ISO-8859-1 (accent keys)
- Brazilian 275 Codepage 850
- Brazilian 275 ISO-8859-1
- Brazilian 275 ISO-8859-1 (accent keys)
- Bulgarian DDS
- Bulgarian Phonetic
- Central European ISO-8859-2
- Colemak ergonomic alternative
- Croatian ISO-8859-2
- Czech ISO-8859-2

Select [OK] to proceed, or [Cancel] to exit.
以及之後的版本，已經加強了這個選單，會顯示完整的鍵盤對應表選項，並預先選擇預設值。另外，當選擇其他鍵盤對應用時，在繼續之前會顯示對話框讓使用者測試鍵盤對應表來確認為新安裝的系統設定主機名稱用來為新安裝的系統設定主機名稱。輸入在網路上獨一無二的主機名稱，主機名稱要是完整的主機名稱，如 `machine3.example.com`。
2.5.3. 选
要安装的
件
接下來 bsdinstall
會提
选择 要安装的 选
用
件。

图 8. 选
要安装的
件
决
定
要安装的
件主要會
根據
系統的用
途
及
可用的
磁碟
空
间
量
FreeBSD
核心
(Kernel)
及
Userland
統
称
為
基础系统
(Base system), 是
必須
安裝的部份。依
據
系統的
架構
, 部份
件可能不
顯
示:

• doc
- 额
外的说明文件, 大部份是
經年累
月
産
物
, 会安装到
/usr/shared/doc
由
FreeBSD
文件计
划
所提供的说明文件可在之后安装, 依
照
更新文件集
中的
指示
操作。

• games
- 数
个
统
BSD
游戏,
包
含
fortune, rot13
以
及
其他。

• lib32
- 在
64-bit
版本的
FreeBSD
供
行
32-bit
应
用程式使用的相容
性
程式
库

• ports
- FreeBSD Port
装
件集是一
套
可自
动
下载、
编译
安装第
三
方
软
体
件, 安装
应
用程式
件
件与
Port
中会
讨论到如
何
使用
Port
件

• src
- 完
整
的
FreeBSD
原
始码
, 包
含核心
(Kernel)
与
Userland
虽
然大多
数
的
应
用程式并不需要, 但
它
可以
编译
装
置
程式、
核心模
或部份来自
Port
件
它
同时也用
来做为开发
FreeBSD
身
所使用。完
整
原
始码
树
需要
1 GB
的
磁碟
间
重
新
编译整
个
FreeBSD
系统需要
额
外
再
5 GB
的
间

2.5.4. 从网
路
装

於
从网
路
装
所
示
的
选
只会在使用
-bootonly.iso
安
时
显
示,
因这个安
媒
中并未
安
的
複
本。由
于
安
必须
透
网
下,
此
件
会
告
先
设

Some installation files were not found on the boot volume. The next few screens will allow you to configure networking so that they can be downloaded from the Internet.

Please select the best suitable site for you or “other” if you want to specify a different choice. The “Main Site” directs users to the nearest project managed mirror via GeoDNS (they carry the full range of possible distributions and support both IPv4 and IPv6). All other sites are known as “Community Mirrors”; not every site listed here carries more than the base distribution kits. Select a site!

- http://download.freebsd.org
- ftp://ftp2.br.freebsd.org
- ftp://ftp.at.freebsd.org
- ftp://ftp.dk.freebsd.org

Main Site (GeoDNS)
Australia - IPv6
Australia #3
Austria - IPv6
Brazil #2
Brazil #3
Bulgaria - IPv6
Czech Republic - IPv6
Denmark - IPv6
 FreeBSD 10.x 或 更新版本的磁碟分割選項

引導式 (Guided) 磁碟分割會自動設定磁碟的分割區 (Partition), 手動 (Manual) 磁碟分割可讓進階的使用者使用選單項目建立自訂的分割區, 而 Shell 會啟動 Shell 提示讓進階的使用者可以使用指示列工具如 gpart(8), fdisk(8) 及 bsdlabel(8) 來建立自訂的分割區。

ZFS 磁碟分割只在 FreeBSD 10 及之後的版本可以使用, 可建立選擇性加密的 root-on-ZFS 系統並支援開機環境 (Boot environment)。

本節會介紹在配置磁碟分割時需要考量那些事情, 並且會示範各種磁碟分割的方式。

2.6.1 规划分割区配置

配置檔案系統時要記得硬碟的資料傳輸的速度外軌較內軌快, 因此較小且大量存取的檔案系統應要較接近磁碟的外軌, 而較大的分割區如 /usr 應放置在磁碟較內部, 建議建立分割區的順序如下:

/ , swap , /var 然後 /usr。

機器預期的用途會反映到 /var 分割區的大小, 這個分割區用來保存郵件 (Mailbox)、日誌檔 (Log file) 及印表機緩衝 (Spool)。

依使用者數及保存的期間, 郵件及日誌檔可能成長到無法預期的大小, 一般來說大部分的使用很少會在 /var 需要超過 1 GB 的可用磁碟空間。

有時在 /var/tmp 會需要較多的空間, 當新軟體安裝, 套件工具會從套件中取出暫存的複本置於 /var/tmp。若在 /var/tmp 沒有足夠的空間, 要安裝大型軟體套件, 例如 Firefox, Apache OpenOffice 或 LibreOffice 會很困難。

/usr 分割區保存了許多支援系統運作的檔案, 包含 FreeBSD Port 套件集及系統原始碼, 這個分割區建議至少要有 2 GB 的空間。

在規畫分割區大小時, 請牢記空間需求, 當因某個分割區空間不夠時要改使用其他分割區時會很麻煩。

根據經驗, 交換分割區應為是實體記憶體 (RAM) 的兩倍。使用最底需求的 RAM 來運作的系統會需要更多的交換空間來取得更好的表現。配置太小的交換空間可能導致 VM 分頁掃描碼效率不佳, 且往後增加更多的記憶體時可能會產生問題。

在有數個 SCSI 磁碟或數個 IDE 磁碟在不同控制器的大型系統建議在每個磁碟機上都設定交換空間, 最多可至四個磁碟機。每個交換分割區的大小應接近相同。核心雖可以處以任意大小的交換空間, 但內部資料結構擴充到 432.
倍的最大交换分区时，让交换分区拥有相同的大小可以让核心可以最佳的方式串连各个磁碟的交换空间。

规划较大交换空间是可以的，即使用到多少交换空间，这也会让从失控的程式恢复运作更容易，而不需强制重新启动系统。

正确的做磁碟分隔，可以隔频常写入所产生的资料碎片与经常读取的分隔区，将写入频繁的分隔区放在磁碟的边缘可以增加I/O效率。

虽然较大的分隔区可能也需要增加I/O效率，但将这些分隔区往磁碟边缘移动所增加的效率并不会比将/var移至磁碟边缘所增加的效率来得显著。

2.6.2. 引导式磁碟分隔

当选择这个方法时，选单上会显示可用的磁碟，若电脑有安装多个磁碟，则需选择其中一个来安装FreeBSD。

图12. 自多磁碟选择

选择磁碟之后，接下来选单会提示是否要安装到整个磁碟或是使用剩余的空间建立新的分隔区。若选择[Entire Disk]，会自动建立通用的分隔区配置来填满整个磁碟。选择[Partition]则会使用磁碟上未使用的空间来建立分隔区配置。
FreeBSD Installer

Would you like to use this entire disk (ada0) for or partition it to share it with other operating systems? Using the entire disk will erase any data currently stored there.

[Entire Disk] [Partition]

FreeBSD Installer

Please review the disk setup. When complete, press the Finish button.

<table>
<thead>
<tr>
<th>Device</th>
<th>Size</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ada0</td>
<td>16 GB</td>
<td>GPT</td>
</tr>
<tr>
<td>ada0p1</td>
<td>512 KB</td>
<td>FreeBSD-boot</td>
</tr>
<tr>
<td>ada0p2</td>
<td>15 GB</td>
<td>FreeBSD-ufs /</td>
</tr>
<tr>
<td>ada0p3</td>
<td>819 MB</td>
<td>FreeBSD-swap none</td>
</tr>
<tr>
<td>ada1</td>
<td>16 GB</td>
<td>(none)</td>
</tr>
</tbody>
</table>
hand to create partitions. F1 for help.
No changes will be made until you select Finish.

To install the hard drive (in this example, ada0),
then select [Create] to display available partition schemes (Partition scheme):

Table 1. Partition Schemes

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APM</td>
<td>Apple Partition Map, used for PowerPC™</td>
</tr>
<tr>
<td>BSD</td>
<td>BSD Labels</td>
</tr>
<tr>
<td>GPT</td>
<td>GUID Partition Table</td>
</tr>
<tr>
<td>DOS</td>
<td>DOS Partitions</td>
</tr>
</tbody>
</table>

For AMD64 systems,
the recommended choice is usually GPT,
while older systems should use MBR.
Other partition schemes are generally used on
rarer or older systems.
FreeBSD Install: Partition Editor

Create partitions for, F1 for help.
No changes will be made until you select Finish.

Filesystem type (e.g. freebsd-ufs, freebsd-zfs, freebsd-swap)
個設定選單提供了設定選項控制儲存數。儲存池用會給 ZFS 餘,這個剩開機檔加密要的的磁碟加密,如或作擇。安裝程式也可好處扇磁碟區磁碟採的外的論是作,品區全也可在未來確保增加的使用也很安。元儲存立的 512 加入 4k 然後 4k 邊使在 (Sector) 使用區割區建個整立整分清磁碟割模動磁碟磁碟支援立建在之後了自訂的分立自建擇的文、途字與電無請使用獨每相同標避免來,籤案如檔改變分連結割區連編號 (籤麼點割區若分便內點割區便)。
FreeBSD Installer

2FS Configuration

Configure Options:

[>>> Install] Proceed with Installation
- Pool Type/Disks: stripe: 0 disks
- Rescan Devices: *
- Disk Info: *
- Pool Name: zroot
- Force 4K Sectors?: YES
- Encrypt Disks?: NO
- Partition Scheme: GPT (BIOS)
- Swap Size: 2g
- Mirror Swap?: NO
- Encrypt Swap?: NO

Select [Use alnum, arrows, punctuation, TAB or ENTER]

Create ZFS boot pool with displayed options

FreeBSD Installer

[1+ Disks] Striping provides maximum storage but no redundancy
更改儲存池類型。

图20. 磁碟选择

若有一个或多磁碟未出现在清单上，或在安装程式启动后连接的磁碟，可以选择重新扫描装置([Rescan Devices])来更新可用磁碟的清单。要避免清除错误的磁碟，可用磁碟资讯([Disk Info])来检查每个磁碟，包括磁碟中的分割表以及各种其他资讯如装置型号与序号（若有的话）。

FreeBSD Installer

图21. 无效选择

raidz1: Not enough disks selected. (2 < 3 minimum)

[Change Selection] < Cancel >

[Press arrows, TAB or ENTER]
图 22. 分析磁碟主 ZFS 設定選單也允許使用者輸入儲存池名稱、關閉強制 4k 扇區對齊、開啟或關閉加密、切換 GPT (建議) 與 MBR 分割表類型及選擇交換空間容銳。設定所有選項為想要的值之後，請選擇選單上方的安裝（Install）選項。

若開啟了 GELI 磁碟加密，安裝程式會提示輸入兩次用來加密磁碟的密碼。安裝程式接著會提供最後一次修改機會取消先前所選擇摧毀用來建立 ZFS 儲存池的磁碟機。
2.6.5. Shell

当要做進階的安裝時, bsdinstall 的磁碟分割選單可能無法提供需要的彈性。進階的使用者可以在磁碟分割選單選擇 [Shell] 選項來手動分割磁碟機、建立檔案系統、填寫 /tmp/bsdinstall_etc/fstab 及掛載檔案系統到 /mnt 下。這些動作完成之後,輸入 exit 可返回 bsdinstall 繼續安裝程序。

2.7. 確認安裝磁碟設定完之後,接下來的選單會讓您在格式化所選的硬碟之前有最後一次機會做變更,若需要做變更,可選 [Back] 返回到主要磁碟分割選單。

[Revert & Exit] 則會離開安裝程式, 不會對硬碟做任何變更。
最後確認要開始實際的安裝，請選擇 [Commit] 然後按下 Enter。

安裝時間會依選擇的發行版、安裝媒體、電腦的速度而有所不同，接下來會有一系列訊息告知目前的進度。

首先，安裝程式會格式化選擇的磁碟，然後初始化分割區。然後，若使用僅可開機（Boot only）的媒體則會開始下載選擇的元件。

接著，會檢驗發行版的檔案完整性來確保沒有因下載過程中或安裝媒體的讀取過程中讀取錯誤所造成的損壞。

開始安裝，請選擇 [Commit]。接下來，會初始化分割區。然後，若使用僅可開機（Boot only）的媒體則會開始下載選擇的元件。

開始安裝，請選擇 [Commit]。接下來，會初始化分割區。然後，若使用僅可開機（Boot only）的媒體則會開始下載選擇的元件。
最後，檢驗過的發行版檔案會被取出儲存至磁碟。

所有選擇的發行版檔案取出後，bsdinstall會顯示第一次安裝後設定畫面，可用的安裝後設定選項會在下一節說明。

2.8. 安裝後注意事項
FreeBSD安裝完之後，bsdinstall會在開機進入新安裝的系統之前提示設定數個選項，本節將介紹這些設定選項。

31159 files read 0 1154.0 files/sec.
FreeBSD Installer

Please select a password for the system management account (root):
Typed characters will not be visible.
Changing local password for root
New Password:
Retype New Password:
If you select option 2, the network interface card, the installation program will skip this part and directly connect IPv4 network. If you select option 3, the wireless network interface card, the system will start scanning wireless access points (Wireless Access Point):

Network line will use Service Set Identifier (SSID) to identify. SSID is a short, unique name used to name each network. The SSID found during scanning will be listed in the list, and will explain the available encryption type of the network. If the SSID you want to connect is not listed on the list, you can select [Rescan] to rescan. If the network you want to connect still does not appear, please check whether the cable connection is normal, or try moving the computer to a closer position to scan again.
然後，輸入加密資訊來連線到選擇的無線網路。

強烈建議使用 WPA2 加密，因為舊的加密類型，如 WEP，僅提供微弱的安全性。若網路使用 WPA2 則需輸入密碼，也稱作 Pre-Shared Key (PSK)。考量安全性，輸入到輸入框的字元會以星號顯示。

图33. WPA2 設定

接下來，選擇是設定乙太網路或無線網路介面卡的 IPv4 位址：

FreeBSD Installer
图34. 选 择 IPv4 网路有 两种方式可以设定 IPv4。DHCP 会自动设定网路介面卡且该网路上需有 DHCP 伺服器才可使用。否则，则必须手 动输入位址的资讯来做静态设定。

图35. 选择 IPv4 DHCP 设定

若有可用的 DHCP 伺服器，请在接下来的选单中选择 [Yes] 则会自动设定网路介面卡。当找到 DHCP 伺服器并且取得系统的位址资讯时，安装程式会出现一分 钟左右的停顿。

如果没 有可用的 DHCP 伺服器，则选择 [No] 然后在这个选单中输入以下位址资讯。
IPv4 Static Position Setting

- IP Address - The IPv4 address to be assigned to the computer.
- Subnet Mask - The subnet mask.
- Default Router - The default gateway for the IP address's network segment.

Next screen will ask if you want to configure the interface card's IPv6 address. If you can and want to use IPv6, please select [Yes].

IPv6 has two ways to set it up.

- Stateless Address AutoConfiguration (SLAAC) will automatically request correct settings from the Domain Name Server (DNS) for further information, refer to http://tools.ietf.org/html/rfc4862.
- Static setting requires manual input of network information.
若有可用的IPv6路由器，请在接下来的选单选择【Yes】，来自动态设定网络介面卡。当找到路由器并且取得系统的位址资讯时，安装程式会出现一分钟左右的停顿。

图38. 选择IPv6 SLAAC设定

若没有可用的IPv6路由器，请选择【No】，然后在这个选单中输入以下位址资讯：

图39. IPv6静态位置设定

- IPv6位址(IPv6 Address) - 要分配给这台电脑的IPv6位址。位址必须唯一且不可已被其他在区域内网络路上的设备使用。
- 预设路由器(Default Router) - IPv6位址所在网段的预设通讯闸。

最后的网络设定选单是用来设定域名名称系统(Domain Name System, DNS)的解析器，解析器会转换主机名称为网络位址。若已使用DHCP或SLAAC。
 Resolver Configuration

<table>
<thead>
<tr>
<th>Search</th>
<th>example.com</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 DNS #1</td>
<td>2001:db8:35::35</td>
</tr>
<tr>
<td>IPv6 DNS #2</td>
<td>2001:db8:53::53</td>
</tr>
<tr>
<td>IPv4 DNS #1</td>
<td>192.168.2.1</td>
</tr>
<tr>
<td>IPv4 DNS #2</td>
<td>203.0.113.8</td>
</tr>
</tbody>
</table>

[OK] [Cancel]

Select local or UTC (Greenwich Mean Time) clock
Is this machine's CMOS clock set to UTC? If it is set to local time, or you don't know, please choose NO here!

Yes [No]
此處以位於美國東部時間的機器為例，選擇會依據地理位置不同改變。

图42. 选择区域使用方向键选择适当的区域然后按下Enter。

图43. 选择城市使用方向键选择适当的城市然后按下Enter。
2.8.4. 開啟服務

接下來的選單用來設定那些系統服務要在系統啟動時執行。所有的服務為選用，只需開啓系統運作真正需要的服務。

圖45. 確認時區確認時區的縮寫是否正確，若正確，按下Enter繼續安裝後設定。

圖44. 選擇時區適當時再按Enter。
System Configuration

Choose the services you would like to be started at boot:

<table>
<thead>
<tr>
<th>Service</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sshd</td>
<td>Secure shell daemon</td>
</tr>
<tr>
<td>moused</td>
<td>PS/2 mouse pointer on console</td>
</tr>
<tr>
<td>ntpd</td>
<td>Synchronize system and network time</td>
</tr>
<tr>
<td>ntpd_sync_on_start</td>
<td>Sync time on ntpd startup, even if offset is high</td>
</tr>
<tr>
<td>powerd</td>
<td>Adjust CPU frequency dynamically if supported</td>
</tr>
<tr>
<td>dumpdev</td>
<td>Enable kernel crash dumps to /var/crash</td>
</tr>
</tbody>
</table>

[OK]
Would you like to enable crash dumps? If you start having problems with the system it can help the FreeBSD developers debug the problem. But the crash dumps can take up a lot of disk space in /var.

<Yes> <No>

Would you like to add users to the installed system now?

<Yes> <No>
FreeBSD Installer
=================
Add Users

Username: imani
Full name: imani
Uid (Leave empty for default):
Login group [imani]:
Login group is imani. Invite imani into other groups? []: wheel
Login class [default]:
Shell (sh csh tcsh nologin) [sh]:
Home directory [/home/imani]:
Home directory permissions (Leave empty for default):
Use password-based authentication? [yes]:
Use an empty password? (yes/no) [no]:
Use a random password? (yes/no) [no]:
Enter password:
Enter password again:
Lock out the account after creation? [no]: ☑
If there are any other users to be added, ask if you want to add another user? (Add another user?)
Input yes (yes) or no (no) to complete adding users and continue installation.

To get more information about adding users and user management, please refer to the user and basic account management.

2.8.7. After all the installations and configurations are completed, there will be a final setup screen.

- Use this menu to make any changes or configurations before completing the installation.
The installation is now finished. Before exiting the installer, would you like to open a shell in the new system to make any final manual modifications?

<Yes> <No>
若有需要做進一步或特殊的設定，選擇[Live CD]會開機進入安裝媒體的Live CD模式。

若安裝已完成，選擇[Reboot]重新開機然後啟動新的FreeBSD電腦。不要忘了移除FreeBSD安裝媒體，否則電腦會再次開機進入安裝程式。

FreeBSD開機的過程會顯示許多功能的訊息，系統開機完成後，會顯示登入提示，在login:提示，輸入安裝時新增的使用者名稱。登入時避免直接使用root，請參考超級使用者帳號來取得當需要管理權限時如何成為超級使用者的說明。

要查看開機過程顯示的訊息可按Scroll-Lock鍵來啟動卷軸暫存，然後可使用PgUp, PgDn以及方向鍵來捲動訊息。查看完成之後再按Scroll-Lock鍵一次來解除畫面鎖定並返回Console。系統開機一段時間之後要查看這些訊息可在指令提示後輸入less/var/run/dmesg.boot，查看後按下q鍵便可返回指令列。

若在選擇要啟動的其他服務有啟動sshd，因系統會產生RSA及DSA金鑰第一次開機可能會有點慢，之後的開機便會恢復正常速度。接著會顯示金鑰的指紋(Fingerprint)，如這個範例:

```
Generating public/private rsa1 key pair.
Your identification has been saved in /etc/ssh/ssh_host_key.
Your public key has been saved in /etc/ssh/ssh_host_key.pub.
The key fingerprint is:
The key's randomart image is:
+--[RSA1 1024]----+
|    o..          |
|   o . .         |
|  .   o          |
|       o         |
|    o   S        |
```

Generating public/private dsa key pair.
Your identification has been saved in /etc/ssh/ssh_host_dsa_key.
Your public key has been saved in /etc/ssh/ssh_host_dsa_key.pub.
The key fingerprint is:
The key's randomart image is:
+--[DSA 1024]----+
| ..
| o
| ..
| E .|
| +
| ...
| o o
| + S
| +
| + *
| +
| +
| +
| +-------+

FreeBSD 預設並不會安裝圖型介面,請參考 X Window 系統取得有關安裝與設定圖型化視窗管理程式的資訊。

正確的將 FreeBSD 電腦關機對保護資料及避免硬體損壞有幫助。在系統尚未正常關機之前請不要關閉電源!

若使用者為 wheel 群組的成員之一,可在指令列輸入 su 然後輸入 root 密碼來成為超級使用者。接著輸入 shutdown -p now 系統便會關機,若硬體支援的話,電腦會自行關閉電源。

部分安裝問題可以透過各種硬體元件的韌體來避免或緩解,特別是主機板。主機板的韌體通常稱為 BIOS,大部份主機板與電腦製造商會有網站可以取得升級程式與升級資訊。製造商通常會建議若沒有一特殊原因盡量避免升級主機板 BIOS,例如：重大更新,升級的程序可能會出錯,導致未更新完成的 BIOS 並讓電腦無法運作。
若系統在開機偵測硬體時卡住或安裝時運作異常，可能主因為ACPI。FreeBSD在i386, amd64及ia64平台廣泛的使用了系統ACPI服務來協助設定系統組態，若在開機時有偵測到該功能。不幸的是，ACPI驅動程式與系統主機板及BIOS韌體之間仍存在部份問題。可於開機載入程式的第三階段設定hint.acpi.0.disabled来關閉ACPI：

```
set hint.acpi.0.disabled = "1"
```

每一次系統重開之後便會重設，因此需要在/boot/loader.conf檔案加入hint.acpi.0.disabled="1"。

更多有關開機載入程式的資訊可於概述取得。

2.10. 使用Live CD

如歡迎選單所示bsdinstall的歡迎選單提供了[Live CD]選項，這對那些對FreeBSD是否為正確的作業系統尚存疑慮的人非常有幫助，這可讓這些人在安裝前測試一部份功能。

在使用[Live CD]之前必須注意以下幾點事項:

• 若要增加存取權限，必須透過認證。使用者名稱為root而密碼則是空白。
• 系統是直接從安裝媒體上執行，比起安裝到硬碟的系統，效能可能較差。
• 這個選項只提供指令提示，不會有圖型化介面。

60
3.1. 概述

接下来的这一章将涵盖 FreeBSD 作业系统的基本指令及功能。大部份的内容在 UNIX™-like 作业系统中都是相通的。如果您对这些内容熟悉的话，可以放心的跳过。如果您刚接触 FreeBSD，那您一定要仔细的读完这章。

读完这章，您将了解:

• 如何使用 FreeBSD 的虚拟 Console。
• 如何在 FreeBSD 建立与管理使用者与群组。
• UNIX™ 档案权限以及 FreeBSD 档案标记的运作方式。
• 预设的 FreeBSD 档案系统配置。
• FreeBSD 的磁碟组织。
• 如何挂载 (Mount)、卸载 (Umount) 档案系统。
• 什么是程序、Daemon 以及信号 (Signal)。
• 什么是 Shell，以及如何变更您预设的登入环境。
• 如何使用基本的文字编辑器。
• 什么是装置 (Device) 以及装置节点 (Device node)。
• 如何阅读操作手册以获得更多的资讯。

3.2. 虚拟 Console 与终端机

如果您没有将 FreeBSD 设定成开机时自动进入图形化模式，系统会进入指令登入提示像是这样的东西:

FreeBSD/amd64 (pc3.example.org) (ttyv0)

login:

第一行包含了刚开机完系统的信息，amd64 代表此范例所使用的系统是执行 64-位元版本的 FreeBSD，这台主机的名称是 pc3.example.org, ttyv0 代表这是个"系统 Console"。第二行则是登入人的提示信息。

FreeBSD 是一个多使用者的系统，需要一套可以分辨不同使用者的方法。因此所有的使用者在执行程式之前必须"登入"系统以取得系统内程式的存取权限。每个使用者都有一组独一无二的使用者名称("username")及个人密码("password")。

要登入系统 Console 需输入在系统安装时设定的使用者名称，请参考新增使用者，并按下 Enter。

接著输入该名使用者的密码并按下 Enter。输入的密码是为了安全起见不会显示在画面上。

如果您输入了正确的密码，您应该会看到今日讯息 (Message of the day, MOTD)，后面接著显示指令提示字元，依使用者建立时所选择的 Shell 会有不同的提示字元可能为 #, $ 或是 %。

看到指令提示代表使用者现在已经登入 FreeBSD 系统 Console 且已经准备好可以下指令。

3.2.1. 虚拟 Console

虽然系统 Console 已经可以用来自与系统互动，但使用键盘来下指令使用 FreeBSD 系统的使用者通常会使用虚拟 Console 登入。因为系统资讯预设会显示在系统 Console，这些资讯在使用者作業的过程中不断出现，让使用者难以专心作業。
FreeBSD 預設提供多個虛擬 Console 可輸入指令，每個虛擬 Console 都有自己登入提示及 Shell，並且可以輕易在虛擬 Console 間切換。這實際上讓指令輸入有類似於圖型化環境中可以同時開啓多個視窗的機能。

組合鍵 Alt+F1 至 Alt+F8 被 FreeBSD 保留用來切換虛擬 Console，使用 Alt+F1 可切換至系統 Console (ttyv0)，Alt+F2 存取第一個虛擬 Console (ttyv1)，Alt+F3 存取第二個虛擬 Console (ttyv2)，以此類推。當使用 Xorg 作爲圖型化 Console 時，組合鍵則改使用 Ctrl+Alt+F1 來切換回文字介面的虛擬 Console。

當您從一個 Console 切換到下一個的時候，FreeBSD 會切換畫面顯示的內容，這就好像有很多虛擬的螢幕和鍵盤可以讓您輸入指令到 FreeBSD 執行。在某一個虛擬 Console 上執行列的程式並不會因為使用者切到別的 Console 而停止執行。

請參考 kbdcontrol(1)，vidcontrol(1)，atkbd:(4)，syscons(4) 及 vt(4) 來取得更多有關 FreeBSD Console 及鍵盤驅動程式的技術說明。

FreeBSD 中虛擬 Console 的數量設定在 /etc/ttys 檔案中的下列章節：

<table>
<thead>
<tr>
<th>name</th>
<th>getty</th>
<th>type</th>
<th>status</th>
<th>comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ttyv0</td>
<td>"/usr/libexec/getty Pc"</td>
<td>xterm</td>
<td>on</td>
<td>secure</td>
</tr>
<tr>
<td>Virtual terminals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ttyv1</td>
<td>"/usr/libexec/getty Pc"</td>
<td>xterm</td>
<td>on</td>
<td>secure</td>
</tr>
<tr>
<td>ttyv2</td>
<td>"/usr/libexec/getty Pc"</td>
<td>xterm</td>
<td>on</td>
<td>secure</td>
</tr>
<tr>
<td>ttyv3</td>
<td>"/usr/libexec/getty Pc"</td>
<td>xterm</td>
<td>on</td>
<td>secure</td>
</tr>
<tr>
<td>ttyv4</td>
<td>"/usr/libexec/getty Pc"</td>
<td>xterm</td>
<td>on</td>
<td>secure</td>
</tr>
<tr>
<td>ttyv5</td>
<td>"/usr/libexec/getty Pc"</td>
<td>xterm</td>
<td>on</td>
<td>secure</td>
</tr>
<tr>
<td>ttyv6</td>
<td>"/usr/libexec/getty Pc"</td>
<td>xterm</td>
<td>on</td>
<td>secure</td>
</tr>
<tr>
<td>ttyv7</td>
<td>"/usr/libexec/getty Pc"</td>
<td>xterm</td>
<td>on</td>
<td>secure</td>
</tr>
<tr>
<td>ttyv8</td>
<td>"/usr/X11R6/bin/xdm -nodaemon"</td>
<td>xterm</td>
<td>off</td>
<td>secure</td>
</tr>
</tbody>
</table>

要關閉虛擬 Console 只要指定的虛擬 Console 該行設定的一開始加上註解符號（#）。例如要將虛擬 Console 的數量由 8 個改為 4 個，則可將加在代表虛擬 Console 的 ttyv5 到 ttyv8 的最後四行一開始。

請勿將系統 Console ttyv0 加上註解符號。注意，若有依照 X Window 系統安裝並設定 Xorg 時，會用到最後一個虛擬 Console (ttyv8)。

有關於各欄位的設定及其他選項，請參閲 ttys(5) 說明。

3.2.2. 標使用者模式

FreeBSD 開機選單會提供一個選項為 "Boot Single User"，若選擇該項目，系統將會進入所謂 "單使用者模式" 的特殊模式。此模式通常用在修復系統無法開機或重設已忘掉的 root 密碼。

在當使用者模式中無法使用網路及其他虛擬 Console，但有完整 root 對系統的存取權限，而且預設是不須要輸入 root 密碼。也因此，要能透過實體鍵盤操作才能進入此模式，在考量 FreeBSD 系統安全時須要限制可操作實體鍵盤的人員。有關於使用者模式的設定可在 /etc/ttys 中的以下章節中找到：

<table>
<thead>
<tr>
<th>name</th>
<th>getty</th>
<th>type</th>
<th>status</th>
<th>comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If console is marked "insecure", then init will ask for the root password</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
when going to single-user mode.

console none unknown off secure

預
設
狀
態
為
安
全
(secure), 這代表誰能夠操作實體鍵盤不是不重要就是已受到實體安全規範管制。

若設定更改為不安全(insecure)則代表主機所在的環境不安全,因為任何人皆可接觸鍵盤。

當此行設定更改為不安全(insecure)時,當使用選擇單使用者模式時,FreeBSD會要求輸入root的密碼。

3.2.3. 更改Console影像模式
FreeBSD Console預設顯示大小可以調整為1024x768、1280x1024或其他顯示卡與螢幕有支援的解析度大小。要使用不同的影像模式需載入VESA模組:

```
# kldload vesa
```

要偵測硬體支援的影像模式,可使用`vidcontrol(1)`。要取得支援的影像模式清單可輸入以下指令:

```
# vidcontrol -i mode
```

該指令會顯示硬體所支援的影像模式清單,要採用新的影像模式需以root使用者執行`vidcontrol(1)`指令:

```
# vidcontrol MODE_279
```

若可接受新的影像模式,可以在 `/etc/rc.conf` 加入設定,讓每週開機後會自動生效:

```
allscreens_flags="MODE_279"
```

3.3. 使用者與基礎帳號管理
FreeBSD允許多使用者同時使用電腦,在一次只能有一位使用者坐在電腦螢幕前使用鍵盤操作的同時,可讓任何數量的使用者透過網路上登入到系統。每一位要使用該系統的使用者應有自己的帳號。

本章介紹:

• FreeBSD系統中各種類型的使用者帳號。
• 如何加入、移除與修改使用者帳號。
• 如何設定用來控制使用者與群組允許存取的資源的限制。
• 如何建立群組與加入使用者作爲群組成員。
使用者的全名 | 帳號 | (Account expiration time) | 更改 (Password change time) | 密碼入類別 (Login class) | ID (GID) | 群使用者ID (UID) | 番名 (Password) | 密 (密) | 使用者名稱 (User name) | 關的資訊: 都会有一些相每個在 FreeBSD 帳號系統的使用者言設定 Binding) 及語己預設透合設定己自的 (Key 編 Shell, 合鍵組慣設定器, 的使用系統的習自配環境每位使用者可以來蓋其他使用者的以做什麼在使用者號設定及識。覆避免管理者, 這可讓辨誰配帳號取系統的人唯擁有一會分際組, 用來給實要人需要存使用者員帳使用系統。入及一的使用者員登使用者帳號 3.3.1.2. nobody nobody 的系統子有例帳號。務不會受到限將制麼全性考量麼安超級作是因, 若所有的服執那網頁伺服器, 要這以使用者來這些服為、郵件務均及用來, 業系統帳號例行服執如帳號系統 3.3.1.1. 有系統帳號帳號、使用者類超級帳號帳號: 種主要及的型使用者三有系統帳號及識的異樣使用系統。
家目錄（Home directory）是系統中某個目錄的完整路徑，這個目錄是使用者登入後的起點目錄。慣例上會將所有使用者目錄放置在/home/username或/usr/home/username。每位使用者可以儲存他們的個人檔案及子目錄於他們自己的家目錄。

使用者Shell（User shell）提供了使用者預設的環境來與系統互動。有數種不同類型的Shell，有經驗的使用者會有自己偏好的選擇，可儲存在自己的帳號設定。

3.3.1.3. 超級使用者帳號，通常稱作root，用來管理系統，沒有限制，也因這個原因，該帳號不應該用來做日常的例行作業，如：寄信與收信、系統的一般探索或程式設計。

超級使用者並不像其他使用者帳號，可以沒有限制的操作，不正確的使用超級使用者帳號可能會造成可观的災害。一般使用者帳號不會因為錯誤而無法摧毀作業系統，所以建議登入一般使用者帳號，只有在指令需要額外權限時切換為超級使用者。

使用超級使用者下指令時永遠要三檢查，由於一個或多餘的空白或缺少的字元可能意味著無法挽回的資料遺失。有數種方法可以提升為超級使用者權限，雖然可以直接登入為root，但強烈不建議這樣做。

改使用su(1)切換為超級使用者。執行此指令時若指定-參數，該使用者會繼承root的使用者環境。執行此指令的使用者必須在wheel群組中，否則指令會失敗。使用者也必須知道root使用者帳號的密碼。

在此例當中，該使用者只在要執行make install時切換為超級使用者，因為這個步驟需要超級使用者權限。指令完成之後，該使用者輸入exit離開超級使用者帳號並返回他的使用者帳號權限。

例2。以超級使用者的身份安裝程式：

```bash
% configure
% make
% su -
Password:
# make install
# exit
%
```

內建的su(1)框架在單人系統或只有一位系統管理者的小型網路可以運作得很好。另一種方式是安裝security/sudo套件或Port。此軟體提供了活動記錄且允許管理者設定那個使用者可以用超級使用者執行那個指令。

3.3.2. 管理帳號
FreeBSD提供了各種不同指令來管理使用者帳號，最常用的指令已摘要於管理使用者帳號的工具，接著有一些用法的範例。請參考每個工具的操作手冊來取得更多的詳細資訊與用法範例。

表2。管理使用者帳號的工具
3.3.2.1. adduser

建议使用用来新增使用者的指令列应用程式。

adduser(8)

当新使用者新增之后，此程式会自动更新 `/etc/passwd` 以及 `/etc/group`，这同时也会建立新使用者的家目录（复制 `/usr/shared/skel` 中的预设设定档），并且可以选择是否要寄送欢迎讯息通知新使用者。这个工具必须使用超级使用者执行。

adduser(8) 工具采用互动的方式，只需几个步骤便可建立新使用者帐号。如在 FreeBSD 新增使用者所示，可输入必填的资讯或按 Return 键采用方括中的预设值。在此例当中，使用者被邀请加入 wheel 群组，这让使用者可使用 su(1) 变成超级使用者。完成之后，此工具会询问是否要建立其他使用者或离开。

```
# adduser
Username: jru
Full name: J. Random User
Uid (Leave empty for default): 
Login group [jru]:
Login group is jru. Invite jru into other groups? []: wheel
Login class [default]:
Shell (sh csh tcsh zsh nologin) [sh]: zsh
Home directory [default]:
Home directory permissions (Leave empty for default):
Use password-based authentication? [yes]:
Use an empty password? (yes/no) [no]:
Use a random password? (yes/no) [no]:
Enter password: ****
Enter password again: ****
Lock out the account after creation? [no]:
Username   : jru
Password   : ****
Full Name  : J. Random User
Uid        : 1001
Class      :
Groups     : jru wheel
Home       : /home/jru
Shell      : /usr/local/bin/zsh
Locked     : no
OK? (yes/no) : yes
```
adduser: INFO: Successfully added (jru) to the user database.

Add another user? (yes/no): no

Goodbye!

3.3.2.2. rmuser

To remove a user, you can use the `rmuser` command. This command will execute the following steps:

1. Remove the user's crontab(1) entry, if it exists.
2. Remove any jobs belonging to the user.
3. Stop all processes belonging to the user.
4. Remove the user from the system's local password file.
5. Selectively remove the user's home directory, if the user owns it.
6. Remove the user's mailspool home directory.
7. Remove all files owned by the user in the temporary storage area (like /tmp).
8. Finally, remove the user from `/etc/group` if the group has no members and the group name is the same as the user name. This is to help `adduser(8)` create unique group names for each user.

`rmuser(8)` cannot be used to remove superuser, because it's too risky.

The command is executed interactively, as shown in the example.

```
# rmuser jru
Matching password entry:
  jru: [hidden]*
Is this the entry you wish to remove? y
Remove user's home directory (/home/jru)? y
Removing user (jru): mailspool home passwd.
```

3.3.2.3. chpass

Any user can use `chpass(1)` to change their defaults Shell and associated user data.

Superusers can change any other user's data.

By default, if no options are passed, `chpass(1)` will start the editor with user data. When the user leaves the editor, the new data is updated in the user database.
在以超级使用者的身份使用 `chpass` 中，超级使用者输入了 `chpass jru` 并正在检视这个使用者可以更改的栏目。若改为 `jru` 执行这个指令，只会显示最后六个栏目供编辑，如一般使用者的身分使用 `chpass` 所示。

例 5.
```
#Changing user database information for jru.
Login: jru
Password: *
Uid [#: 1001
Gid [# or name]: 1001
Change [month day year]:
Expire [month day year]:
Class:
Home directory: /home/jru
Shell: /usr/local/bin/zsh
Full Name: J. Random User
Office Location:
Office Phone:
Home Phone:
Other information:
```

例 6.
```
#Changing user database information for jru.
Shell: /usr/local/bin/zsh
Full Name: J. Random User
Office Location:
Office Phone:
Home Phone:
Other information:
```

指令 `chfn(1)` 以及 `chsh(1)` 皆连接至 `chpass(1)`，就如同 `ypchpass(1)`, `ypchfn(1)` 以及 `ypchsh(1)` 的关系。自从 NIS 支援自动化以后，便不再需要特别加上 `yp`，如关于如何设定 NIS 在网络伺服器中有说明。

3.3.2.4. `passwd`
任何使用者皆可简单的使用 `passwd(1)` 更改自己的密码。要避免意外或未授权的变更，这个指令在设定新密码之前会提示使用者输入原来的密码:
例7.
更改您的密码
```
% passwd
Changing local password for jru.
Old password: 
New password: 
Retype new password: 
passwd: updating the database...
passwd: done
```

例8.
以超级使用者的身份更改其他使用者的密码
```
# passwd jru
Changing local password for jru.
New password: 
Retype new password: 
passwd: updating the database...
passwd: done
```

如同chpass(1), yppasswd(1)链接到passwd(1), 因此NIS在两个指令上皆可运作。
例 9. 使用 `pw(8)`

```bash
# pw groupadd teamtwo
# pw groupshow teamtwo
teamtwo: *
```

在本例中，1100 是 `teamtwo` 的 GID。目前 `teamtwo` 没有任何成员，这个指令会加入 `jru` 作为 `teamtwo` 的成员。

例 10. 使用 `pw(8)` 加入使用者帐号到新的群组

```bash
# pw groupmod teamtwo -M jru
# pw groupshow teamtwo
teamtwo: *
```

给 `-M` 的参数是以逗号分隔的使用者清单，用来加入成员到新的（空的）群组或取代既有的群组中的成员。对使用者来说这里的群组成员与使用者列于密码档的主要群组不同，这代表在 `pw(8)` 使用 `groupshow` 时不会显示作为使用者主要群组的成员，但会显示在使用 `id(1)` 或同类工具所查询的资讯当中。当使用 `pw(8)` 来加入使用者到某个群组，该指令只会处理 `/etc/group` 且不会尝试自 `/etc/passwd` 读取其他的资料。

例 11. 使用 `pw(8)` 加入新成员到群组

```bash
# pw groupmod teamtwo -m db
# pw groupshow teamtwo
teamtwo: *
```

在本例当中，给 `-m` 的参数是以逗号分隔的使用者清单，用来加入使用者到群组。不像前面的例子，这些使用者会加入到群组，而非取代既有的群组中的成员。

例 12. 使用 `id(1)` 来查看所属群组

```bash
% id jru
uid = 1001 (jru)
gid = 1001 (jru)
groups = 1001 (jru), 1100 (teamtwo)
```

在本例中，`jru` 是群组 `jru` 以及 `teamtwo` 的成员。

要取得更多有关此指令的资讯及 `/etc/group` 的格式，请参考 `pw(8)` 以及 `group(5)`。

3.4. 权限

在 FreeBSD 中，每个文件与目录都有关联的数个权限，并且有多工具可以检视与修改这些权限。了解权限如何运作是非常必要的，这可确保使用者能够保存他们所需的档案及无法不正确地存取供作系统或其他使用者拥有的档案。
如果您將的資料及這些執主要在必須擁寫入有档名删的案,目錄目錄案所在內容,目錄案能已代表檔之中的但於檔存也仍會受代表行時，執被可以使用可權限權限差異當與在，般檔對置特殊案硬碟档置档案。這些FreeBSD置實何控制權限案可以使用表檔，範許僅其他人有所有者讀取，及中的這個案的沒權限字元則代表群中，例範中接下來的虛擬檔，在此及特殊案以外，尚有第一個置Socket、案的裝、除這個用來的組及案的資其他人的安一個包。在清所有者、訊表權限目錄4.1時，數字單標示母可用的。當閱讀開啟的值或種權限執人行權限組任(種執類案寫入有者，基礎配:行。這些UNIX™清本節會探中所用到的存UNIX™討FreeBSD案系統在
3.4.1. 權限符

號權限符號可稱做符號表示，使用字元的方式來取代使用數值來設定檔或目錄的權限。

符號表示的格式依序為 (某人)(動作)(權限)，可使用的符號如下:

<table>
<thead>
<tr>
<th>字母</th>
<th>意義</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>使用者</td>
</tr>
<tr>
<td>g</td>
<td>群組所有者</td>
</tr>
<tr>
<td>o</td>
<td>其他</td>
</tr>
<tr>
<td>a</td>
<td>全部("world")</td>
</tr>
</tbody>
</table>

(動作)增加權限 (動作)移除權限 (動作)指定權限 (權限)讀取 (權限)寫入 (權限)執行 (權限)Sticky位元 (權限)設定UID或GID

如先前一樣使用 `chmod(1)` 指令來設定，但使用的參數為這些字元。

例如，您可以使用下列指令禁止其他使用者存取檔案 `FILE`:

```
% chmod go= FILE
```

若有兩個以上權限更改可以使用逗號(,)區隔。

例如，下列指令將會移除群組及全部人("world")對檔案 `FILE` 的寫入權限，並使全部人對該檔案有執行權限:

```
% chmod go-w,a+x FILE
```

3.4.2. FreeBSD

檔案旗標

除了前面提到的檔案權限外，FreeBSD 支援使用"檔案旗標"。

這些旗標增加檔案的安全性及管理性，但不包含目錄。有了檔案旗標可確保在某些時候 root 不會意外將檔案修改或移除。

修改的檔案 flag 僅需要使用擁有簡易的介面的 `chflags(1)` 工具。

例如，標示系統禁止删除的旗標於檔案 `file1`，使用下列指令:

```
# chflags sunlink file1
```

若要移除系統禁止删除的旗標，只需要簡單在 sunlink 前加上 "no"，例如:

```
# chflags nosunlink file1
```

使用 `ls(1)` 及參數 `-lo` 可檢視檔案目前的旗標:
3.4.3. setuid、setgid 与 sticky 权限

除了已经讨论过的权限外，这里还有另外三种特别的设定所有管理者都应该知道，这些设定为 setuid、setgid 以及 sticky 权限。

这些设定对某些一般不会授权给一般使用者的 UNIX™ 操作非常重要，它让这些功能可运作。要理解这些权限，就必须说明真实使用者 ID (Real user ID) 与有效使用者 ID (Effective user ID) 的差异。

真实使用者 ID 即是拥有者或启动程序者的 UID，而有效 UID 是执行程序所使用的使用者 ID。例如，`passwd(1)` 在使用者更改自己的密码时会以真实使用者 ID 执行，然而，为了要更新密码资料库，该指令必须以 root 使用者做为有效 ID 来执行，这让使用者可以更改自己的密码而不会遇到权限不足 (Permission Denied) 的错误。

setuid 权限可以通过在权限集前加上数字 (4) 来设定，如下范例所示:

```bash
# chmod 4755 suidexample.sh
```

现在 `suidexample.sh` 的权限会如下所示:

```
-rwsr-xr-x   1 trhodes  trhodes    63 Aug 29 06:36 suidexample.sh
```

注意，现在取代了原来的执行位元成为指定档案拥有者权限集的一部分，这会允许需要提高权限的工具，如 `passwd(1)` 可以正常使用。

实际来看这个范例

先开启两个终端机，其中一个用一般使用者输入 `passwd`。在等待输入新密码的同时，检查程序表并查看 `passwd(1)` 程序的使用者资讯:

```
於终端机A:
Changing local password for trhodes
Old Password:
```

```
於终端机B:
# ps aux | grep passwd
```
雖然使用一般使用者來執行 `passwd(1)`，但該程序使用了 `root` 的有效 UID。

`setgid` 權限的功能與 `setuid` 相似，當應用地程式或工具使用此設定執行時，將會以擁有該檔案的群組來執行，而非執行執行該程序的使用者。

要在檔案設定 `setgid` 權限，需在 `chmod(1)` 的參數前加上 (2):

```
# chmod 2755 sgidexample.sh
```

注意以下清單中，現在我們位於指定群組權限設定的欄位:

```
-rwxr-sr-x 1 trhodes  trhodes    44 Aug 31 01:49 sgidexample.sh
```

在以上這些範例中，雖然在例子中的 Shell script 是可執行的檔案，但並不會以其他的 EUID 或有效使用者 ID 執行，這是因為 Shell script 並不會存取 `setuid(2)` 系統呼叫 (System call)。

`setuid` 及 `setgid` 權限位元可能會因允許提昇權限而降低系統的安全性，因此有了第三個特殊的權限: `sticky bit`，可以加強系統的安全性。

當在目錄上設定 `sticky bit`，將只允許由檔案擁有者刪除檔案。這對避免公開目錄，如 `/tmp` 中的檔案被不擁有該檔案的人刪除非常有用。要使用這個權限，可在權限集前加上 (1):

```
# chmod 1777 /tmp
```

`sticky bit` 權限會以 t：顯示於權限集的最後:

```
# ls -al / | grep tmp
drwxrwxrwt  10 root  wheel         512 Aug 31 01:49 tmp
```

目錄結構

認識 FreeBSD 的目錄架構，就可對系統有概略的基礎理解。最重要的莫过于整個目錄的根目錄，就是 `/` 目錄，該目錄會在開機時最先掛載 (mount)，裡面會有開機所會用到必備檔案。

此外，根目錄還有紀錄其他檔案系統的掛載點相關設定。

「掛載點」就是讓新增的檔案系統，能接到上層的檔案系統 (通常就是「根目錄」檔案系統) 的目錄。在磁碟組織這邊對此有更詳細介紹。標準的掛載點包括了 `/usr/`, `/var/`, `/tmp/`, `/mnt/` 以及 `/cdrom/`。

這些目錄通常會記錄在 `/etc/fstab` 設定檔內。`/etc/fstab` 是記錄各檔案系統及相關掛載點的表格。大部份在 `/etc/fstab` 有記錄的檔案系統，會在開機時由 `rc(8) Script` 來自動掛載，除非它們有設定 `noauto` 選項。其中細節說明可參閱 `fstab` 檔。

有關於檔案系統架構的完整說明可參閱 `hier(7)`。現在呢，讓我們大致先一窺常見的目錄有哪些吧。
目錄

/ 備份系統的根目錄。
/bin/ 單使用者（Single-user）、多使用者（Multi-user）兩種模式皆可使用的基礎工具。
/boot/ 作業系統開機過程會用到的程式、設定檔。
/boot/defaults/ 預設的開機啟動設定檔，詳情請參閱loader.conf(5)。
/dev/ 裝置節點（Device node），詳情請參閱intro(4)。
/etc/ 系統設定檔及一些Script檔。
/etc/defaults/ 預設的系統設定檔，詳情請參閱rc(8)。
/etc/mail/ 郵件傳輸代理程式，像是sendmail(8)的相關設定檔。
/etc/periodic/ 每日、每週、每月透過cron(8)，執行的定期排程Script，詳情請參閱periodic(8)。
/etc/ppp/ ppp(8) 設定檔。
/mnt/ 系統管理者慣用消費時掛載點的空目錄。
/proc/ 程序檔案系統，詳情請參閱procfs(5)及mount_procfs(8)。
/rescue/ 緊急救援用途的一些靜態連結（Statically linked）的程式，詳情請參閱rescue(8)。
/root/ root帳號的家目錄。
/sbin/ 供單使用者（Single-user）及多使用者（Multi-user）環境使用的系統程式及管理工具。
/tmp/ 臨時檔案。一般而言，重開機之後/tmp內的東西會被清除掉。而通常會將以記憶體為基礎（Memory-based）的檔案系統掛載在/tmp上。這些瑣事可透過tmpmfs相關的rc.conf(5)環境變數來動完成。（或是在/etc/fstab內做設定，詳情請參閱mdmfs(8)）。
/usr/ 主要是使用者所安裝的工具程式、應用程式存放處。
/usr/bin/ 常用工具、開發工具、應用軟體。
/usr/include/ 標準C include檔案。
/usr/lib/ 程式庫存放處。
/usr/libdata/ 其他各式工具的資料檔。
/usr/libexec/ 系統Daemon及系統工具程式（透過其他程式來執行）。
/usr/local/ 存放一些自行安裝的執行檔、程式庫等等。同時，也是FreeBSD Port架構的預設安裝目錄。
/usr/obj/ 在編譯/usr/src目錄時所產生活相關架構地面檔。
/usr/ports/ FreeBSD Port套件集（選用）。
/usr/sbin/ 由使用者執行的系統Daemon及系統工具。
/usr/shared/ 各架構皆共通的檔案。
/usr/src/ BSD原始碼（或自行新增的）。
/usr/man/ man目錄例外，它們是直接放在/usr/local底下，而非/usr/local/share，而Port所安裝的說明文件則在share/doc/port。
/usr/obj/ 在編譯/usr/src目錄時所產生活相關架構地面檔。
/usr/ports/ FreeBSD Port套件集（選用）。
/usr/sbin/ 由使用者執行的系統Daemon及系統工具。
/usr/shared/ 各架構皆共通的檔案。
/usr/src/ BSD原始碼（或自行新增的）。

目錄

說明

/var/存放各種用途的日誌檔、臨時或暫時存放、列印或郵件的緩衝檔案。有時候，以記憶體為基礎（Memory-based）的檔案系統也會掛載在/var。這些瑣事可透過varmfs相関的rc.conf(5)環境變數來自動完成。（或是在/etc/fstab內做設定，相關細節請參閱mdmfs(8)）。

/var/log/各項系統記錄的日誌檔。

/var/mail/各使用者的郵件檔案。

/var/spool/各種印表機、郵件系統的緩衝目錄。

/var/tmp/臨時檔案。這些檔案在重開機後通常仍會保留，除非/var是屬於以記憶體為基礎（Memory-based）的檔案系統。

/var/yp/NIS對應表。

3.6.磁碟組織

FreeBSD用來尋找檔案的最小單位就是檔案的名稱了。檔案的名稱有大寫之分，所以說readme.txt和README.TXT是兩個不同的檔案。FreeBSD並不使用副檔名（.txt）來判別這是一個程式檔、文件檔或是其他類型的檔案。

檔案存在目錄裡面。一個目錄中可能沒有任何檔案，也可能有好幾百個檔案。目錄之中也可以包含其他的目錄；您可以建立階層式的目錄以便資料的管理。

d檔案或目錄的對應是由給定的檔案或目錄名稱，然後加上正斜線符號（/）；之後再視需要加上其他的目錄名稱。如果您有一個目錄foo,裡面有一個目錄叫作bar,這個目錄中又包含了一個叫作readme.txt的档案,那這個檔案的全名，或者說檔案的路徑（Path）就是foo/bar/readme.txt。注意這與Windows™用來分隔檔案與目錄名稱所使用的\不同，且FreeBSD在路徑上並不使用磁碟機代號或其他磁碟機名稱，意思是在FreeBSD上不會有人輸入c:\foo\bar\readme.txt這種路徑。

目錄及檔案儲存再檔案系統（File system）之中。每個檔案系統都有唯一一個最上層的目錄，叫做根目錄（Root directory）。然後在這個根目錄下面才有多其他的目錄。其中一個檔案系統會被指定成為根檔案系統（Root file system）或/，其他的檔案系統均會掛載在該根檔案系統之下，不論在FreeBSD有多少個磁碟，所有目錄都會成為該磁碟的一部份。

假設您有三個檔案系統，分別叫作A, B及C。每個檔案系統都包含兩個目錄，叫作A1, A2（以此類推得B1, B2及C1, C2）。稱A為主要的檔案系統；如果您用ls(1)指令查看此目錄的內容，您會看到兩個子目錄：A1及A2，如下所示:

A1/ A2/

一個档案系统必须以目录形式挂载於另一个档案系统上。因此，假設您將B掛載於A1之上，则B的根目錄就變成了A1，而在B之下的任何目錄的路徑也隨之改變：

如果B挂载在A2之上，则会变成：

上面的路径分别为主/A2/B1及/A2/B2。

文件系统可以挂载在其他文件系统的目录之上。延续之前的例子，C文件系统可以挂载在文件系统B的B1目录之上，如图所示：
您可以使用单一的一个大的根档案系统而不建立其他的档案系统。这样有好处也有坏处。

使用多个档案系统的坏处

• 使用多个档案系统的坏处
 - 自治的档案系统在挂载的时候可以有不同的挂载参数（Mount option）。
 - 举例来说，为更谨慎您可以将根档案系统设成唯读，以避免不小心删除或修改掉重要的档案。
 - 将使用者可写入的档案系统（例如/home）独立出来也可以让他们用nosuid的参数挂载，此选项可以让在这个档案系统中执行档案的suid/guid失效，可以让系统更安全。

• FreeBSD会自动根据您档案系统的使用方式来做最佳的档案配置方式。因此，一个有很多小档案、常常写入的档案系统跟只有几个较大的档案的档案系统配置是不一样的。

如果您只有一个大的档案系统，这部分就没了。

• FreeBSD的档案系统在停电的时候很稳固。然而，在某些重要的时候停电仍然会对档案系统结构造成损害。

分割成许多档案系统的话在系统在停电后比较能够正常启动，以便您在需要的时候将备份资料恢复回来。
最後在這些分間將裡。哪掛檔於載檔交換案系統或並立（建決）案系統中。切，您先割區，接切立FreeBSD的必須要給中建FreeBSD置磁碟割區建。磁碟的概念模型例、分磁碟名命範區切名稱候區一個分照，需包含磁碟機0編號開，的始個可以參割區的從磁碟這是。常的見考那切表示識系統型，磁碟名稱終代著磁碟碼的辨磁碟來類我們是一可以每這個的第個割區第三五。硬碟上個分延伸的切占上均別會各一個據。割區切由硬碟上割區。因此可以預置期檔，所以會從開"ada05"始磁碟上一個個實體但適輯切類只能有進。這些延伸的切是在實體切類中當割區割區編四的第一個割區硬碟。切切在裝編號置名稱後面，會先以個分切數分成割區區再會割區個分內含档字，來表示的分母標示區。Windows™（Slice）編號成4由在磁碟會分割區個1割中FreeBSD數的使用慣有割區有些分定没出部份）用到的移。同時，沒交換的記憶前空用到的資料它會去目候移回間候把到體用完的時多的讓腦好擁有實際像FreeBSD比空間作也會使用為磁碟來區。案系統所在的分表示載只能表示每檔掛案系統時，除檔個分點區外，也可案系統的常用的案系統，因此在表示檔不同。如母字一個分由）割區每（MS-DOS™一個代號（分一般案系統襲架構和一，這FreeBSD承割區。
磁碟機類

型

磁碟機

裝

置

稱

SATA 及 IDE 硬碟

ada 或 ad

SCSI 硬碟
與 USB 儲存

da

SATA 与 IDE CD-ROM 光碟機
cd 或 acd

SCSI CD-ROM 光碟機
cd

軟碟機
fd

各種非標準 CD-ROM 光碟機
mcd 代表 Mitsumi CD-ROM 以

scd 代表 Sony CD-ROM

SCSI 磁帶機
sa

IDE 磁帶機
ast

RAID 磁碟機

範例 包含 aacd 代表 Adaptec™ AdvancedRAID,

mlxd 及 mlyd 代表 Mylex™,

amrd 代表 AMI MegaRAID™,

idad 代表 Compaq Smart RAID,

twed 代表 3ware™ RAID.

例 13. 磁碟、切割區及分區名

例 14. 磁碟的概念模型

此圖顯示 FreeBSD 中連接到系統的第一個 SATA 磁碟機內部配置圖。假設這個磁碟的容量是 250 GB, 並且包含了一個 80 GB 的切割區及一個 170 GB 的切割區 (MS-DOS™ 的分區)

第一個切割區是 Windows™NTFS 檔案系統的 C: 磁碟機, 第二個則安裝了 FreeBSD。 本範例中安裝的 FreeBSD 有四個資料分區及一個交換分區。這四個分區中各有一個檔案系統。分區 a 是根檔案系統、分區 d 是 /var/、分區 e 是 /tmp/ 和 /usr/。分區字母 c 用來代表整個切割區, 因此並不在乎一般分區使用。
3.7. 挂载与卸载档案系统

就像一颗树，/dev, /usr 以及其他在根目录下的目录就像树根，而这些树枝上又还分支，像是 /usr/local 等。

因为某些原因，我们会将一些目录分别放在不同的档案系统上。比如/var 包含可能会满出来的 log/、spool/ 等目录以及各式各样的暂存档。

把根档案系统塞到满出来显然不是个好主意，所以我们往往比较倾向把/var 从/ 中拉出来。

另一个常见到把某些目录放在不同档案系统上的理由是：这些档案在不同的实体或虚拟磁碟机上。

像是网络档案系统 (Network File System) 详情可参阅网络档案系统 (NFS) 或是光碟机。

3.7.1. fstab 档

在 /etc/fstab 里面有设定的档案系统会在开机 (FreeBSD 开机程序) 的过程中自动地被挂载 (除非该档案系统有加上 noauto 参数)。档案内容的格式如下：

device /mount-point fstype options dumpfreq passno

device 已存在装置名称，详情请参阅磁碟装置名称。
mount-point 檔案系統要掛載到的目錄（該目錄必須存存在）。

fstype 檔案系統類型，這是要傳給 mount(8) 的參數。 FreeBSD 預設的檔案系統是 ufs。

options 可讀可寫（Read-Write）的檔案系統用 rw，而唯讀（Read-Only）的檔案系統則是用 ro，後面視需要還可以加其他選項。常見的選項如 noauto 是用在不要於開機過程中自動的掛載的檔案系統。其他選項可參閱 mount(8) 说明。

dumpfreq dump(8) 由此項目決定那些檔案系統需要傾印。如果這格空白則以零為預設值。

passno 這個項目決定檔案系統檢查的順序。對於要跳過檢查的檔案系統，它們的 passno 值要設為零。根檔案系統的 passno 值應設為一（因為需要比所有其他的還要先檢查），而其他的檔案系統的 passno 值應該要設得比一大。若有多個檔案系統具有相同的 passno 值，則 fsck(8) 會試著平行地（如果可能的話）檢查這些檔案系統。

更多關於 /etc/fstab 檔案格式及選項的資訊請參閱 fstab(5) 說明文件。
設情況的數顯新一次。因此您可以觀您的電式的正更動行的程序, 並且互秒鐘腦正執做什麼是指令則所有、用了多執行的PID什麼等等指令名稱是數少記憶及。其後之參體、在行之程序,而且可以正是用來列出指令的執示它們顯可用兩:看執指令行中的程序,有要程序檢視3.8.1.但信硬性Daemon做,用這是習,並例是Sendmail沒法慣主要的寄如規有行的程式上的縮寫BIND"d"母後面都會行的程式Deamon通常來說名字Berkeley Internet Name加是做為執字。叉耙魔帆布鞋拿小樂的就快也的BSD的隻穿吉祥物,是一著原著三是為何陣:們是來自是既祂或們地詞事神話中的一做營邪營在背屬。這臘一些有用的於角色情希祂或他們地是來自是既祂或們地詞事神話中的一個於角色情希祂或他們地是來自是既祂或們地詞事神話中的一個。這臘一些有用的於角色情希祂或他們地是来自是既祂或們地詞事神話中的一個。這臘一些有用的於角色情希祂或他們地是来自是既祂或們地詞事神話中的一個。這臘一些有用的於角色情希祂或他們地是来自是既祂或們地詞事神話中的したもの。
會自動顯現2內容,可用每總上這個體使用該程式的記憶際應指目量,而實際用另，size)您程序用體掉少的訴了多半用會分成告還空會情況。

、使用者及指令間執行的位欄構接下來的部份是個取中取得的資料從磁碟改快別時ZFS案系統態間模組,會有一行少行、有多有裡面的其他在是在間被用了,開有多分占正磁、系統的開機時度自新在的時次程評估間(示輸負五前均開、系統平顯載行行或兩)

因了。螢幕截掉,不只是您自正顯示,其中一個最有用的出來的資合組幾合個不同的示顯把程序daemon顯把會分成

執等執。最後,上上間態是程式的狀正記憶程序的分1

84

9551 dru 1 21 0 16600K 2660K CPU3 3 0:01 0.98% top

8311 dru 27 30 0 1150M 187M uwait 1 1:37 0.98% firefox

8198 dru 2 52 0 449M 82736K

Swap: 2048M Total, 2048M Free

ARC: 992M Total, 377M MFU, 589M MRU, 250K Anon, 5280K Header, 21M Other

Mem: 541M Active, 450M Inact, 1333M Wired, 4064K Cache, 1498M Free

8895 0 R+ 0:00.00 ps

Console (tty)忽略個上欄是樣:也有似般出。一

選select到似看如同前,您可以就

整訊類到似看如同前,您可以就

整訊類到似看如同前,您可以就
Deamon 是會有不同的行查看達否時停一間會務送要重了網頁伺服器的啟對應信號應，這些是通用的不同的有

SIGKILL SIGTERM 某的結束完成，然後在關事到閉及程序是結束所使用的日前要結束把已 SIGTERM 就通知系統在間（"信號時會"求之後出通知，時出（Violation" 存它寫要"Segmentation 設取體的時圖某些信號情況系統在例唯外是的信號送錯誤如何解。擁的意讀，應義有很多種，有些有解信號定告特由訴用程式來

過透要與Daemon 通止終收一個信號這個範如送給信號子中信號送程序。 用個純與其把它們去就法來指定信號執送會都有提供內

shell 就

/bin/kill -s HUP 198
Password:

/bin/kill -s TERM 198

alarm(3)
在設定環境變數在不同的Shell設定環境變數，因此環境Shell該如何任的程序都可以讀取此環境變數由對應關的環境變數環境變數是使用了另Shell變與Shell是以儲存於數係(Variable/Key)項。特點替剩就夠填滿了。名把下幾字元檔個打輸入。辦名使用者只需要多和Shell但只顯示了示名檔名為foobar指令檔的部份補就作會自別個設假案檔名稱案齊兩把叫餘是母先功個按Shell名檔。常，然後齊下自字首輸入指令幾的喜，至是您shell這些的符合點，能不能都有自重特就了。於處使用者的已獨好選到要用那的使用者，感易上容會shellLinux™好程式要用哪牽涉。如果您是一個C到設那每個人的喜使用像是計多其他的件集中取得，像是有套可以從Shell還許Shell,包附有內含個Bourne Shell（功能性案工及環境列表一些有助於巨案管理、數，能，像是指令集以檔案搜尋、日常也內建輯。數、能，像是指令集以檔案搜尋、日常也內建輯。
相同功能的指令在bash下则是:

```bash
export EDITOR="/usr/local/bin/emacs"
```

要展开以显示目前环境变量中的值，只要在指令列输入环境变量之前加上`${}`字元。举例来说，

```bash
echo $TERM
```

会显示出目前$TERM的设定值。

Shell中有特殊字元用来表示特殊资料，我们将其称作Meta-character。其中最常见的Meta-character是`*`字元，它代表了档名中的任意字元。Meta-character可以用在搜寻档名，举例来说，输入

```bash
echo *
```

会和输入`ls`得到几乎相同的结果，这是因为shell会将所有符合`*`字元的案由echo显示出来。

为了避免Shell转译这些特殊字元，我们可以在这些特殊字元前放一个反斜线(\)字元使他跳离(Escape)Shell的转译。举例来说，

```bash
echo $TERM
```

会印出你目前终端机的设定，

```bash
echo $TERM
```

则会直接印出这几个字。

3.9.1. 变更Shell

永久变更Shell最简单的方法就是透过chsh指令。

执行chsh会使用环境变量中EDITOR指定的字编辑器，如果没有设定，则预设是`vi(1)`。请修改Shell：

```bash
chsh -s /usr/local/bin/bash
```

或者，使用`chsh -s`，直接设定Shell而不开启文字编辑器。例如，假设想把Shell更改为`bash`:

```bash
% chsh -s /usr/local/bin/bash
```

新的Shell必须已列于`/etc/shells`里。若是依照安装应用程序：套件与Port说明由Port套件集来装的Shell，那就自动列入至该档案里。

若仍缺少，请使用以下指令加入档案（请将路径替换为新的Shell的路径）:

```bash
# echo /usr/local/bin/bash >> /etc/shells
```

然后重新执行`chsh(1)`。

3.9.2. 进阶Shell技巧

UNIX™ Shell不只是指令的直译器，它是一个强大的工具可让使用者执行指令、重新导向指令的输出、重新导向指令的输入并串连指令来改进最终指令的输出结果。当这个功能与内建的指令混和使用时，可提供一个可以最优化效率的环境给使用者。

Shell重新导向是将一个指令的输出或输入传送给另一个指令或档案。

例如，要撷取`ls(1)`指令的输出到一个档案，可以重新导向输出：

```bash
ls > directory_listing.txt
```

目錄的内容现在会列到directory_listing.txt中，部份指令可以读取输入，例如`sort(1)`。要排序这个清单，可重新导向输入:

```bash
sort < directory_listing.txt
```

输入的内容会被排序后呈现在画面上，要重新导向该输入到另一个档案，可以重新导向输出：

```bash
sort(1)
```
數幾莫中，最在3.12。必須置檔數的裝透置及編號例置開機訊(Boot Message)存放息置到的中主要是會列出複開機過體裝偵測，本也會硬大多是詞關。、、印卡比置有寫。3.11.裝置及數如編輸入時會自文有許修改檔用程式在的器可預啟輯多編。Emacs您多的時。學的難功比由看較大的文建編器，您也可以編編內套編檔悉文不器是輯再好 FreeBSD字輯許文的過字器輯則描述被檔過，有些也會案三螢幕中的或印則錯誤何紙訊何源輸描述鍵盤出(stderr)，、滑鼠案可能來自標準輸入、(stdout)含案描述符出系統都有於上述透過檔描述所有的範中，向符 UNIX™新每重行會。88% sort的閱讀步己，這可捲接調果，使用者< directory_listing.txt Ctrl Shell,其中你想代表要檔編輯始使用這個器，只需編的輯上鍵盤editors/emacs可。SATA輯上鍵盤editors/vim則代表，所以 kbd0則代表(fabs-FreeBSD字輯許文的過字器輯。^e
其中 `man` 命令想了解指令的名称。

举例，要知道 `ls(1)` 的详细用法，就可以打：

```
% man ls
```

操作手册被分成很多个章节，每个章节有不同的主题。在 FreeBSD 中操作手册有以下章节：

1. 使用者指令。
2. 系统呼叫 (System call) 与错误编号。
3. C 程式库函数。
4. 裝置驱动程式。
5. 檔案格式。
6. 遊戲及其他程式。
7. 其他資訊。
8. 系統維護與操作指令。
9. 系統核心介面。

有些情况下会有同样主题会同时出现在不同章节。

举个例子，系统内会有 `chmod` 使用者指令，但同时也有 `chmod()` 系统呼叫。在这种情况下，要告诉 `man(1)` 要查询的章节编号：

```
% man 1 chmod
```

这样一来就会查询使用者指令 `chmod(1)`。通常在写文件时会把有参考到特定章节的号码写在括号内。所以 `chmod(1)` 就是指使用者指令，而 `chmod(2)` 则是指系统呼叫。

若不晓得操作手册的名称，可以使用 `man -k` 来以关键字查询所有操作手册的描述：

```
% man -k mail
```

这个指令会显示所有描述中有使用到关键字 “mail” 的指令。这等同使用 `apropos(1)`。

想要求所有在 `/usr/bin` 底下的指令说明则可输入：

```
% cd /usr/bin
% man -f * | more
```

或

```
% cd /usr/bin
% whatis *
```

3.12.1. GNU Info

FreeBSD 有许多应用程式与工具来自自由软件基金会 (Free Software Foundation, FSF)。

除了操作手册之外，这些程式提供了另外一种更具弹性的超文字文件叫做 info 檔。这些档案可以使用 `89`
要使用 `info(1)` 指令，只需输入:

```
% info
```

要查询简单说明请按 `h` 键，若要查询快速指令参考请按 `?` 键。
4.1.概 述
FreeBSD內建豐富的系統工具，此外FreeBSD提供了兩種安裝第三方軟體的套件管理技術：由原始碼安裝的FreeBSD Port套件集，以及由預先編譯好的Binary安裝的Binary套件集。兩種方法都可使用本地的媒體或網路來安裝軟體。

讀完這章，您將了解:
• Binary套件集與Port的差別。
• 如何找到已移植到FreeBSD的第三方軟體。
• 如何使用pkg管理Binary套件。
• 如何編譯來自Port套件集的第三方軟體原始碼。
• 如何找到應用程式已安裝的檔案來完成安裝後的設定。
• 若軟體安裝失敗要如何處理。

4.2.安裝軟體的概要
通常要在UNIX™系統上安裝第三方軟體時，有幾個步驟要作:
1. 找到並且下載軟體，該軟體有可能以原始碼或Binary格式發佈。
2. 自發佈的格式解壓縮軟體。發佈的格式通常為tarball並以程式壓縮，如compress(1), gzip(1), bzip2(1)或xz(1)。
3. 找到位於INSTALL, README或者doc/子目錄下的檔案閱讀如何安裝該軟體。
4. 若軟體是以原始碼的格式發佈則需要編譯該軟體。這可能會需要修改Makefile或執行configure Script。
5. 測試並安裝該軟體。

FreeBSD Port是設計用來自動化從原始碼編譯應用程式的整個程序的一系列檔案，組成Port的檔案包含了自動下載、解壓縮、修補、編譯與安裝應用程式的必要資訊。

若軟體尚未被FreeBSD採用並測試，可能會需要經過一些修正才能正常安裝並執行。雖然如此，目前已有超過24,000個第三方應用程式已經被移植到FreeBSD。當可行時，這些應用程式也會做成預先編譯好的套件(Package)供下載。這些Binary套件可使用FreeBSD套件管理指令來管理，如pkg install。}

雖然兩種技術非常相似，但Binary套件及Port有各自的優點。要視您要安裝的應用程式需求來選擇。

Binary套件優點
• 應用程式壓縮Binary套件的tarball會比壓縮原始碼的tarball還小。
• 安裝Binary套件不需要編譯的時間，對於較慢的電腦要安裝大型的應用程式如Mozilla, KDE或GNOME這點顯得相當重要。
• Binary套件不需要了解在FreeBSD上編譯軟體的流程。
套件優點

• 由於 Binary 套件必須儘可能在大多數系統上執行，通常會採用較通用的編譯選項來編譯，由 Port 來編輯可更改編譯選項。

• 部分應用程式編譯選項會與要安裝的功能有關，例如來說 Apache 便有大量的不同的內建選項可以設定。

在某些情況，同樣的應用程式會存放在多個不同的 Binary 套件，如 Ghostscript 有 ghostscript 及 ghostscript-nox11 兩種 Binary 套件，用來區別是否有安裝 Xorg。

若應用程式有一個以上的編譯選項便無法用這個方式來區別 Binary 套件。

• 部分軟體的授權條款中禁止以 Binary 格式發佈。這種軟體必須以原始碼發佈並由終端使用者編譯。

• 部分人並不相信任 Binary 發佈版本，寧願閱讀原始碼來查看是否有潛藏的問題。

• 原始碼可套用自訂的修補。

要持續追蹤 Port 的更新可以訂閱 FreeBSD Port 郵遞論壇與 FreeBSD Port 問題郵遞論壇。

在安裝任何應用程式之前，請先查看 https://vuxml.freebsd.org/ 是否有與該應用程式相關的安全性問題或輸入 pkg audit -F 來檢查所有已安裝的應用程式是否有已知的漏洞。

本章接下來的部份將說明如何在 FreeBSD 使用 Binary 套件及 Port 套件安裝與管理第三方軟體。

4.3. 搜尋軟體 FreeBSD 上可安裝的軟體清單不斷在增加，有幾種方式可以來找你想安裝的軟體：

• FreeBSD 網站有維護一份可搜尋的最新應用程式清單，在 https://www.FreeBSD.org/ports/。

可以依應用程式名稱或軟體分類來搜尋 Port。

* 由 Dan Langille 維護的 FreshPorts.org, 提供完整的搜尋工具並且可追蹤在 Port 套件集中的應用程式變更。註冊的使用者可以建立自訂的監視清單會自動寄發電子郵件通知 Port 的更更新訊。

* 若找不到指定的應用程式，可以先到網站 SourceForge.net 或 GitHub.com 搜尋，後然再回到 FreeBSD 網站檢查該應用程式是否已被移植。

* 要搜尋 Binary 套件檔案庫中的應用程式可:

```
# pkg search subversion
```

```
git-subversion-1.9.2
java-subversion-1.8.8_2
p5-subversion-1.8.8_2
py27-hgsubversion-1.6
py27-subversion-1.8.8_2
ruby-subversion-1.8.8_2
subversion-1.8.8_2
subversion-book-4515
subversion-static-1.8.8_2
subversion16-1.6.23_4
subversion17-1.7.16_2
```
有些 Port 會有多個版本可使用，如 Subversion，因編譯選項不同，有多個版本可用，這個例子中即指靜態連結版本的 Subversion。在指定要安裝的套件時，最好使用 Port 來源來指定該應用程式，Port 來源是應用程式在 Port 樹中的路徑。

再輸入一次 pkg search 並加上 -o 來列出每個套件來源:

```
# pkg search -o subversion
devel/git-subversion
java/java-subversion
devel/p5-subversion
devel/py-hgsubversion
devel/py-subversion
devel/ruby-subversion
devel/subversion16
devel/subversion17
devel/subversion
devel/subversion-book
devel/subversion-static
```

pkg search 支援使用 Shell 萬手字元 (globs)、正規表示法、描述或檔案庫中的其他内容。在安裝 ports-mgmt/pkg 或 ports-mgmt/pkg-devel 之後，可參考 pkg-search(8) 以取得更多詳細資訊。

• 若 Port 套件集已安裝，有數個方法可以查詢 Port 樹中的本地版本。要找到 Port 所在的分類，可輸入 whereis file，其中 file 是要安裝的程式:

```
# whereis lsof
lsof: /usr/ports/sysutils/lsof
```

或者，也可使用 echo(1):

```
# echo /usr/ports/*/*lsof*
/usr/ports/sysutils/lsof
```

請注意，這也會顯示已下載至 /usr/ports/distfiles 目錄中任何已符合條件的檔案。

• 另一個方法是使用 Port 套件集內建的搜尋機制來找軟體。要使用搜尋的功能需先 cd 到 /usr/ports 然後執行程式:

```
# cd /usr/ports
# make search name=program-name
```

舉例搜尋 lsof:

```
# cd /usr/ports
# make search name=lsof
Port:   lsof-4.88.d,8
Path:   /usr/ports/sysutils/lsof
Info:   Lists information about open files (similar to fstat (1))
Maint:  ler@lerctr.org
Index:  sysutils
B-deps: 93
```
內建的搜尋機制會使用索引檔內的資訊。若出現訊息指出需要 INDEX 檔,可執行 make fetchindex 來下載最新的索引檔。當 INDEX 檔存在時,make search 方可執行請求的搜尋動作。

“Path:” 這代表 Port 的所在位置。若不要接受這麼多資訊,可使用 quicksearch 功能:

```bash
# cd /usr/ports
# make quicksearch name=lsof
```

Port: lsof-4.88.d,8
Path: /usr/ports/sysutils/lsof
Info: Lists information about open files (similar to fstat (1))

若要進行更有深度的搜尋,使用 make search key=string 或 make quicksearch key=string 其中 string 是要搜尋的字串。該字串可以是一部份的註解、描述或相關套件,當不清楚程式的名稱時可以找到與特定主題相關的 Port。

當使用 search 或 quicksearch 時,搜尋的字串不分大小寫。搜尋 "LSOF" 會與搜尋 "lsof" 產生相同的結果。

4.4. 使用 pkg 管理 Binary 套件

pkg 是新一代套件管理工具,用來取代舊版工具,提供許多功能讓處理 Binary 套件更快更簡單。

對於只想使用在 FreeBSD 鏡像站上预先編譯 Binary 套件的站台,使用 pkg 管理套件便已足夠。

但對於那些想從原始碼或使用自己的檔案庫編譯的站台,則會需要 Port 管理工具。

因為 pkg 僅能管理 Binary 套件,所以不能當做為取代 Port 管理工具,這些工具可用來安裝來自 Binary 與 Port 套件集的軟體,而 pkg 僅能安裝 Binary 套件。

4.4.1. 開始使用 pkg

FreeBSD 內建啟動 (Bootstrap) 工具可用來下載並安裝 pkg 及其操作手冊。這個工具是設計在 FreeBSD 版本 10.8 之後使用。

不是所有 FreeBSD 版本及架構支援此啟動程序,目前支援的清單列於 https://pkg.freebsd.org/,對不支援的版本,必須改透過 Port 套件集或者 Binary 套件來安裝 pkg。

要啟動 (Bootstrap) 系統請執行:

```bash
# /usr/sbin/pkg
```

您必須有可用的網際網路連線供啟動程式使用方可成功。否則,要安裝 Port 套件,則須執行:
當升級原使用舊版pkg_*工具的既有系統時，必須將資料庫轉換成新的格式，如此新的工具才會知道有那些已經安裝過的套件。

pkg安裝完後，必須執行以下指令將套件資料庫從舊版格式轉換到新版格式:

```
# pkg2ng
```

新安裝的版本因尚未安裝任何第三方軟體因此不須做這個步驟。

這個步驟無法還原。一旦套件資料庫轉換成pkg的格式，舊版pkg_*工具就應該不再繼續使用。

套件資料庫轉換的過程可能會因內容轉換為新版本產生錯誤。通常，這些錯誤皆可安全忽略，即使如此，仍然有在執行pkg2ng後無法成功轉換的軟體清單，這些應用程式則必須手動重新安裝。

為了確保FreeBSD Port套件集會將新軟體的資訊註冊到pkg而非舊版套件資料庫，FreeBSD版本10.X之前需要在/etc/make.conf加入此行:

```
WITH_PKGNG= yes
```

預設pkg會使用FreeBSD套件鏡像站(Repository)的Binary套件。若要取得有關編譯自訂套件檔案的資訊，請參考使用Poudriere編譯套件。

其他pkg設定選項說明請參考pkg.conf(5)。

pkg的用法資訊可在pkg(8)操作手冊或不加任何參數執行pkg來取得。

每個pkg指令參數皆記庫在指令操作手冊。要閱讀pkg install的操作手冊，可執行以下指令:

```
# pkg help install
# man pkg-install
```

本章節剩下的部份將會示範使用pkg執行常用的Binary套件管理工作。每個範例的指令皆會提供多個參數可使用，請參考指令的說明或操作手冊以取得詳細資訊或更多範例。

4.4.2. 取得有關已安裝套件的資訊

有關已安裝在系統的套件資訊可透過執行`pkg info`來檢視，若執行時未指定任任何參數，將會列出所有已安裝或指定的套件版本。例如，要查看已安裝的pkg版本可執行:

```
95
```

以上為本頁內容的自然語言表示。
要安装 Binary 套件可使用以下指令，其中 packagename 为要安装的套件名称:

```
# pkg install packagename
```

这个指令会使用档案库的资料来决定要安装的软体版本以及是否有任何未安装的相依。

例如，要安装 curl:

```
# pkg install curl
```

```
Updating repository catalogue  
```

```
/usr/local/tmp/All/curl-7.31.0_1.txz          100% of 1181 kB 1380 kBps 00m01s  
```

```
/usr/local/tmp/All/ca_root_nss-3.15.1_1.txz   100% of  288 kB 1700 kBps 00m00s  
```

```
Updating repository catalogue  
```

```
The following 2 packages will be installed:  
```

```
Installing ca_root_nss: 3.15.1_1  
```

```
Installing curl: 7.31.0_1  
```

```
The installation will require 3 MB more space  
```

```
0 B to be downloaded  
```

```
Proceed with installing packages  
```

```
[y/N]: y  
```

```
Checking integrity...  
```

```
done  
```

```
[1/2] Installing ca_root_nss-3.15.1_1...  
```

```
done  
```

```
[2/2] Installing curl-7.31.0_1...  
```

```
done  
```

```
Cleaning up cache files...Done  
```

新的套件以及任何作为相依安装的额外套件可在已安装的套件清单中看到:

```
# pkg info  
```

```
ca_root_nss-3.15.1_1    The root certificate bundle from the Mozilla Project  
```

```
curl-7.31.0_1   Non-interactive tool to get files from FTP, GOPHER, HTTP (S)ervers  
```

```
pkg-1.1.4_6 New generation package manager  
```

不 再 需 要 的 套 件 可 以 使用 pkg delete 来移除，例如:"
pkg delete curl

The following packages will be deleted:
curl-7.31.0_1

The deletion will free 3 MB

Proceed with deleting packages

[y/N]: y

[1/1] Deleting curl-7.31.0_1...
done

pkg upgrade

This command will compare the installed version with the version in the repository and upgrade these packages.

pkg audit -F

pkg autoremove

Packages to be autoremoved:
ca_root_nss-3.15.1_1

The autoremoval will free 723 kB

Proceed with autoremoval of packages

[y/N]: y

Deinstalling ca_root_nss-3.15.1_1...
done
sudo pkg prime-list 是一個別名指令，定義在 /usr/local/etc/pkg.conf，尚有許多其他相關指令可以用來查詢系統的套件資料，例如，指令 pkg prime-origins 可以用來取得上述清單的來源 Port 目錄:

```
# pkg prime-origins
www/nginx
security/openvpn
security/sudo
```

這份清單可以用來重新編譯所有安裝在系統中的套件，使用 ports-mgmt/poudriere 或 ports-mgmt/synth 這類的編譯工具。

要將一個安裝好好的套件註記為 "自動"，可以用:

```
# pkg set -A 1 devel/cmake
```

當套件為末梢套件 (Leaf Package) 且被註記為 "自動"，則會被 pkg autoremove 挑選出來。

要註記一個安裝好好的套件為 "非自動"，可以用:

```
# pkg set -A 0 devel/cmake
```

```
4.4.7. 無法套件資料庫不如傳統的套件管理系統，pkg 有自己的套件資料庫備份機制，此功能預設是開啓的。
```

要停止週期 Script 備份套件資料庫可在 periodic.conf(5) 設定:

```
daily_backup_pkgdb_enable="NO"
```

要還原先前套件資料庫的備份，可以執行以下指令並將 /path/to/pkg.sql 替換為備份的位置:

```
# pkg backup -r /path/to/pkg.sql
```

若要還原有週期 Script 所產生的備份必須在還原前先解壓縮。

要手動備份 pkg 資料庫，可以執行以下指令，並替換 /path/to/pkg.sql 為適當的檔名與位置:

```
# pkg backup -d /path/to/pkg.sql
```

```
4.4.8. 移除過時的套件
預設 pkg 會儲存 Binary 套件在快取目錄定義在 pkg.conf(5) 中的 PKG_CACHEDIR，只會保留最後安裝的套件複本。較舊版的 pkg 會保留所有先前的套件，若要移除這些過時的 Binary 套件，可以執行:
```

使用以下指令可清空全部的快取:

```bash
# pkg clean
```

4.4.9.

修改套件Metadata在FreeBSD套件集中的軟體可能會經歷主要版本的修改，要解決這個問題可使用pkg內建的指令來更新套件來源。這非常有用，例如lang/php5重新命名為lang/php53因此lang/php5從此之後代表版本5.4。

要更改上述例子中的套件來源，可執行:

```bash
# pkg set -o lang/php5:lang/php53
```

再一個例子，要更新lang/ruby18為lang/ruby19，可執行:

```bash
# pkg set -o lang/ruby18:lang/ruby19
```

最後一個例子，要更改libglut共用程式庫的來源從graphics/libglut改成graphics/freeglut可執行:

```bash
# pkg set -o graphics/libglut:graphics/freeglut
```

在更改套件來源之後，很重要的一件事是要重新安裝套件，來讓相依的套件也同時使用修改後的來源。要強制重新安裝相依套件，可執行:

```bash
# pkg install -Rf graphics/freeglut
```

4.5.

使用Port套件集

Port套件集是指數個Makefiles、修補及描述檔案，每一組這些檔案可用來編譯與安裝在FreeBSD上的一個應用程式，即稱為一個Port。預設，Port套件集儲存於/usr/ports的子目錄下。

在應用程式可以使用Port編譯之前，必須先安裝Port套件集。若在安裝FreeBSD時沒有安裝，可以使用以下其中一種方式安裝:

Procedure: Portsnap

FreeBSD的基礎系統內含Portsnap，這是一個可用來取得Port套件集簡單又快速的工具，較建議多數使用者使用這個方式。此工具會連線到FreeBSD的網站，驗証金鑰，然後下載Port套件集的新副本。該金鑰是要用來檢驗所有已下載檔案的完整性。

1. 要下載壓縮後的Port套件集快照(Snapshot)到/var/db/portsnap:
當第一次執行 Portsnap 時，要先解壓縮快照到 /usr/ports:

```bash
# portsnap extract
```

在完成上述第一次使用 Portsnap 的動作之後，往後可隨需要執行以下指令來更新 /usr/ports:

```bash
# portsnap fetch
# portsnap update
```

當使用 `fetch` 時也可同時執行 `extract` 或 `update` 如:

```bash
# portsnap fetch update
```

Procedure: Subversion 方法

若要取得更多對 Port 樹的控制，或若有本地的變更需要維護，可以使用 Subversion 來取得 Port 套件集。請參考 Subversion Primer 來取得 Subversion 的詳細說明。

1. 必須安裝 Subversion 才可用來取出 (Check out) Port 樹。若已存在 Port 樹的複本，可使用此方式安裝 Subversion:
   ```bash
   # cd /usr/ports/devel/subversion
   # make install clean
   ```

 若尚無法使用 Port 樹，或已經使用 pkg 來管理套件，可使用套件來安裝 Subversion:
   ```bash
   # pkg install subversion
   ```

2. 取出 Port 樹的複本:
   ```bash
   # svn checkout https://svn.FreeBSD.org/ports/head /usr/ports
   ```

3. 若需要，在第一次 Subversion 取出後可使用以下指令更新 /usr/ports:
   ```bash
   # svn update /usr/ports
   ```

Port 套件集中含有代表不同軟體分類的目錄，每個分類底下的子目錄代表每個應用程式，每個內含數個用來告訴 FreeBSD 如何編譯與安裝該程式檔的應用程式子目錄即稱作 Port Skeleton，每個 Port Skeleton 會含有以下檔案及目錄:
Port中并不含实际的原始码，即为distfile，在编译Port解压缩时会自动下载的原始码到/usr/ports/distfiles。

4.5.1. 安装Port

下面我们会介绍如何使用Port套件集来安装、移除软体的基本用法。

make可用的目标及环境变数详细说明可参阅ports(7)。

在编译任何Port套件前，请先确认已经如前章节所叙述之方法更新Port套件集。安装任何第三方软体皆可能会导致安全性漏洞，建议在安装前先阅读https://vuxml.freebsd.org/了解Port已知的安全性问题。或者在每次安装新Port前执行pkg audit -F。此指令可以设定在每日系统安全性检查时自动完成安全性稽查及更新漏洞资料库。

要取得更多资讯，请参考pkg-audit(8)及periodic(8)。

使用Port套件集会假定您拥有可正常连线的网络，同时也会需要超级使用者的权限。

要编译并安装Port，需切换目录到要安装的Port底下，然后输入make install，资讯中会显示安装的进度:

```
# cd /usr/ports/sysutils/lsof
# make install

> lsof_4.88D.freebsd.tar.gz doesn't seem to exist in /usr/ports/distfiles/.
> Attempting to fetch from ftp://lsof.itap.purdue.edu/pub/tools/unix/lsof/.
=>  Extracting for lsof-4.88...
[extraction output snipped]
...
> Checksum OK for lsof_4.88D.freebsd.tar.gz.
=>  Patching for lsof-4.88.d,8
=>  Applying FreeBSD patches for lsof-4.88.d,8
=>  Configuring for lsof-4.88.d,8...
[configure output snipped]
...
=>  Building for lsof-4.88.d,8...
[compilation output snipped]
...
101
```
===> Installing for lsof-4.88.d,8
...

[installation output snipped]
...

===> Generating temporary packing list
===> Compressing manual pages for lsof-4.88.d,8
===> Registering installation for lsof-4.88.d,8

SECURITY NOTE:
This port has installed the following binaries which execute with
increased privileges.

/usr/local/sbin/lsof

lsof is a program that requires advanced privileges to execute. Therefore, when this program is installed, a security warning will be displayed. Once installed, it will prompt you to confirm.

Some shell environments will cache instructions in the PATH environment variable, thereby increasing execution speed.

For tcsh shell users, you should input rehash to make new installed instructions available without having to specify the full path. For sh shell users, use hash -r. Please refer to the shell's manual for more information.

During the installation process, a working subdirectory is created to store temporary files generated during compilation. You can remove this directory to save disk space and gradually decrease the risk of upgrading to new version ports:

make clean

If you don't want to perform these extra steps, you can make and install the port with:

make install clean

4.5.1.1. Custom Port Installation

Some ports provide compilation options, which can be used to turn on or off certain features, options, or other custom projects. Examples of such applications include www/firefox, security/gpgme, and mail/sylpheed-claws. If other ports that depend on this port have configurable options, the default mode will display a menu of options for selection, which may cause pauses in the installation process. To avoid this situation, you can set all options at once, just execute make config-recursive, and then make install [clean].

When using config-recursive, all-depends-list Target will be used to collect all the options to be set in the port.

It is recommended to execute make config-recursive until all dependent options are set, and until the port options menu does not appear again, to ensure that all dependent options have been set.

There are many ways to refresh the port's compilation options, allowing you to add, remove, or modify these options after compiling the port. One method is to cd into the directory containing the port and input make config. Another method is use make showconfig. The last method is to execute make rmconfig to remove all previously selected options, allowing you to reset the options. Please refer to ports(7) for more detailed information.
fetch(3) 取得完整的變數清單。 对於那些無法一直連線到網際網路的使用者，可在/usr/ports 下執行 make fetch 来下載所有的 distfiles，或是可在某個分類的目錄中，例如 /usr/ports/net，或指定的 Port Skeleton 中執行。要注意的是，若 Port 有任何的相依，在分類或 Port Skeleton 中執行此指令並不會下載相依在其他分類的 Port distfiles。可使用 make fetch-recursive 来下载所有相依 Port 的 distfiles。

在部份少数情况下，例如当公司或组织有自己本地的 distfiles 档案库，可使用 MASTER_SITES 变数来覆盖在 Makefile 中指定的下载位址。当要指定替代的位址时可:

```
# cd /usr/ports/directory
# make MASTER_SITE_OVERRIDE=ftp://ftp.organization.org/pub/FreBSD/ports/distfiles fetch
```

也可使用 WRKDIRPREFIX 及 PREFIX 变数来覆盖预设的工作及目标目录。例如:

```
# make WRKDIRPREFIX=/usr/home/example/ports install
```

会编译在 /usr/home/example/ports 的 Port 并安装所有东西到 /usr/local 下。

```
# make PREFIX=/usr/home/example/local install
```

会编译在 /usr/ports Port 并安装到 /usr/home/example/local。然后:

```
# make WRKDIRPREFIX=../ports PREFIX=../local install
```

来同时设定工作及目标目录。

这些变数也可做为环境变数设定，请参考您使用的 Shell 操作手册来取得如何设定环境变数的说明。

4.5.2. 移除已安装的 Port

安装的 Port 可以使用 pkg delete 解除安装。 使用这个指令的范例如可以在 pkg-delete(8) 操作手册找到。

或者，可在 Port 的目录下执行 make deinstall:

```
# cd /usr/ports/sysutils/lsof
make deinstall
```

结果会是:

```
Deinstalling for sysutils/lsof

Deinstallation has been requested for the following 1 packages:
  lsof-4.88.d,8

The deinstallation will free 229 kB

[1/1] Deleting lsof-4.88.d,8...
done
```

建议阅读 Port 解除安装后的资讯，若有任何相依该 Port。
4.5.3. 升级与管理 Port的工具

Port套件集中会提供多个工具来进行升级，每种工具都有其优点和缺点。以往大多Port安装会使用Portmaster或Portupgrade，现在有较新的Synth可使用。

在使用任何这些工具之前都建议要备份资料。

4.5.3.2. 使用Portmaster升级Port

ports-mgmt/portmaster 是可用作升级已安装Port的小巧工具，它只使用了随FreeBSD基础系统安装的工具，不需要相依其他Port或资料库便可在FreeBSD使用，要使用Port安装此工具可:

```
# cd /usr/ports/ports-mgmt/portmaster
# make install clean
```

Portmaster将Port定义成四种类型:

- 根Port: 没有相依且也不被任何其他Port相依。
- 主干Port: 没有相依，但被其他Port相依。
- 分支Port: 有相依，且其被其他Port相依。
- 枝Port: 有相依，但没有被其他Port相依。

要列出这几个分类并搜索是否有新版:

```
# portmaster -L
```

在FreeBSD 10与更新的版本，或若套件系统已转换为pkg，可以使用下列指令列出已经安装的Port中有那些已过时:

```
# pkg version -l "<"
```

在FreeBSD 9.X与较旧的版本，可以使用下列指令列出已经安装的Port中有那些已过时:

```
# pkg_version -l "<"
```

注意那些与您要升级Port相关的指示，并依照这些指示进行升级。
7 root ports

Branch ports (Have dependencies, are depended on)

apache22-2.2.3
New version available: apache22-2.2.8

tcpflow-0.21_1

32 leaf ports

Leaf ports (Have dependencies, not depended on)

automake-1.9.6_2
bash-3.1.17
New version available: bash-3.2.33

137 total installed ports
83 have new versions available

此指令用来升级所有过时的 port:

portmaster -a

Portmaster 也可用來安裝新的 Port 到系統,在編譯及安裝新 Port 前升级所有相依模組。要使用這個功能,要指定 Port 位於 Port 套件集中的位置:

portmaster shells/bash

更有多關 ports-mgmt/portmaster 的資訊可至其 pkg-descr 取得。
在执行升级之前使用此工具，建议使用 `pkgdb -F` 扫描已安装的 Port 并修正该指令回报的所有资讯不一致的套件。要升级所有安装在系统上的 Port，可使用 `portupgrade -a`，或者加上 `-i` 会在每个套件升级时询问确认:

```
# portupgrade -ai
```

要升级指定的应用程式而非所有可用Port可使用 `portupgrade pkgname`，非常重要的，要加上 `-R` 来先升级指定应用程式所有相依的 Port:

```
# portupgrade -R firefox
```

若使用 `-P`，Portupgrade 会先在 `PKG_PATH` 清单中的本地目录中搜寻可用的套件。若本地没有可用的套件，则会从远程下载。若套件无法在本地或远程找到，Portupgrade 会使用 Port 来安装。要避免完全使用 Port 安装，可使用 `-PP`，这个选项会告诉 Portupgrade 若没有套件可用时放弃安装:

```
# portupgrade -PP gnome3
```

若只想要下载 Port distfiles 或套件，使用 `-P` 参数。若不要编译或安装任何东西，使用 `-F`。请参考 `portupgrade` 的操作手册来取得所有可用选项的更多信息。

更多有关 `ports-mgmt/portupgrade` 的资讯可至其 `pkg-descr` 取得。
portmaster --clean-distfiles

預設，若distfile應要被刪除，這個指令會以互動的方式向使用者確認。

除了以上指令外，ports-mgmt/pkg_cutleaves可自動移除不再需要使用的Port。

4.6. 使用Poudriere編譯套件

Poudriere是一個使用BSD授權條款用來建立與測試FreeBSD套件的工具。它使用FreeBSD Jail來建立獨立的編譯環境，這些Jail可以用來編譯與目前所在系統不同FreeBSD版本的套件，也同樣可以在主機為amd64的系統上編譯供i386使用的套件。套件編譯完成後的目錄配置會與官方鏡像站完全相同。這些套件可由pkg(8)及其他套件管理工具使用。

Poudriere可使用ports-mgmt/poudriere套件或Port安裝。安裝完成後會有一個範例的設定檔/usr/local/etc/poudriere.conf.sample。複製此檔到/usr/local/etc/poudriere.conf，編輯複製的檔案來配合本地設定。

雖然在系統上執行poudriere並不一定要使用ZFS，但使用了是有幫助的。當使用了ZFS，則必須在/usr/local/etc/poudriere.conf指定ZPOOL及FREEBSD_HOST應設定到一個最近的鏡像站。定義CCACHE_DIR可開啟使用devel/ccache快取的功能來快取編譯結果並減少那些需時常編譯的程式碼的編譯次數。

將poudriere資料集放於一個獨立的目錄並掛載到/poudriere可能會比較方便，其他設定項目採用預設值便足夠。

偵測到的處理器數量可用來定義要同時執行多少個編譯。並給予足夠的虛擬記憶體，不論是RAM或交換空間，若虛擬記憶體不夠，編譯Jail的動作將會停止並被清除，會造成奇怪的錯誤訊息。

4.6.1. 初始化Jail與Port樹

在設定之後，初始化poudriere來安裝Jail及其所需的FreeBSD樹與Port樹。使用-j來指定Jail的名稱以及-v來指定FreeBSD的版本。在執行FreeBSD/amd64的系統上可使用-a來設定要使用的架構為i386或amd64，預設會採用使用uname所顯示的架構。

poudriere jail -c -j 10amd64 -v 10.0-RELEASE

====>>
Creating 10amd64 fs... done
====>>
Fetching base.txz for FreeBSD 10.0-RELEASE amd64
/poudriere/jails/10amd64/fromftp/base.txz 100% of 59 MB 1470 kBps 00m42s
====>>
Extracting base.txz... done
====>>
Fetching src.txz for FreeBSD 10.0-RELEASE amd64
/poudriere/jails/10amd64/fromftp/src.txz 100% of 107 MB 1476 kBps 01m14s
====>>
Extracting src.txz... done
====>>
Fetching games.txz for FreeBSD 10.0-RELEASE amd64
/poudriere/jails/10amd64/fromftp/games.txz 100% of 865 kB 734 kBps 00m01s
====>>
Extracting games.txz... done
====>>
Fetching lib32.txz for FreeBSD 10.0-RELEASE amd64
/poudriere/jails/10amd64/fromftp/lib32.txz 100% of 14 MB 1316 kBps 00m12s
====>>
Extracting lib32.txz... done
====>>
Cleaning up... done
====>>
Jail 10amd64 10.0-RELEASE amd64 is ready to be used
poudriere ports -c -p local

```
Creating local fs... done

Extracting portstree "local"...

Looking up portsnap.FreeBSD.org mirrors... 7 mirrors found.

Fetching public key from ec2-eu-west-1.portsnap.freebsd.org... done.

Fetching snapshot tag from ec2-eu-west-1.portsnap.freebsd.org... done.

Fetching snapshot metadata... done.

Fetching snapshot generated at Tue Feb 11 01:07:15 CET 2014: 94a3431f0ce567f6452ffde4fd3d7d3c6e1da143efec76100% of 69 MB 1246 kBps 00m57s

Extracting snapshot... done.

Verifying snapshot integrity... done.

Fetching snapshot tag from ec2-eu-west-1.portsnap.freebsd.org... done.

Fetching snapshot metadata... done.

Updating from Tue Feb 11 01:07:15 CET 2014 to Tue Feb 11 16:05:20 CET 2014.

Fetching 4 metadata patches... done.

Applying metadata patches... done.

Fetching 0 metadata files... done.

Fetching 48 patches. (48/48) 100.00% done.

(done)

Applying patches... done.

Fetching 1 new ports or files... done.

/poudriere/ports/tester/CHANGES
/poudriere/ports/tester/COPYRIGHT

Building new INDEX files... done.
可使用以下方式設定選項及相依:

```bash
poudriere options -j 10amd64 -p local -z workstation -f 10amd64-local-workstation-pkglist
```

最後，編譯套件並建立套件檔庫:

```bash
poudriere bulk -j 10amd64 -p local -z workstation -f 10amd64-local-workstation-pkglist
```

在執行時，按下 Ctrl+t 可以顯示目前編譯的狀態，Poudriere 也會編譯在 /poudriere/logs/bulk/jailname 中的檔案，可用在網頁伺服器來顯示編譯資訊。

完成之後，新套件現在我可以從 poudriere 檔案庫來安裝。

要取得更多使用 poudriere 的資訊，請參看 poudriere(8) 及主網站 https://github.com/freebsd/poudriere/wiki。

4.6.2. 設定 pkg 客戶端使用 Poudriere 檔案庫

雖然可以同時使用自訂的檔案庫與官方法案庫，但有時關閉官方法案庫會有幫助。這可以透過建立一個設定檔覆蓋並關閉官方法案庫來完成。

建立 /usr/local/etc/pkg/repos/FreeBSD.conf 包含以下內容:

```bash
FreeBSD: {
 enabled: no
}
```

通常最簡單要提供 poudriere 檔案庫給客户端的方式是透過 HTTP。安裝一個網頁伺服器來提供套件目錄，通常會像:

```
/usr/local/poudriere/data/packages/10amd64
```

其中 10amd64 是編譯的名稱。

若要連往套件檔案庫的 URL 是:

```
http://pkg.example.com/10amd64
```

則在 /usr/local/etc/pkg/repos/custom.conf 的檔案庫設定檔為:

```bash
custom: {
 url: "http://pkg.example.com/10amd64",
 enabled: yes,
}
```

4.7. 安裝後的注意事項

不論軟體是從套件或 Port 安裝，大部份的第三方應用程式安裝完後需要做某種程度的設定，下列指令與位置可以用來協助找到應用程式安裝了什麼。

• 大部份應用程式安裝會在 /usr/local/etc 安裝至少一個預設的設定檔，若應用程式有大量設定檔的時則會建立一個子目錄來存放這些設定檔。範例的設定檔名稱通常使用 .sample。
結尾，設定檔應要仔細查看並可能要做一些編輯讓設定檔符合系統的需求，要編輯設定檔範本前需先複製該檔案並去除.sample副檔名。

• 应用程式提供的文件會安裝到/usr/local/shared/doc，且應用程式也同時會安裝操作手冊，在繼續使用應用程式前應先查看這些文件。

• 部分應用程式會以服務的方式執行，在啟動應用程式前前需要加入設定到/etc/rc.conf。這些應用程式通常會安裝啟動Script到/usr/local/etc/rc.d，請參考啟動服務來取得更多資訊。

依設計，應用程式不會在安裝時執行其啟動Script，也不會在解除安裝或升級時執行其中止Script，這留給各系統的管理者去做決定。

• csh(1)的使用者要執行rehash來更新已知Binary清單到Shell的PATH。

• 使用pkg info來了解應用程式安裝了那些檔案、操作手冊以及Binary。

4.8. 处理損壞的Port

当发现某个Port無法順利編譯或安裝，可以嘗試以下幾種方法解決：

1. 搜尋問題回報資料庫看該Port有沒有待審核的修正，若有的話可以使用該修正來修正問題。

2. 寻求維護人員的協助，在Port Skeleton目錄中輸入make maintainer或閱讀Port的Makefile來取得維護人員的電子郵件位址。寄給維護人員的郵件內容請記得要包含Port的Makefile中的$FreeBSD:一整行及輸出的錯誤訊息。

有一些Port並非由個人維護，而是由郵遞論壇維護，有許多，但並非全部，只要郵件地址長的像freebsd-listname@FreeBSD.org都是，寄信時記得代入實際的論壇名稱。尤其是由ports@FreeBSD.org所維護的Port都不是由特定個人維護，而該Port的修正與支援都是來自訂閱該郵遞論壇的一般社群所提供，我們隨時歡迎志工參與！

若寄信後沒有取得任何回應，可以依照撰寫FreeBSD問題回報的說明使用Bugzilla提出問題回報。

3. 自行修正看看！Porter's Handbook中包含Port基礎架構的詳細資訊，可提供資訊讓您可修正偶然損壞的Port或甚至您可以提交之己的Port！

4. 依照使用pkg管理Binary套件中的說明安裝Binary套件，代替使用Port安裝。
視窗管理程式

客戶端

X Server

要知

有些基本概念會

的。

更

件的所有

各

作方式,並不是

術語

開

: 閱讀這章之前,您需要

始

解:

像

考

硬

Xorg

關

面

環境

視　
　著
　管理程式。
　會說明如
　圖
　型
　X Window
　開放源
　Xorg
　用程式提供
　應
　的
　將
　FreeBSD
　bsdinstall
　使用
　5.1.

Chapter 5. X Window
桌
面
環境
(Desktop Environment)

KDE
與
GNOME
會
被稱
作
桌
面
環境
是因
為
包
含
了完
整
常用
桌
面作
業
的
應
用程式,
這些
應
用程式
可
能包
含
文書
軟
體、網頁
瀏
覟
器
及
遊戲。

聚焦政
策
(Focus Policy)

視
窗
管理程式
負責
滑鼠
指標
的
聚焦政
策
。聚焦政
策
指
的是如
何
決
定
使用中
及
接
收
鍵盤
輸入
的
視
窗。

通常
較
為
人熟
悉
的
聚焦政
策
叫
做
"click-to-focus",
這個
模
式中,
滑鼠
點
選
到的
視
窗
便
會
處
於
作用中
(Active)
的
狀
態
。在
"focus-follows-mouse"
模
式
滑鼠
指標
所在的
視
窗
便
是作用中的
視
窗,
只要
把
滑鼠
移
到其他
視
窗就
可以
改變
作用中的
視
窗,
若
滑鼠
移
到
根視
窗
(Root Window),
則
會
聚焦
在
根視
窗
。在
"sloppy-focus"
模
式,
既
使
滑鼠
移
到
根視
窗,
仍然會
聚焦
在
最後
聚焦
的
視
窗
上,
此
模
式只
有當
滑鼠
進
入
新的
視
窗時
才
會
聚
焦
於
該
視
窗
,而
非
離
開目
前
視
窗
时。

"click-to-focus"
模
式用
滑鼠
點
擊
来
決
定
作用中的
視
窗,
且
该
视
窗会
被
置
顶
到
所有其他
视
窗
之
前
,即
使
滑鼠
移
到
其他
视
窗
,
所有的
鍵盤
輸入
仍
会
由
該
視
窗
所接
收。

不同的
視
窗管理程式
支援
不同的
聚焦
模
式,
全
部都
支援
click-to-focus
且
其中大部份
支援
其他
模
式,
请
查看視
窗
管理程式
的
說明文
件
来
解
可用的
聚焦
模
式。

視
窗元
件
(Widget)

視
窗元
件
指
的是在所有在使用者介面
上
可
被點
選
或操作的
項
目,
這
包括
按
鈕
、
核
選
方
塊
、
單
選按
鈕
、
圖
示
及
清
單。

視
窗元
件
工具
包
(Widget toolkit)

是
指
用
来
建
立
圖
型
化
應
用程式的一系列的
視
窗元
件。

目前
有
數
個
有
名
的
視
窗元
件
工具
包,
包
含
KDE
所使用的
Qt
、
GNOME
所使用的
GTK+。

因此
應
用程式
会
依
其
開
發
時所
選
用的
視
窗元
件
而
有
不同的
外
觀。

5.3.
安
装
Xorg
在
FreeBSD,
Xorg
可
透
過
套
件
或
Port
来安
装。
使用
Binary
套
件
的
安
装
速
度
較
快
,但
可用的
自
訂
選
項
較
少
:

```
pkg install xorg
```
要
从
Port
套
件
集
編
譯
與
安
装
:

```
cd /usr/ports/x11/xorg
make install clean
```
兩
種
安
装
方
式
皆
可
完
整
安
装
Xorg
系
統,
对
多
數
使
用
者
較
建
議
使用
Binary
套
件
安
装。

较
精
简
版
本
的
X
系
统
适合
给
有
经
验
的
使
用
者
使
用,
可
至
x11/xorg-minimal
g取得。这个
版
本
就
不会
安
装
g多
g數
的
文
件
、
函
數
库
以
及
应
用
程式,
而
部
分
应
用
程式
会
需
要
这些
额
外
的
元
件
才
能
运
作。

5.4.
Xorg
設
定
5.4.1.
快速
開
始
Xorg
支援
多
數
常
見
的
顯
示
卡
、
鍵
盤
以
及
指
標
安
置。

顯
示
卡
、
顯
示
器
以
及
輸
入
裝
置
會
自
動
偵
測,
無
須
任
何
手
動
設
置。
除
非
自
動
設
置
失
敗,
否
則
請
勿
建
立
xorg.conf
或
執
行
-configure
步
驟。

```
112
```
1. 若 Xorg 曾經在電腦使用過，可先將現有的設定檔重新命名或移除:
   # mv /etc/X11/xorg.conf ~/xorg.conf.etc
   # mv /usr/local/etc/X11/xorg.conf ~/xorg.conf.localetc

2. 加入要執行 Xorg 的使用者到 video 或 wheel 群組，以便在可用時能開啓 3D 加速。
   要加入使用者 jru 到任一個可用的群組:
   # pw groupmod video -m jru || pw groupmod wheel -m jru

3. 預設內含 TWM 視窗管理程式，啓動 Xorg 時便會啓動該視窗管理程式:
   % startx

4. 在部份較舊版的 FreeBSD，在切換回文字 Console 前系統 Console 必須設為 vt(4) 才能正常運作，請參考核心模式設定（Kernel Mode Setting, KMS）。

5.4.2. 可加速影像處理的使用者群組

要存取/dev/dri 需要允許顯示卡的 3D 加速功能，這通常只需要將要執行 X 的使用者加入 video 群組。此處使用 pw(8) 將使用者 slurms 加入 video 群組，若沒有 video 則會加入 wheel 群組:
   # pw groupmod video -m slurms || pw groupmod wheel -m slurms

5.4.3. 核心模式設定（Kernel Mode Setting, KMS）

當電腦顯示從 Console 切換到高螢幕解析度供 X 使用時，必須設定影像輸出模式。最近版本的 Xorg 使用了核心內部的系統讓切換模式更有效率。較舊版的 FreeBSD 使用的 sc(4) 並不知到 KMS 系統的存在，這會導致關閉 X 之後即始仍在運作但系統 Console 卻呈現空白。較新版的 vt(4) Console 可避免這個問題。

加入此行到 /boot/loader.conf 來開啓 vt(4):
   kern.vty=vt

5.4.4. 設定檔 通常不需要做手動設定，除非自動設定無法運作，否則請不要手動建立設定檔。

5.4.4.1. 目錄 Xorg 會查看數個目錄來尋找設定檔，在 FreeBSD 較建議使用 /usr/local/etc/X11/ 來存放這些設定檔，使用這個目錄可以幫應用程式檔案與作業系統檔案分離。

儲存設定檔在傳統的 /etc/X11/ 仍可運作，但並不建議將應用程式檔案與基礎 FreeBSD 檔案混和在一齊存放。
5.4.4.2. 檔案

使用多檔，每一個檔案只設定一個指定項目。這些案會存放於主設定檔目錄下的 `xorg.conf.d/` 子目錄，完整路徑通常為 `/usr/local/etc/X11/xorg.conf.d/`。於本節稍後會有這些檔案的範例。

傳統單一 `xorg.conf` 的方式仍可運作，但比起在 `xorg.conf.d/` 子目錄中的多檔設定方式較不明瞭且沒有彈性。

5.4.5. 顯示卡

由於最近 FreeBSD 版本所做的變更，現在可以使用由 Port 或套件所提供的繪圖驅動程式，所以使用者可以使用下列來自 `graphics/drm-kmod` 的驅動程式。

- Intel KMS 驅動程式：大多數使用 Intel KMS 驅動程式的 Intel 顯示卡支援 2D 與 3D 加速。
  - 驅動程式名稱: `i915kms`

- AMD KMS 驅動程式：大多數使用 AMD KMS 驅動程式的 AMD 顯示卡支援 2D 與 3D 加速。
  - 驅動程式名稱: `amdgpu`

- AMD Radeon 顯示卡支援 2D 與 3D 加速，最新到 HD6000 系列。
  - 驅動程式名稱: `radeon`

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。


- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。

- NVIDIA 有數個 NVIDIA 驅動程式可於 Port 套件集中的 x11 分類取得，請安裝其中與顯示卡相符合的驅動程式。
模,可用使用其中一種標準顯示卡驅動程式來驅動。例如,有時關閉Optimus系統中的NVIDIA GPU是可能讓Intel™顯示晶片可用Intel™驅動程式驅動。

BIOS設定會依電腦的型號有所不同,在某些情況下,可以同時開啟兩個GPU,而在建立的設定檔中的Device節只使用主要的GPU便能讓系統運作。其他顯示卡較不常見的顯示卡驅動程式可在Port套件集的x11-drivers目錄找到。若沒有特定的驅動程式可以支援顯示卡,仍可能可用x11-drivers/xf86-video-vesa驅動程式來驅動。該驅動程式可使用x11/xorg安裝,也可使用x11-drivers/xf86-video-vesa手動安裝。當沒有指定驅動程式時Xorg會嘗試使用這個驅動程式來驅動顯示卡。
x11-drivers/xf86-video-scfb也是不特定顯示卡的驅動程式,可在許多UEFI及ARM™的電腦上運作。

在檔案中設定影像驅動程式要在設定檔設定使用Intel™驅動程式:

例15.在單檔中選擇Intel™影像驅動程式
/usr/local/etc/X11/xorg.conf.d/driver-intel.conf

Section "Device"
Identifier "Card0"
Driver     "intel"
# BusID    "PCI:1:0:0"
EndSection

若有多張顯示卡,可取消BusID identifier然後設定為想想要的顯示卡,顯示卡的Bus ID清单可以使用pciconf -lv | grep -B3 display取得。要在設定檔設定使用Radeon驅動程式:

例16.在單檔中選擇Radeon影像驅動程式
/usr/local/etc/X11/xorg.conf.d/driver-radeon.conf

Section "Device"
Identifier "Card0"
Driver     "radeon"
EndSection

要在設定檔設定使用VESA驅動程式:

例17.在單檔中選擇VESA影像驅動程式
/usr/local/etc/X11/xorg.conf.d/driver-vesa.conf

Section "Device"
Identifier "Card0"
設定 UEFI 或 ARM™ 電腦使用 scfb 驅動程式:

在單檔中選擇 scfb 影像驅動程式:

```
Section "Device"
Identifier "Card0"
Driver "scfb"
EndSection
```

5.4.6. 顯示器

幾乎所有顯示器都支援延伸顯示辨識資料（Extended Display Identification Data, EDID），Xorg 會使用 EDID 與顯示器通訊並偵測支援的解析度與更新頻率，然後選擇最適合的設定組合使用該顯示器。

其他顯示器支援的解析度可透過在設定檔中設定想要的解析度來選擇，或者在 X 伺服器啟動之後使用 xrandr(1)。

使用 xrandr(1)執行 xrandr(1)不加任何參數可檢查影像輸出及已偵測到的顯示器模式清單:

```
% xrandr
```

```
Screen 0: minimum 320 x 200, current 3000 x 1920, maximum 8192 x 8192
DVI-0 connected primary 1920x1200+1080+0 (normal left inverted right x axis y axis)
495mm x 310mm
1920x1200 59.95*
1600x1200 60.00
1280x1024 85.02 75.02 60.02
1280x960 60.00
1152x864 75.00
1024x768 85.00 75.08 70.07 60.00
832x624 74.55
800x600 75.00 60.32
640x480 75.00 60.00
720x400 70.08
DisplayPort-0 disconnected (normal left inverted right x axis y axis)
HDMI-0 disconnected (normal left inverted right x axis y axis)
```

這個結果顯示 DVI-0 輸出被用來顯示解析度為 1920x1200 像素於更新頻率約 60 Hz 的畫面, 未有顯示器連接到 DisplayPort-0 與 HDMI-0 接頭。

可使用 xrandr(1)來選擇任其他的顯示模式。例如要切換為 1280x1024 於 60 Hz:

```
1280x1024 60.00
```
在記型電腦使用外部顯示輸出到投影機是常見的作業。

不同裝置間輸出接頭的類型與數量也不同，給每個輸出的名字在不同驅動程式間也不同。在某些驅動程式稱為HDMI-1的輸出在其他驅動程式則可能稱為HDMI1。因此第一個步驟是執行xrandr(1)列出所有可用的輸出:

% xrandr
Screen 0: minimum 320 x 200, current 1366 x 768, maximum 8192 x 8192
LVDS1 connected 1366x768+0+0  
( normal left inverted right x axis y axis
344mm x 193mm
1366x768   60.04*
1024x768   60.00
800x600    60.32    56.25
640x480    59.94
VGA1 connected 
( normal left inverted right x axis y axis
1280x1024  60.02 +  75.02
1280x960   60.00
1152x864   75.00
1024x768   75.08    70.07    60.00
832x624    74.55
800x600    72.19    75.00    60.32    56.25
640x480    75.00    72.81    66.67    60.00
720x400    70.08
HDMI1 disconnected 
( normal left inverted right x axis y axis
DP1 disconnected 
( normal left inverted right x axis y axis
已找到四個輸出:內建面板的LVDS1,外接的VGA1, HDMI1 以及 DP1接頭。投影機已連接至VGA1輸出,現在使用xrandr(1)來設定該輸出到投影機(原解析度)並加入額外的空間到桌面的右側:

% xrandr --output VGA1 --auto --right-of LVDS1 --auto 

會選擇使用EDID偵測到的解析度與更新頻率。若未正確偵測解析度,可替換--auto為--mode 然後給予固定值。例如大部份的投影機可使用1024x768解析度為,則可設定--mode 1024x768。

xrandr(1)通常會在.xinitrc執行以在X啟動時設定適合的模式。

在檔中設定螢幕解析度在設定檔設定螢幕解析度為1024x768:
例19.在檔案中設定螢幕解析度
少数显示器没有EDID，可设定HorizSync及VertRefresh为显示器支援的频率范围。

例如手动设定显示器频率:
```
/usr/local/etc/X11/xorg.conf.d/monitor0-freq.conf
```

5.4.7.输入装置
5.4.7.1.键盘
键盘配置
键盘上标准键的位置称作配置(Layout)。配置与其它可调整的参数列于xkeyboard-config(7)。

预设为United States配置，要选择其它的配置可在InputClass设定XkbLayout与XkbVariant选项。这会套用所有符合该类别的输入装置。

这个例子选择使用French键盘配置使用oss字体。

例如21.设定键盘配置:
```
/usr/local/etc/X11/xorg.conf.d/keyboard-fr-oss.conf
```

```
Section "InputClass"
Identifier "KeyboardDefaults"
Driver "keyboard"
MatchIsKeyboard "on"
Option "XkbLayout" "fr"
Option "XkbVariant" "oss"
EndSection
```
設定多個鍵盤配置。設定 United States, Spanish 與 Ukrainian 鍵盤配置，并可按 Alt+Shift 切換這些配置。可使用 x11/xxkb 或 x11/sbxkb 來強化配置切換控制與目前配置的指示。

```
Section "InputClass"
 Identifier "All Keyboards"
 MatchIsKeyboard "yes"
 Option "XkbLayout" "us, es, ua"
EndSection
```

從鍵盤關閉 Xorg X 可以使用組合鍵來關閉，預設並未設定組合鍵，因為該組合鍵與部份應用程式的鍵盤指令衝突。要開啟這個選項需要更改鍵盤 InputDevice 節:

```
Section "InputDevice"
 Identifier "Mouse0"
 Option "Buttons" "7"
EndSection
```

5.4.7.2. 滑鼠與指標裝置
有許多滑鼠參數可使用設定選項來調整，請參考 mousedrv(4) 來取得完整清單。

滑鼠按鍵
滑鼠的按鍵數可在 xorg.conf 的滑鼠 InputDevice 節設定，例如要設定按鍵數為 7:

```
Section "InputDevice"
 Identifier "Mouse0"
 Option "Buttons" "7"
EndSection
```
5.4.8. 手動設定

在某些情况下，Xorg的自动设定无法在特定硬件上运作，或需要使用不同的设定。针对这些情况会建立自订的设定档。

 非必要请勿手动生成设定档，非必要的手动设置会导致运作不正常。

设定档可由Xorg根据侦测到的硬件产生，这个档案对一开始自订设定很有帮助。

产生xorg.conf:

```
Xorg -configure
```

设定档会储存至/root/xorg.conf.new，做任何需要的更改，然后使用以下指令测试该档案:

```
Xorg -config /root/xorg.conf.new
```

在新设定档调整与测试过后，便可分开成较小的档案放置到正常的位置/usr/local/etc/X11/xorg.conf.d/。

5.5. 在Xorg使用字型

5.5.1. Type1 字型

由於Xorg内的预设字型用在典型的桌面出版应有用程式并不理想，大字型会呈现锯齿状边缘，看起来很不专业，小字型几乎完全看不清。不过，这里有几个免费高品质的Type1 (PostScript™) 字型可用，且能容易的在Xorg使用。例如，URW 字型集（Times Roman™, Helvetica™, Palatino™及其他）。

Freefont 字型集 (x11-fonts/freefonts) 包含了更多的字型，但其中大部分是给图形软体如GIMP所使用的字型，并不能完全作为了萤幕字型使用。此外，Xorg可以简单的设定使用TrueType™字型。更多有关本主题的详细资讯，请参考X(7)操作手册或TrueType™字型。

要由Binary套件安装上述的Type1字型集可执行以下指令:

```
pkg install urwfonts
```

或由Port套件集编译，可执行以下指令:

```
cd /usr/ports/x11-fonts/urwfonts
make install clean
```

同样的安装方式也适用Freefont或其他字型集。要让X服务器侦测到这些新安装的字型，可加入适当的设定到X服务器设定档 (/etc/X11/xorg.conf)，内容为:

```
FontPath "/usr/local/shared/fonts/urwfonts/"
```

或者在X session的指令列执行:

```
% xset fp+ /usr/local/shared/fonts/urwfonts
```
這样便可，但在X session 关闭时将会失效，除非将该设定加入启动档（一般的 startx session 可在 ~/.xinitrc 设定，若透过图形登入管理程式如 XDM 登入则在 ~/.xsession 設定）。第三种方式是使用新 /usr/local/etc/fonts/local.conf, 如反鋸齿字型的示範。

5.5.2. TrueType™ 字型

Xorg 内建支援製 TrueType™ 字型, 目前有两个模组可以支援这项功能。在本例中使用 freetype 模组, 由于此模组与其他字体製後端较一致。要开启 freetype 模组只需要将下行加入到 /etc/X11/xorg.conf 中的 "Module" section。

```
Load "freetype"
```

现在要建立一个储存 TrueType™ 字型的目录（例如, /usr/local/shared/fonts/TrueType）然后复制所有 TrueType™ 字型到这个目录。要注意 TrueType™ 字型无法直接取自 Apple™Mac™, Xorg 使用的字型必须为 UNIX™/MS-DOS™/Windows™ 的格式。档案件复制到让目录之後, 使用 mkfontscale 来建立 fonts.dir 来让 X 字型製作程式知到安装了新的档案件。

```
pkg install mkfontscale
```

然后在目录中建立 X 字型档的索引:

```
cd /usr/local/shared/fonts/TrueType
mkfontscale
```

接着加入 TrueType™ 目录到字型路径。这个动作与 Type1 字型中所介绍的方式相同:

```
% xset fp+ /usr/local/shared/fonts/TrueType
% xset fp rehash
```

或直接加入 FontPath 一行到 xorg.conf。

现在 Gimp, Apache OpenOffice 以及其他 X 应用程式应可以辨识到已安装的 TrueType™ 字型。

极小的字型（以高解析度在网页中显示的文字）与极大的字型（在 StarOffice™ 中）现在看起来比较样了。

5.5.3. 反鋸齿字型

所有可在 /usr/local/shared/fonts/及 ~/.fonts/ 找到的 Xorg 字型均可在 Xft-aware 的应用程式使用反鋸齿的效了。大多最 近的应用程式均为 Xft-aware 的, 包括 KDE, GNOME 以及 Firefox。

要控制那一些字型要做反鋸齿或设定反鋸齿的属性, 需建立/usr/local/etc/fonts/local.conf 档案（若档案存在则编辑）。在这个档案中可以调整 Xft 字型系统的数项进阶功能, 本章节仅介绍部份简单的项目, 要取得进一步资讯, 请参考 fonts-conf(5)。

这个档案必须使用XML 格式, 小心文字大小写, 且要确定所有标签均有正常结尾。

档案件的开头使用常见的 XML 档首, 接著为DOCTYPE 定义, 然后是<fontconfig> 标籤:

```
<?xml version="1.0"?>
<!DOCTYPE fontconfig SYSTEM "fonts.dtd">
```
如同前面所提到的，所有在 `/usr/local/shared/fonts/` 与 `~/.fonts/` 的字型均可在 Xft-aware 的应用程式做反锯齿效果，若您想要加入除了上两者以外的目录，可加入如下行设定到 `/usr/local/etc/fonts/local.conf`:

```
<dir>/path/to/my/fonts</dir>
```

加入新字型及额外的新字型目录之后，需重新建立字型快取:

```
fc-cache -f
```

反锯齿效果会让文字的边缘变模煳，这会让非常小的文字更能阅读且去除大型文字的"锯齿"，但套用在一般文字可能会造成眼睛的疲劳。要排除小於 14 点的字型大小使用反锯齿效果，可加入这些行:

```xml
<match target="font">
 <test name="size" compare="less">
 <double>14</double>
 </test>
 <edit name="antialias" mode="assign">
 <bool>false</bool>
 </edit>
</match>
<match target="font">
 <test name="pixelsize" compare="less" qual="any">
 <double>14</double>
 </test>
 <edit mode="assign" name="antialias">
 <bool>false</bool>
 </edit>
</match>
```

反锯齿所产生的间距对于部份等宽字型并不合适，尤其是在使用 KDE 时会成为一个问题。可能的修正方式是强制这类型字型的间距为 100，可加入以下行:

```xml
<match target="pattern" name="family">
 <test qual="any" name="family">
 <string>fixed</string>
 </test>
 <edit name="family" mode="assign">
 <string>mono</string>
 </edit>
</match>
```
這會設定等寬字型的其他常用名稱為“mono”，然後加入:
部份字型，如Helvetica，在使用反鋸齒時可能會發生問題，通常會呈現像垂直切成兩半的字型，最差還可能會導致應用程式當掉。要避免這個問題，可考慮加入以下設定到local.conf:

```xml
<match target="font">
 <test qual="all" name="rgba">
 <const>unknown</const>
 </test>
 <edit name="family" mode="assign">
 <string>sans-serif</string>
 </edit>
</match>
```

編輯local.conf完之後，請確認有使用`<fontconfig>`標籤結尾，若沒使用會讓所做更改被忽略。

使用者可透過建立自己個人的~/.config/fontconfig/fonts.conf來加入個人化的設定，此檔案使用與上述說明相同的XML格式。

最後一點：若有使用LCD螢幕，可能會想要求使用子像素取樣(Sub-pixel sampling)，這基本上會分開處理(水平分割紅、綠、藍色彩組成)來提高垂直解析度，結果可能是無法預料的。要開啓這個功能，加入下行到local.conf的任一處:

```xml
<match target="font">
 <test qual="all" name="rgba">
 <const>unknown</const>
 </test>
 <edit name="family" mode="assign">
 <string>mono</string>
 </edit>
</match>
```

```xml
<match target="family">
 <test qual="any" name="family">
 <string>mono</string>
 </test>
 <edit name="spacing" mode="assign">
 <int>100</int>
 </edit>
</match>
```
依據不同的顯示器類型可能會需要將rgb更改為bgr,vrgb或vbgr：可實驗看看然後看那一個效果最好。

5.6. X顯示管理程式

Xorg提供了X顯示管理程式（X Display Manager, XDM）,可用來做登入階段的管理。XDM提供了一個圖型化的介面來選擇要連結的顯示伺服器及輸入認證資訊（登入與密碼）。

本節將示範如何設定FreeBSD的X顯示管理程式。部份桌面環境會提供自己圖型化登入管理程式,請參考GNOME取得如何設定GNOME顯示管理程式（GNOME Display Manager）的操作方式及KDE取得如何設定KDE顯示管理程式（KDE Display Manager）的操作方式。

5.6.1. 設定XDM

要安裝XDM可使用x11/xdm套件或Port。安裝完成之後,可設定XDM在開機時執行,只需編輯/etc/ttys中的此項目:

```
ttyv8 /usr/local/bin/xdm -nodaemon
term xterm off secure
```

更改（off）為開（on）然後儲存編輯。在此項目中的ttyv8代表XDM會在第9個虛擬終端機執行。

XDM的設定目錄位於/usr/local/etc/X11/xdm。此目錄中包含數個可用來更改XDM行為的檔案以及在XDM執行時用來設定桌面的一些Script及程式, XDM設定檔摘要了每個檔案的功能。這些檔案正確的語法與用法在xdm(1)有說明。

### 表6. XDM設定檔檔案說明

<table>
<thead>
<tr>
<th>檔案</th>
<th>說明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xaccess</td>
<td>連線到XDM所需的通訊協定稱做X顯示管理程式連線通訊協定（X Display Manager Connection Protocol, XDMCP）,此檔案為客戶端認証規則,用來控制來自遠端機器的XDMCP連線。預設此檔案不允許任何遠端的客戶端連線。</td>
</tr>
<tr>
<td>Xresources</td>
<td>此檔案控制XDM顯示選擇器及登入畫面的外觀。預設的設定簡單的矩形登入視窗,上方用較大的字型顯示機器的主機名稱,並在下方顯示&quot;Login:&quot;與&quot;Password:&quot;提示。此檔案的格式與Xorg說明文件中說明的app-defaults檔相同。</td>
</tr>
<tr>
<td>Xservers</td>
<td>登入選擇時在選擇器上要提供的本地及遠端顯示清单。</td>
</tr>
<tr>
<td>Xsession</td>
<td>預設的登入階段Script,使用者登入之後由XDM執行。這會指向使用者自訂的登入階段Script於~/.xsession。</td>
</tr>
</tbody>
</table>
Xsetup_* 用來在顯示選擇器與登入介面之前自動執行應用程式。每個顯示各有一個 Script，名稱為 Xsetup_*，其中 * 為本地顯示編號。

通常情況這些 Script 會在背景執行一兩個程式，例如 xconsole、xdm-config 用來設定所有在此機器上執行的顯示的全域設定檔。

xdm-errors 內含由伺服器程式產生的錯誤訊息，若 XDM 嘗試啟動的顯示沒有回應，可查看此檔案來取得錯誤訊息。以登入階段為基礎，這些訊息也同樣會寫入至使用者的~/.xsession-errors。

xdm-pid XDM 的執行程序 ID。

5.6.2. 設定遠端存取
預設只有同系統的使用者可以使用 XDM 登入。要開啟讓其他系統的使用者可連線到顯示伺服器，需編輯存取控制規則及開啟連線傾聽程式。

要設定 XDM 傾聽任何遠端的連線，在 /usr/local/etc/X11/xdm/xdm-config 中的 DisplayManager.requestPort 行前加上 ! 來註解該行：

```
! SECURITY: do not listen for XDMCP or Chooser requests

Comment out this line if you want to manage X terminals with xdm

DisplayManager.requestPort: 0
```

儲存編輯並重新啟動 XDM，要限制遠端存取，請看 /usr/local/etc/X11/xdm/Xaccess 中的範例項目，並參考 xdm(1) 取得進一步資訊。

5.7. 桌面環境
本節將介紹如何在 FreeBSD 系統安裝三種熱門的桌面環境。一套桌面環境的範圍可從簡單的視窗管理程式到完整的桌面應用程式集。有上百套的桌面環境可在 Port 套件集的 x11-wm 分類取得。

5.7.1. GNOME
GNOME 是一個擁有友善使用者介面的桌面環境，它包括用於啟動應用程式和顯示狀態的面板、一系列工具與應用程序及一套可讓應用程式更容易進行合作、相互一致的協定。更多有關 FreeBSD GNOME 的訊息可在 https://www.FreeBSD.org/gnome 取得，該網站包含了有關在 FreeBSD 安裝、設定和管理 GNOME 的額外文件。

這套桌面環境可以從套件安裝：

```
pkg install gnome3
```

也可使用以下指令從 Port 編譯 GNOME，GNOME 是一整套大型的應用程式，即使在速度較快的電腦上，也會需要花費一些時間編譯。

```
cd /usr/ports/x11/gnome3
make install clean
```

GNOME 需要掛載 /proc。加入下行到 /etc/fstab 讓系統啟動時會自動掛載這個檔案：

```
125
```
GNOME 使用了 D-Bus 以及 HAL 的 Message bus 与 Hardware abstraction。这两个应用程序会随 GNOME 的相关一并自动安装，但需要在 /etc/rc.conf 开启，这样在系统开机时才会启动:

```
dbus_enable="YES"
hald_enable="YES"
```

安装完之后，需要设定让 Xorg 启动 GNOME。最简单的方法是开启 GNOME Display Manager, GDM, 该程式已做为 GNOME 套件或 Port 的一部分安装了，可加入下行到 /etc/rc.conf 来开启:

```
gdm_enable="YES"
```

通常也会需要启动所有的 GNOME 服务，可加入下行到 /etc/rc.conf:

```
gnome_enable="YES"
```

GDM 则会在系统开机时自动启动。

第二种启动 GNOME 的方法是在设定完 ~/.xinitrc 后在指令列输入 `startx`。若这个档案已经存在，替换启动之前视窗管理程式的那一行，改为启动 `/usr/local/bin/gnome-session`。若档案不存在，则使用以下指令建立一个:

```
% echo "exec /usr/local/bin/gnome-session" > ~/.xinitrc
```

第三种方法是使用 XDM 做为显示管理程式，在这个方法需要建立一个可执行的 ~/.xsession:

```
% echo "exec /usr/local/bin/gnome-session" > ~/.xsession
```

5.7.2. KDE

KDE 是另一套易于使用的桌面环境。这个桌面环境提供一致的外观的应用程式、标准化的选单和工具列、组合键、配色方案、国际化和集中、对话向导的桌面设定。

更多有关 KDE 可在 http://www.kde.org/ 取得。要取得 FreeBSD 特定的资讯，则可参考 http://freebsd.kde.org。

要安装 KDE 套件，请输入:

```
pkg install x11/kde5
```

或者要使用 KDE Port 编译，可使用以下指令，采用 Port 方式安装会有选单可以选择要安装的元件。

KDE 是一个大型的应用程式，即使在较快的电脑上仍需要花费一段时间来编译。
需要挂载 /proc。加入下行到 /etc/fstab 让系统启动时会自动挂载这个档案系统:

```
proc /proc procfs rw 0 0
```

KDE 使用了 D-Bus 以及 HAL 的 Message bus 与 Hardware abstraction。这两个应用程式会随著 KDE 的相依一併自动安装,但需要在 /etc/rc.conf 开启,这样在系统开机时才会启动:

```
dbus_enable="YES"
hald_enable="YES"
```

自 KDE Plasma 5 开始, KDE Display Manager, KDM 便停止开发,可能的替代方案为 SDDM, 要安装该套件可输入:

```
pkg install x11/sddm
```

加入下行到 /etc/rc.conf:

```
sddm_enable="YES"
```

第二种执行 KDE 的方法是在在指令列输入 `startx`。要采用这个方式,需要加入下行到 ~/.xinitrc:

```
exec ck-launch-session startkde
```

第三种启动 KDE 的方式是透过 XDM, 要使用这个方法需要建立一个可执行的 ~/.xsession 如下:

```
echo "exec ck-launch-session startkde" > ~/.xsession
```

启动 KDE 之后,请参考内建的说明系统来取得更多有关如何使用各种选单及应用程式的资讯。

5.7.3. Xfce

Xfce 是以 GNOME 使用的 GTK+ 工具包做为基础所开发的桌面环境, 但它是轻巧且提供了一种简单、高效率、易於使用的桌面。它可完全自订设定、附有选单、Applet 及应用程式启动器的主面板、提供档案管理程式和音效管理程式并且可设定主题。由於它是快速、轻巧、高效的桌面环境,因此它非常适合有记忆体限制的较旧或较慢机器。

更多有关 Xfce 的资讯可至 http://www.xfce.org 取得。

要安装 Xfce 套件:

```
pkg install xfce
```

或者使用 Port 編譯:

```
cd /usr/ports/x11-wm/xfce4
make install clean
```
Xfce 使用了 D-Bus 作為 Message bus，由於是 Xfce 的相依，因此會自動安装，但仍要在 /etc/rc.conf 中開啟該程式才會在系統開機時啟動:

```
dbus_enable="YES"
```

不像 GNOME 或 KDE，Xfce 并没有自己的登入管理程式，要能用 startx 指令列啟動 Xfce 之前需先加入其項目到 ~/.xinitrc:

```
% echo ". /usr/local/etc/xdg/xfce4/xinitrc" > ~/.xinitrc
```

另—种方式是使用 XDM，要設定這個方式需建立一個可執行的 ~/.xsession:

```
% echo ". /usr/local/etc/xdg/xfce4/xinitrc" > ~/.xsession
```

5.8. 安裝 Compiz Fusion 要令使用桌面電腦更令人愉快的方法是用炫麗的 3D 效果。安裝 Compiz Fusion 套件非常簡單，但設定該套件需要一些未在 Port 说明书内说明的步骤。

5.8.1. 設定 FreeBSD nVidia 驱动程式 桌面特效需要使用相當程度的顯示卡，對於以 nVidia 為基礎的顯示卡，需要使用專用的驅動程序來取得較佳的性能。其他顯示卡的使用可以跳過這一節，並繼續 xorg.conf 設定。

要知道需要那—種 nVidia 驱動程式可以查看 FAQ 中與此主題相關的問題。

要知道您的顯示卡要使用那—種驅動程式才正確的之後，接下来的安装程序跟安装其他套件—样简单。例如，要安装最新的驱动程式:

```
pkg install x11/nvidia-driver
```

驱动程式会建立一个需要在系统啟動時載入的核心模组，加入下行到 /boot/loader.conf:

```
nvidia_load="YES"
```

要立即载入核心模组到执行中的核心可以下 kldload nvidia 指令，但是需要注意，若不是在開機時載入，某些 Xorg 版本會無法正常運作。因此編輯完 /boot/loader.conf 之后建议要重新開機。

核心模组载入之后，您只需要更改 xorg.conf 的其中一行来啟用專用的驱动程式:

找到 /etc/X11/xorg.conf 中的下行:

```
Driver "nv"
```

然後更改該行為:
如往常般啟動GUI，您應該會看到nVidia的啟動畫面，其他東西應如往常般運作。

5.8.2. 設定xorg.conf來啟動桌面特效要啟用Compiz Fusion需要修改 `/etc/X11/xorg.conf`:

加入以下Section來啟用合成特效:

```plaintext
Section "Extensions"
Option "Composite" "Enable"
EndSection
```

找到"Screen" section，應該如下所示:

```plaintext
Section "Screen"
Identifier "Screen0"
Device "Card0"
Monitor "Monitor0"
...
```

然後加入以下兩行（在"Monitor"之後）:

```plaintext
DefaultDepth 24
Option "AddARGBGLXVisuals" "True"
```

找到您欲使用的螢幕解析度所在的"Subsection"，例如，您想使用1280x1024，則找到如下所示的Section。若想使用的解析度不在任何Subsection之中，您可以手動加入對應的項目:

```plaintext
SubSection "Display"
Viewport 0 0
Modes "1280x1024"
EndSubSection
```

桌面合成需要24 bit的色彩深度，更改上述Subsection為:

```plaintext
SubSection "Display"
Viewport 0 0
Depth 24
Modes "1280x1024"
EndSubSection
```

最後確認在"Module" section中已經載入"glx"與"extmod"模組:
前面所述的动作可以执行

# nvidia-xconfig --add-argb-glx-visuals
# nvidia-xconfig --composite
# nvidia-xconfig --depth=24

5.8.3. 安装与设定Compiz Fusion

安装Compiz Fusion如同安装其他软件一样简单:

# pkg install x11-wm/compiz-fusion

安装完成之后，开启您的图形化桌面，然后在终端机的画面输入以下指令（使用一般使用者）:

% compiz --replace --sm-disable --ignore-desktop-hints ccp &
% emerald --replace &

由您的视窗管理程式（例如：Metacity, 若您使用GNOME) 会被换成Compiz Fusion, 您的萤幕会闪爍几秒。而Emerald会处理视窗的装饰(例如：关闭、最小化、最大化按钮、标题列及其它相关)。

您或许可以将这些指令改写成较小的Script然后在启动时自动执行(加到GNOME桌面的“Sessions”中)：

```bash
#! /bin/sh
compiz --replace --sm-disable --ignore-desktop-hints ccp &
emerald --replace &
```

储存这个Script到您的家目录所在位置，例如：start-compiz，然后让该档案可以执行:

```bash
% chmod +x ~/start-compiz
```

接著使用GUI将该档案加入启动程式Startup Programs(位于GNOME桌面的系统System, 偏好设定Preferences, 工作阶段Sessions)。

要选择所想使用的特效与相关设定，可执行(一样使用一般使用者) Compiz Config设定管理程式：

% ccsm

在GNOME中, 也可在系统System, 偏好设定Preferences选单中找到。
若您在编译时选择了“gconf support”，您便可使用`gconf-editor`在`apps/compiz`下查看设定。

5.9.疑难排解
若滑鼠无法使用，您将需要做第一次设定方可继续。在最近的Xorg版本，使用自动侦测装置会忽略在`xorg.conf`中的`InputDevice`section。要采用旧的方式，需在此档加入下行到`ServerLayout`或`ServerFlags`section：

```
Option "AutoAddDevices" "false"
```

输入装置便可如先前版本一样设定，连同其他所需的选项（如：切换键盘配置）。

如同前面有说明过，`hald Daemon`预设会自动侦测您的键盘，因此您的键盘配置或型号可能不正确，桌面环境如GNOME, KDE或Xfce会提供设定键盘的工具。即使如此，还是有可能透过`setxkbmap(1)`工具或`hald`的设定规则的协助来直接设定键盘属性。

举例来说，若有人想使用PC 102键盘，采用法语（French）配置，我们便需要建立一个给`hald`的键盘设定档，名称为`x11-input.fdi`，然后储存到`/usr/local/etc/hal/fdi/policy`目录。这个档案中应有以下几行：

```
<deviceinfo version="0.2">
 <device>
 <match key="info.capabilities" contains="input.keyboard">
 <merge key="input.x11_options.XkbModel" type="string">pc102</merge>
 <merge key="input.x11_options.XkbLayout" type="string">fr</merge>
 </match>
 </device>
</deviceinfo>
```

若这个档案已经存在，只需要複製并贴上您的档案中有关键盘设定的那几行。
您会需要重新启动您的机器来让`hald`读取这个档案。

也是可以从X终端机或Script下指令来做同样的设定：

```
% setxkbmap -model pc102 -layout fr
```
```/usr/local/shared/X11/xkb/rules/base.lst
```
中列出了各种可用的键盘、配置与设定。

现在可以开始调整`xorg.conf.new`设定档，在文字编辑器如`emacs(1)`或`ee(1)`开启该设定档。若显示器是不支援自动侦测同步频率（Sync frequency）的旧或特殊的型号，同步频率的设定可以手动加到`xorg.conf.new`的“Monitor”section：

```
Section "Monitor"
 Identifier "Monitor0"
 VendorName "Monitor Vendor"
 ...
```

多數顯示器都支援自動偵測同步頻率，並不需要手動設定這些數值。對於那些不支援自動偵測的顯示器，請輸入由製造商提供的數值來避免損壞顯示器。

X 允許在支援的顯示器使用 DPMS (Energy Star) 功能，xset(1) 程式的可以控制逾時並可強制待機 (Standby)、暫停 (Suspend) 或關閉 (Off) 模式。若您想要為您的顯示器開啓 DPMS 功能，您需要加入下行到顯示器 (Monitor) 的 Section:

```
Option "DPMS"
```

在編輯器還未關閉 xorg.conf.new 設定檔前，選擇想要使用的預設解析度及色彩深度。這些項目可在 "Screen" section 定義:

```
Section "Screen"
Identifier "Screen0"
Device "Card0"
Monitor "Monitor0"
DefaultDepth 24
SubSection "Display"
Viewport 0 0
Depth 24
Modes "1024x768"
EndSubSection
EndSection
```

DefaultDepth 關鍵字代表預設執行要使用的色彩深度，這個設定可以被 Xorg(1) 的指令 -depth 覆蓋。

Modes 關鍵字代表執行要使用的解析度，注意，只有 VESA 標準模式才支援目標系統的繪圖硬體來定義解析度。在上述的例子中，預設使用的色彩深度為每像素 24 bit，這個色彩深度可用的解析度為 1024 x 768 像素。

最後，儲存設定檔並使用測試模式來測試上述的設定。

有一個工具可以協助您診斷問題，那就 Xorg 日誌。該日誌檔中記錄了 Xorg 連接的每個裝置的資訊。Xorg 記錄檔名稱的格式為 /var/log/Xorg.0.log，確切的記錄檔名可能從 Xorg.0.log 到 Xorg.8.log 以此類推。

若一旦運作正常，設定檔需要安裝到 Xorg(1) 會尋找的常用設定檔位置，通常是 /etc/X11/xorg.conf 或 /usr/local/etc/X11/xorg.conf。

```
cp xorg.conf.new /etc/X11/xorg.conf
```

現在已經完成了 Xorg 的設定程序。Xorg 現在可以使用 startx(1) 工具啟動。Xorg 伺服器也可以使用 xdm(1) 來啟動。
5.9.1. 設定 Intel™ i810 繪圖晶片組要設定 Intel™ i810 整合晶片組需要使用 agpgart AGP 程式介面來控制 Xorg 驅動該顯示卡。請參考 agp(4) 驅動程式操作手冊來取得更多詳細資訊。這也可讓您可以設定任何其他繪圖卡的硬體。注意，在未編譯 agp(4)到核心的系統,並無法使用 kldload(8)來載入該模組,因此駕動程式必須在開機時便在核心啟動,所以需要透過編譯或使用 /boot/loader.conf

5.9.2. 加入寬螢幕平板顯示器到設定檔此章節會需要有一些進階的設定知識,若嘗試使用上述的標準設定工具仍無法產生可運作的設定,在日誌檔中應有足夠的資訊可用來讓顯示卡運作。在此會需要使用文字編輯器。目前使用寬螢幕 (WSXGA, WSXGA+, WUXGA, WXGA, WXGA+, et.al.) 格式支援的 16:10 及 10:9 格式或其他的寬高比可能會有問題。例如一些 16:10 宽高比常見的螢幕解析度:

- 2560x1600
- 1920x1200
- 1680x1050
- 1440x900
- 1280x800

在某些時候,可以簡單的將這些要使用的解析度以 Mode 加入到 Section "Screen":

Section "Screen"
Identifier "Screen0"
Device     "Card0"
Monitor    "Monitor0"
DefaultDepth 24
SubSection "Display"
Viewport  0 0
Depth     24
Modes     "1680x1050"
EndSubSection
EndSection

Xorg 能夠從寬螢幕設定取得解析度資訊(透過 I2C/DDC),因此能夠知道螢幕能處理的頻率及解析度。若駕動程式中不存在那些螢幕能處理的 ModeLines,則需要給 Xorg 一點提示。透過/var/log/Xorg.0.log 可以取得足夠的資訊來手動建立可運作的 ModeLine。只需要在日誌檔中找到類似以下的訊息:

(II) MGA(0): Supported additional Video Mode:
(II) MGA(0): clock: 146.2 MHz   Image Size:  433 x 271 mm
(II) MGA(0): h_active: 1680  h_sync: 1784  h_sync_end 1960 h_blank_end 2240 h_border: 0
(II) MGA(0): v_active: 1050  v_sync: 1053  v_sync_end 1059 v_blanking: 1089 v_border: 0
(II) MGA(0): Ranges: V min: 48  V max: 85 Hz, H min: 30  H max: 94 kHz, PixClock max 170 MHz

這些資訊稱作 EDID 資訊,使用 EDIT 資訊建立 ModeLine只需要將數據使用正確的順序放入:
5.9.3. Compiz Fusion

5.9.3.1. 我已經安裝了Compiz Fusion，但在執行了您所提到的指令後，我的視窗的標題列與按鈕便消失。是那裡有問題？

您可能記得在/etc/X11/xorg.conf中的設定。請重新檢查這個檔案，特別是DefaultDepth及AddARGBGLXVisuals指令項。

5.9.3.2. 當我執行指令來啟動Compiz Fusion，X伺服器便當掉了，然後我又返回Console。是那裡有問題？

若您檢查/var/log/Xorg.0.log，您可能可以找到當X啟動時所發生的錯誤訊息。最常發生的錯誤會是:

```text
(EE) NVIDIA(0): Failed to initialize the GLX module; please check in your X
(EE) NVIDIA(0): log file that the GLX module has been loaded in your X
(EE) NVIDIA(0): server, and that the module is the NVIDIA GLX module. If
(EE) NVIDIA(0): you continue to encounter problems, Please try reinstalling the NVIDIA driver.
```

會發生這個情形通常是因為您升級了Xorg，您需要重新安裝x11/nvidia-driver套件來重新編譯glx。
Part II: 一般作業

既然基礎的部分已經提過了，接下來的這個部分將會討論一些常會用到的 FreeBSD 的特色，這些章節包括:

• 介紹給您常見且實用的桌面應用軟體：瀏覽器、辦工工具、文件閱覽程式等。
• 介紹給您眾多 FreeBSD 上可用的多媒體工具。
• 解釋如何編譯量身訂做的 FreeBSD 核心以增加額外系統功能的流程。
• 詳細描述列印系統，包含桌上型印表機及網路印表機的設定。
• 展示給您看如何在您的 FreeBSD 系統中執行 Linux 應用軟體。

這些章節中有些需要您預先閱讀一些相關文件，在各章節開頭的概要內會提及。
Chapter 6. 桌面應用程式

6.1. 概述
随着 FreeBSD 优越的效能及稳定性越来越热门，它同时也适合作为每日使用的桌面系统。FreeBSD 套件或 Port 有超过 24,000 个可用的应用程式，可以简单的建立一个自订的桌面环境来执行各种不同的桌面应用程式。本章将示范如何安装数个桌面应用程式，包含网页浏览器、办公套件、文件阅览程式以及财务套件。

比起重头设定与编译，较偏好使用 FreeBSD 桌面环境已预先编译好版本的使用者可参考 trueos.org 网站。

在阅读这章之前，你必须了解如：

- 使用套件或 Port 安装其他软件如安装应用程式：套件与 Port 所叙述。
- 安装 X 与视窗管理程式如 X Window 系统所叙述。

要取得有关如何设定多媒体环境的资讯，请参考多媒体。

6.2. 浏览器
在 FreeBSD 中并未预先安装好网页浏览器。但在 Port 套件集中 www 分类中有许多浏览器可以采用 Binary 套件安装或自 Port 套件集编译的方式安装。

KDE 和 GNOME 桌面环境都有提供自有的 HTML 浏览器。请参阅桌面环境来了解更多有关设定完整桌面环境的资讯。

有一些轻量化浏览器可使用，包含 www/dillo2, www/links 以及 www/w3m。

本章节将示范如何安装下列常见的网页浏览器并说明该应用程式是否需要用到大量资源、花费大量时间自 Port 编译或何主要的相依套件。

应用程式名称	所需资源	自 Port 安装时说明
Firefox | 中多有 FreeBSD、Linux™、在地化版本 | Opera 少少有 FreeBSD、Linux™ 版本
Konqueror | 多需要 KDE 程式库 | Chromium 多需要 Gtk+ 程式库

6.2.1. Firefox
Firefox 是一套开放源始码的浏览器，它具备符合 HTML 标准的显示引擎、页签浏览、弹出视窗封锁、扩充套件、强化安全性及其他更多功能。Firefox 的基础使用了 Mozilla 的程式库。

要安装最新释出版本的 Firefox 套件可输入：
```
pkg install firefox
```
要安装延长支援发布（Extended Support Release, ESR）版本的 Firefox，可使用：
```
pkg install firefox-esr
```
在地化的版本可在 www/firefox-i18n 及 www/firefox-esr-i18n 取得。
使用 Port 套件可以用原始碼編譯成您想要的 Firefox 版本。此範例編譯 www/firefox, 其中 firefox 可替換為 ESR 或在地化版本來安裝。

# pkg install firefox-esr

6.2.2. Opera
Opera 是個具備完整功能、符合標準且輕量、執行速度快的瀏覽器。它同時也具備了內建的郵件、新聞閱讀器、IRC 客戶端、RSS/Atom 來源閱讀器等。

可用的版本有兩種原生的 FreeBSD 版本及 Linux™ 模擬模式下執行的版本。

以下指令可安裝 FreeBSD Binary 套件版本的 Opera, 替換 opera 為 linux-opera 則可改安裝 Linux™ 版本。

# pkg install opera

或者,可安裝 Port 套件集中的版本,以下範例會編譯原生的版本:

# cd /usr/ports/www/opera
# make install clean

要安裝 Linux™ 則替換 opera 為 linux-opera。

要安裝 Adobe™ Flash™ 附加元件,需先編譯 www/linux-flashplayer Port, 因受到授權條款限制無法事先編譯為 Binary 套件。然後再安裝 www/opera-linuxplugins。以下範例示範如何編譯 Port 中的這兩個應用程式:

# cd /usr/ports/www/linux-flashplayer
# make install clean

# cd /usr/ports/www/opera-linuxplugins
# make install clean

安裝完成後,啟用瀏覽器檢查附加元件是否存在,在網站分頁輸入 opera:plugins 並按 Enter 鍵,便會有清單顯示目前可用的附加元件。

若要安裝 Java™ 附加元件請接著安裝 java/icedtea-web。

6.2.3. Konqueror
Konqueror 不只是個網頁瀏覽器,它同時也是檔案管理器和多媒體瀏覽器。它包含在 x11/kde4-baseapps 套件或 Port 中。

Konqueror 使用支援 WebKit 及它自有的 KHTML。

WebKit 是一套被許多現代瀏覽器所使用的繪圖引擎,包含 Chromium。要在 FreeBSD 的 Konqueror 使用 WebKit 需安裝 www/kwebkitpart 套件或 Port。此範例範使用 Binary 套件安裝:

# cd /usr/ports/www/kwebkitpart
# make install clean
pkg install kwebkitpart

Port套件集安裝:
cd /usr/ports/www/kwebkitpart
make install clean

要啟動Konqueror中的WebKit點選“Settings”、”Configure Konqueror”。在“General”設定頁面內點選“Default web browser engine”旁的下拉示選單並變更“KHTML”為“WebKit”。

Konqueror也支援Flash™，”如何在Konqueror上安裝Flash™的說明可參考http://freebsd.kde.org/howtos/konqueror-flash.php。

6.2.4. Chromium

Chromium是一個開放源始碼的瀏覽器計畫，該計畫的目標是要建立一個安全、快速且更穩定的網頁瀏覽體驗。

Chromium的功能有頁籤式瀏覽、彈出視窗封鎖、擴充套件等等。

Chromium可以使用套件來安裝，只要輸入:

cd /usr/ports/www/chromium
make install clean

Chromium的執行檔為/usr/local/bin/chrome，並非/usr/local/bin/chromium。

6.3. 办公工具

當開始進行辦公，使用者通常會找好用的辦公軟體或是好上手的文書處理程式。雖然有些桌面上環境像是KDE已經提供了辦公軟體，但並沒有預設的辦公軟體，FreeBSD提供多套辦公軟體及圖型化文書處理程式，不論您用那種的視窗管理程式都能使用。

本章節元範如何安装以下熱門的辦公軟體及說明該應用程式所需的資源、自Port編譯的時間或者是是否有其他主要相依套件。

<table>
<thead>
<tr>
<th>應用程式名稱</th>
<th>所需資源</th>
<th>自Port安裝時間</th>
<th>主要相依套件</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calligra</td>
<td>少</td>
<td>多</td>
<td>KDE</td>
</tr>
<tr>
<td>AbiWord</td>
<td>少</td>
<td>少</td>
<td>Gtk+或GNOME</td>
</tr>
<tr>
<td>The Gimp</td>
<td>少</td>
<td>多</td>
<td>Gtk+</td>
</tr>
<tr>
<td>Apache OpenOffice</td>
<td>多</td>
<td>非常多</td>
<td>JDK™及Mozilla</td>
</tr>
<tr>
<td>LibreOffice</td>
<td>有</td>
<td>點</td>
<td>非常多</td>
</tr>
</tbody>
</table>
6.3.1. Calligra

KDE 桌面環境中內含辦公軟體可以與 KDE 分開安裝。Calligra 中也有可在其他辦公軟體中找到的標準元件，如 Words 是文件處理程式、Sheets 是試算表程式、Stage 可管理投影片以及 Karbon 用來繪製圖型文件。

在 FreeBSD 中 editors/calligra 可以使用套件或 Port 的方式安裝，要使用套件安裝:
```
pkg install calligra
```
若沒有可用的套件，可改使用 Port 套件集安裝:
```
cd /usr/ports/editors/calligra
make install clean
```

6.3.2. AbiWord

AbiWord 是一個免費的文件處理軟體，外觀和感覺都近似於 Microsoft™ Word。它非常快速，包含許多功能而且非常容易上手。AbiWord 可以輸入或輸出許多檔案格式，包括一些有專用的格式，例如 Microsoft™.rtf 格式。

要安裝 AbiWord Binary 套件，可使用下列指令:
```
pkg install abiword
```
若沒有 Binary 套件版本，也可以從 Port 套件集中編譯安裝:
```
cd /usr/ports/editors/abiword
make install clean
```

6.3.3. The GIMP

對於影象的編輯及修改來說，The GIMP 是非常精緻的影像處理軟體。它可以用作簡單的繪圖軟體或是高品質的相片處理軟體。它支援為數眾多的外掛程式及指令稿(script-fu)介面。The GIMP 可以讀寫許多檔案格式。它也支援掃描器和手寫板。

要安裝套件可:
```
pkg install gimp
```
或使用 Port 套件集安裝:
```
cd /usr/ports/graphics/gimp
make install clean
```
在 Port 套件集的 graphics 分類 (freebsd.org/ports/) 下也包含許多 GIMP 相關的附加元件，說明檔及使用手冊。
Apache OpenOffice

Apache OpenOffice 是开放原始码的办公室软件，由 Apache Software Foundation's Incubator 底下的团队所开发。它包含了所有完整的办公室软件组合：文字处理器、电子表格、简报软件，还有绘图软件。除了一些使用者介面非常类似其他的办公室软件外，它还能输入和输出许多热门的档案格式。它也包含了许多不同语言的使用者介面、拼字检查和字典。Apache OpenOffice 的文字处理器使用原生的 XML 档案格式来增加移植性和弹性。电子表格程式支援宏功能而且能够使用外来的资料库介面。Apache OpenOffice 已经非常稳定，并且能够在 Windows™, Solaris™, Linux™, FreeBSD 及 Mac OS™ X 等作业系统上执行。想知道更多关于 Apache OpenOffice 的资讯可以在 openoffice.org 网页上查询。在 FreeBSD 特定的资讯可参考 porting.openoffice.org/freebsd/。

要安装 Apache OpenOffice 套件：

```
pkg install apache-openoffice
```

当套件安装完成之后，只要输入下面的指令就能执行 Apache OpenOffice：

```
% openoffice-X.Y.Z
```

其中 X.Y.Z 是已安装的 Apache OpenOffice 的版本编号。第一次执行 Apache OpenOffice 会询问一些问题且会在使用者的家目录建立一个.openoffice.org 资料夹。

若无法由套件取得想要的 Apache OpenOffice，仍可选择从 Port 编译。不过必须注意：编译的过程会需要大量的磁碟空间与时间：

```
cd /usr/ports/editors/openoffice-4
make install clean
```

如果想要编译在地化版本，将前面的指令替换成：

```
make LOCALIZED_LANG=your_language install clean
```

将 your_language 替换成正确的真实的 ISO 編碼。支援的語言編碼清单在 files/Makefile.localized，位于该 Port 的目录。

6.3.5. LibreOffice

LibreOffice 是一套自由的办公室软件由 documentfoundation.org 所开发。它可相容其他主流的办公室软件以及可在各种平台上使用。它是 Apache OpenOffice 品牌重塑后的分支，含有可在完整生产力软件中找到的应用程式：文件处理器、电子表格、简报管理程式、绘图程式、资料库管理程式以及建立与编辑数学公式的工具。它也支援多种语言与国际化延伸到介面、拼字检查程式与字典。LibreOffice 的文件处理器使用了原生的 XML 档案格式来增加可携性与弹性，电子表格程式支援可与外部资料库连接的巨集语言。LibreOffice 非常稳定且可以直接在 Windows™, Linux™, FreeBSD 以及 Mac OS™ X 上执行。更多有关 LibreOffice 的资讯可在 libreoffice.org 找到。要安装英文版本的 LibreOffice 套件：
# pkg install libreoffice

Port套件集的編輯器類（freebsd.org/ports/）中含有多個LibreOffice的語系。安裝在本地套件時，請替換libreoffice為在本地套件的名稱。

套件安裝之後，輸入以下指令來執行LibreOffice：

```
% libreoffice
```

第一次啟動的過程中會詢問一些問題並在使用者的家目錄建立.libreoffice資料夾。

若找不到想使用的LibreOffice套件，也可從Port編譯，但這會要大量的磁碟空間及漫長的時間編譯。以下例子示範編譯英文版本：

```
cd /usr/ports/editors/libreoffice
make install clean
```

要編譯在本地化版本，則需cd進入想使用的語言Port目錄。支援的語言可在Port套件集的編輯器類（freebsd.org/ports/）中找到。

### 6.4.文件閱覽程式

UNIX™出現之後，有一些新的文件格式越來越熱門，這些文件所需的檢視程式可能並不在基礎系統中。本節將示範如何安裝以下文件檢視程式：

- **Xpdf**：如果你要一個小型的FreeBSD PDF閱覽軟體，Xpdf是一個輕量而且有效的閱覽器。它只需要非非常少的資源而且十分穩定。它只使用標準的X字型且不需要額外的工具包（Toolkit）。

安裝Xpdf套件：

```
pkg install xpdf
```

若沒有限可用的套件版本，可使用Port套件集安裝：

```
cd /usr/ports/graphics/xpdf
make install clean
```

---

---
完成安裝後，執行 `xpdf` 並使用滑鼠右鍵開啟選單。

6.4.2. gv

gv 是 PostScript™ 和 PDF 的瀏覽器。它構建於 ghostview 的基礎上，不過因為使用 Xaw3d 窗口元件工具包，所以外觀看起來比較漂亮。
gv 有許多設定的功能，比如說紙張方向、紙張大小、縮放比例、和反鋸齒（Anti-aliasing）等。

而且幾乎所有的使用都可以從鍵盤或滑鼠來完成。

安裝 gv 套件:
```
pkg install gv
```

若沒有可用的套件版本，可使用 Port 套件集安裝:
```
cd /usr/ports/print/gv
make install clean
```

6.4.3. Geeqie

Geeqie 是由已經停止維護的 GQView 專案所衍生出来的分支，並致力開發新功能並整合已有的修補。

Geeqie 是一套影像管理軟體，支援單鍵瀏覽檔案、啟動外部編輯器、縮圖預覽等功能。

它也有幻燈片模式及一些基本的檔案操作的功能，能輕鬆的管理大量影像並找出重複的檔案。

Geeqie 也支援使用全螢幕閱覽及國際化。

安裝 Geeqie 套件:
```
pkg install geeqie
```

若沒有可用的套件版本，可使用 Port 套件集安裝:
```
cd /usr/ports/graphics/geeqie
make install clean
```

6.4.4. ePDFView

ePDFView 是一套小巧的 PDF 文件檢視程式，只使用了 Gtk+ 與 Poppler 程式庫。

它目前還在開發當中，但已經可以開啟大部份 PDF 檔案（甚至是加密過的）、儲存文件複本以及支援使用 CUPS 來列印。

要以套件安裝 ePDFView:
```
pkg install epdfview
```

若沒有可用的套件版本，可使用 Port 套件集安裝:
```
cd /usr/ports/graphics/epdfview
make install clean
```
6.4.5. Okular

Okular 是一套通用的文件检视程式，以 KDE 的 KPDF 为基础。它可以开启多种文件格式，包括了 PDF, PostScript™, DjVu, CHM, XPS 以及 ePUB。

要以套件安装 Okular:

```
pkg install okular
```

若没有可用的套件版本，可使用 Port 套件集安装:

```
cd /usr/ports/graphics/okular
make install clean
```

6.5. 财务

如果有任何理由你想在你的 FreeBSD 桌面环境中管理你的个人财务，这里有一些功能强大、使用简单的应用程式可供安装。这些财务管理软体之中有些是相容于流行的 Quicken 或 Excel 文件。

这节涵盖了下面这些软体:

- **GnuCash**
- **Gnumeric**
- **KMyMoney**

6.5.1. GnuCash

GnuCash 是 GNOME 团队努力的成果中的一部分，GNOME 团队主要提供亲切而强大的桌面应用程式给终端使用者。使用 GnuCash 可以持续追踪收入与花费、银行帐户以及股票证券等。它的特性是介面直觉但功能仍非常专业的。

GnuCash 提供了智慧的计数器、多阶层帐户系统以及快速键及自动完成功能。

它也能分开单一的报表至数个详细的部分。GnuCash 也能够汇入及合并 Quicken QIF 档案。

它也能处理大部分国际的日期及通用货币之格式。

安装 GnuCash 套件:

```
pkg install gnucash
```

若没有可用的套件版本，可使用 Port 套件集安装:

```
cd /usr/ports/finance/gnucash
make install clean
```

6.5.2. Gnumeric

Gnumeric 是 GNOME 社群所开发的试算表程式。它的特点是能够根据储存格格式「猜出」使用者的输入来自动填补的系统。它也能够汇入许多热门的档案格式，像是 Excel, Lotus 1-2-3 及 Quattro Pro。
它有大量内建的函数而且能够使用常用的储存格式，像是数字、货币、日期、时间及其它格式等。

安装 Gnumeric 套件:
```
pkg install gnumeric
```
若没有可用的套件版本，可使用 Port 套件集安装:
```
cd /usr/ports/math/gnumeric
make install clean
```

6.5.3. KMyMoney

KMyMoney 是一套个人财务应用程式，由 KDE 社群所开发。KMyMoney 的目标是提供可在商业个人财务管理应用程式中找到的重要功能，它也强调简单易用及其功能间采用了合适的复式记帐。

KMyMoney 可从标准 Quicken QIF 档案汇入资料、追踪投资、处理多种货币并提供财务报表。

要以套件安装 KMyMoney:
```
pkg install kmymoney-kde4
```
若没有可用的套件版本，可使用 Port 套件集安装:
```
cd /usr/ports/finance/kmymoney-kde4
make install clean
```
7.1. 概述
FreeBSD 广泛地支援各种音效卡，让使用者可以享受来自电脑上的高传真音质（Hi-Fi），此外还包括了录製和播放 MPEG Audio Layer 3 (MP3)、Waveform Audio File (WAV)、Ogg Vorbis 以及其他多种格式音频的潜力。同时 FreeBSD Port 套件集也包含了许多可以让您可以录音、编修音效以及控制 MIDI 配备的应用程式。

FreeBSD 也能播放一般的视讯档和 DVD。FreeBSD Port 套件集中含有可编码、转换以及播放各种影像媒体的应用程式。

本章会说明如何设定 FreeBSD 上的音效卡、影像播放器、电视卡及扫描器。同时会说明有哪些应用程式可以使用这些装置。

读完这章，您将了解:
- 如何设定 FreeBSD 上的音效卡。
- 音效设定疑难排解。
- 播放、录製 MP3 及其他音频档格式。
- FreeBSD 系统播放影像的准备工具。
- 播放 DVD 的 .mpg 及 .avi 档。
- 撷取 (Rip) CD 和 DVD 的内容至档案。
- 装设 MythTV。
- 装设影像扫描机。
- 装设蓝牙耳机。

在开始阅读这章之前，您需要:
- 知道如何安装应用程式如安装应用程式：套件与 Port 所叙述。
It is metadriver that loads all the most generic sound drivers and used to accelerate the search for the correct driver. It can also be added to /boot/loader.conf to load all sound drivers.

To know which sound card drivers are used after loading kldload snd_driver metadriver, enter `cat /dev/sndstat`.

### 7.2.1. Setting up static sound support for a custom kernel

This section is for users who prefer to statically compile in support for the sound card in a custom FreeBSD kernel. For more information about recompiling a kernel, refer to the FreeBSD core manual.

When using a custom kernel to provide sound support, make sure that the audio framework driver exists in the custom kernel configuration file:

```
device sound
```

Next, add support for the sound card. To continue the example of the built-in audio chipset based on the Intel specification from the previous section, use the following line in the custom kernel configuration file:

```
device snd_hda
```

Be sure to read the manual page of the driver for the device name to use for the driver.

Non-PnP ISA sound cards may require the IRQ and I/O port settings of the card to be added to /boot/device.hints. During the boot process, loader(8) reads this file and passes the settings to the kernel. For example, an old Creative SoundBlaster™ 16 ISA non-PnP card will use the snd_sbc(4) driver in conjunction with snd.sb16. For this card, the following lines must be added to the kernel configuration file:

```
device snd_sbc
device snd_sb16
```

If the card uses the 0x220 I/O port and IRQ 5, these lines must also be added to /boot/device.hints:

```
hint.sbc.0.at="isa"
hint.sbc.0.port="0x220"
hint.sbc.0.irq="5"
hint.sbc.0.drq="1"
hint.sbc.0.flags="0x15"
```

The syntax used in /boot/device.hints is described in sound(4) and the manual page for the driver of the sound card.

The settings shown above are the defaults. In some cases, the IRQ or other settings may need to be changed to match the card. Refer to snd_sbc(4) for more information about this card.
After loading the required module or rebooting into the custom kernel, the sound card should be detected. To confirm, run `dmesg | grep pcm`. This example is from a system with a built-in Conexant CX20590 chipset:

```
pcm0: <NVIDIA (0x001c) (HDMI/DP 8ch)> at nid 5 on hdaa0
pcm1: <NVIDIA (0x001c) (HDMI/DP 8ch)> at nid 6 on hdaa0
pcm2: <Conexant CX20590 (Analog 2.0+HP/2.0)> at nid 31,25 and 35,27 on hdaa1
```

The status of the sound card may also be checked using this command:

```
cat /dev/sndstat
```

FreeBSD Audio Driver

```
(newpcm: 64bit 2009061500/amd64)
```

Installed devices:

```
pcm0: <NVIDIA (0x001c) (HDMI/DP 8ch)> (play)
pcm1: <NVIDIA (0x001c) (HDMI/DP 8ch)> (play)
pcm2: <Conexant CX20590 (Analog 2.0+HP/2.0)> (play/rec) default
```

The output will vary depending upon the sound card. If no pcm devices are listed, double-check that the correct device driver was loaded or compiled into the kernel. The next section lists some common problems and their solutions.

If all goes well, the sound card should now work in FreeBSD. If the CD or DVD drive is properly connected to the sound card, one can insert an audio CD in the drive and play it with `cdcontrol(1)`:

```
% cdcontrol -f /dev/acd0 play 1
```

Audio CDs have specialized encodings which means that they should not be mounted using `mount(8)`.

Various applications, such as `audio/workman`, provide a friendlier interface. The `audio/mpg123` port can be installed to listen to MP3 audio files.

Another quick way to test the card is to send data to `/dev/dsp`:

```
% cat filename > /dev/dsp
```

where `filename` can be any type of file. This command should produce some noise, confirming that the sound card is working.

The `/dev/dsp*` device nodes will be created automatically as needed. When not in use, they do not exist and will not appear in the output of `ls(1)`.

7.2.3. 設定藍芽音效装置

Connecting to a Bluetooth device is out of scope for this chapter. Refer to Bluetooth for more information.

To get Bluetooth sound sink working with FreeBSD's sound system, users have to install...
# pkg install virtual_oss

requires cuse to be loaded into the kernel:

```bash
kldload cuse
```

To load cuse during system startup, run this command:

```bash
sysrc -f /boot/loader.conf cuse_load=yes
```

To use headphones as a sound sink with `virtual_oss`, users need to create a virtual device after connecting to a Bluetooth audio device:

```bash
virtual_oss -C 2 -c 2 -r 48000 -b 16 -s 768 -R /dev/null -P /dev/bluetooth/headphones -d
dsp
```

headphones in this example is a hostname from `/etc/bluetooth/hosts`. `BT_ADDR` could be used instead.

**7.2.4. 疑難排解音效常見錯誤**

表7.常見錯誤訊息列出一些常見的錯誤消息和其解決方式:

<table>
<thead>
<tr>
<th>錯誤</th>
<th>解決方式</th>
</tr>
</thead>
<tbody>
<tr>
<td>sb_dspwr(XX) timed out</td>
<td>The I/O port is not set correctly.</td>
</tr>
<tr>
<td>bad irq XX</td>
<td>The IRQ is set incorrectly. Make sure that the set IRQ and the sound IRQ are the same.</td>
</tr>
<tr>
<td>xxx: gus pcm not attached, out of memory</td>
<td>There is not enough available memory to use the device.</td>
</tr>
<tr>
<td>xxx: can’t open /dev/dsp!</td>
<td>Type `fstat</td>
</tr>
</tbody>
</table>

Modern graphics cards often come with their own sound driver for use with HDMI. This sound device is sometimes enumerated before the sound card meaning that the sound card will not be used as the default playback device. To check if this is the case, run `dmesg` and look for `pcm`. The output looks something like this:

```bash
...
hdac0: HDA Driver Revision: 20100226_0142
hdac1: HDA Driver Revision: 20100226_0142
hdac0: HDA Codec #0: NVidia (Unknown)
```
In this example, the graphics card (NVidia) has been enumerated before the sound card (Realtek ALC889). To use the sound card as the default playback device, change `hw.snd.default_unit` to the unit that should be used for playback:

```
sysctl hw.snd.default_unit=n
```

where `n` is the number of the sound device to use. In this example, it should be 4. Make this change permanent by adding the following line to `/etc/sysctl.conf`:

```
hw.snd.default_unit=4
```

7.2.5. 使用多个音效来源

It is often desirable to have multiple sources of sound that are able to play simultaneously. FreeBSD uses "Virtual Sound Channels" to multiplex the sound card's playback by mixing sound in the kernel.

Three `sysctl(8)` knobs are available for configuring virtual channels:

```
sysctl dev.pcm.0.play.vchans=4
sysctl dev.pcm.0.rec.vchans=4
sysctl hw.snd.maxautovchans=4
```

This example allocates four virtual channels, which is a practical number for everyday use. Both `dev.pcm.0.play.vchans=4` and `dev.pcm.0.rec.vchans=4` are configurable after a device has been attached and represent the number of virtual channels `pcm0` has for playback and recording. Since the `pcm` module can be loaded independently of the hardware drivers, `hw.snd.maxautovchans` indicates how many virtual channels will be given to an audio device when it is attached. Refer to `pcm(4)` for more information.

The number of virtual channels for a device cannot be changed while it is in use. First, close any programs using the device, such as music players or sound daemons.
The correct pcm device will automatically be allocated transparently to a program that requests /dev/dsp0.

7.2.6. 設定 混音 器 預設 值

The default values for the different mixer channels are hardcoded in the source code of the pcm(4) driver. While sound card mixer levels can be changed using mixer(8) or third-party applications and daemons, this is not a permanent solution. To instead set default mixer values at the driver level, define the appropriate values in /boot/device.hints, as seen in this example:

```
hint.pcm.0.vol="50"
```

This will set the volume channel to a default value of 50 when the pcm(4) module is loaded.

7.3. MP3 音樂

This section describes some MP3 players available for FreeBSD, how to rip audio CD tracks, and how to encode and decode MP3s.

7.3.1. MP3 播放器

A popular graphical MP3 player is Audacious. It supports Winamp skins and additional plugins. The interface is intuitive, with a playlist, graphic equalizer, and more. Those familiar with Winamp will find Audacious simple to use. On FreeBSD, Audacious can be installed from the multimedia/audacious port or package. Audacious is a descendant of XMMS.

The audio/mpg123 package or port provides an alternative, command-line MP3 player. Once installed, specify the MP3 file to play on the command line. If the system has multiple audio devices, the sound device can also be specified:

```
mpg123 -a /dev/dsp1.0 Foobar-GreatestHits.mp3
```

High Performance MPEG 1.0/2.0/2.5 Audio Player for Layers 1, 2 and 3

version 1.18.1; written and copyright by Michael Hipp and others

free software (LGPL) without any warranty but with best wishes

Playing MPEG stream from Foobar-GreatestHits.mp3 ...

MPEG 1.0 layer III, 128 kbit/s, 44100 Hz joint-stereo

Additional MP3 players are available in the FreeBSD Ports Collection.

7.3.2. 擷取 CD 音軌

Before encoding a CD or CD track to MP3, the audio data on the CD must be ripped to the hard drive. This is done by copying the raw CD Digital Audio (CDDA) data to WAV files.

The cdda2wav tool, which is installed with the sysutils/cdrtools suite, can be used to rip audio information from CDs.

With the audio CD in the drive, the following command can be issued as root to rip an entire CD into individual, per track, WAV files:

```
cdda2wav -D 0,1,0 -B 150
```
In this example, the `-D 0,1,0` indicates the SCSI device containing the CD to rip. Use `cdrecord -scanbus` to determine the correct device parameters for the system.

To rip individual tracks, use `-t` to specify the track:
```
cdda2wav -D 0,1,0 -t 7
```

To rip a range of tracks, such as track one to seven, specify a range:
```
cdda2wav -D 0,1,0 -t 1+7
```

To rip from an ATAPI (IDE) CDROM drive, specify the device name in place of the SCSI unit numbers. For example, to rip track 7 from an IDE drive:
```
cdda2wav -D /dev/acd0 -t 7
```

Alternately, `dd` can be used to extract audio tracks on ATAPI drives, as described in the documentation.

### 7.3.3. MP3 Coding and Decoding

Lame is a popular MP3 encoder which can be installed from the `audio/lame` port. Due to patent issues, a package is not available.

The following command will convert the ripped WAV file `audio01.wav` to `audio01.mp3`:
```
lame -h -b 128 --tt "Foo Song Title" --ta "FooBar Artist" --tl "FooBar Album" --ty "2014" --tc "Ripped and encoded by Foo" --tg "Genre" audio01.wav audio01.mp3
```

The specified 128 kbits is a standard MP3 bitrate while the 160 and 192 bitrates provide higher quality. The higher the bitrate, the larger the size of the resulting MP3. The `-h` turns on the "higher quality but a little slower" mode. The options beginning with `--t` indicate ID3 tags, which usually contain song information, to be embedded within the MP3 file. Additional encoding options can be found in the lame manual page.

In order to burn an audio CD from MP3s, they must first be converted to a non-compressed file format. XMMS can be used to convert to the WAV format, while mpg123 can be used to convert to the raw Pulse-Code Modulation (PCM) audio data format.

To convert `audio01.mp3` using mpg123, specify the name of the PCM file:
```
mpg123 -s audio01.mp3 > audio01.pcm
```

To use XMMS to convert a MP3 to WAV format, use these steps:

#### Procedure: Converting to WAV Format in XMMS

1. Launch XMMS.
2. Right-click the window to bring up the XMMS menu.
3. Select `Preferences` under `Options`.
4. Change the Output Plugin to "Disk Writer Plugin".
5. Press `Configure`.
6. Enter or browse to a directory to write the uncompressed files to.
7. Load the MP3 file into XMMS as usual, with volume at 100% and EQ settings turned off.
8. Press `Play`. The XMMS will appear as if it is playing the MP3, but no music will be heard. It is actually playing the MP3 to a file.
9. When finished, be sure to set the default...
Before configuring video playback, determine the model and chipset of the video card. While Xorg supports a wide variety of video cards, not all provide good playback performance. To obtain a list of extensions supported by the Xorg server using the card, run `xdpyinfo` while Xorg is running.

It is a good idea to have a short MPEG test file for evaluating various players and options. Since some DVD applications look for DVD media in `/dev/dvd` by default, or have this device name hardcoded in them, it might be useful to make a symbolic link to the proper device:

```
ln -sf /dev/cd0 /dev/dvd
```

Due to the nature of `devfs(5)`, manually created links will not persist after a system reboot. In order to recreate the symbolic link automatically when the system boots, add the following line to `/etc/devfs.conf`:

```
link cd0 dvd
```

DVD decryption invokes certain functions that require write permission to the DVD device. To enhance the shared memory Xorg interface, it is recommended to increase the values of these `sysctl(8)` variables:

```
kern.ipc.shmmax=67108864
kern.ipc.shmall=32768
```

### 7.4.1. 像片處理能力

There are several possible ways to display video under Xorg and what works is largely hardware dependent. Each method described below will have varying quality across different hardware. Common video interfaces include:

1. **Xorg**: normal output using shared memory.
2. **XVideo**: an extension to the Xorg interface which allows video to be directly displayed in drawable objects through a special acceleration. This extension provides good quality playback even on low-end machines. The next section describes how to determine if this extension is running.
3. **SDL**: the Simple Directmedia Layer is a porting layer for many operating systems, allowing cross-platform applications to be developed which make efficient use of sound and graphics. SDL provides a low-level abstraction to the hardware which can sometimes be more efficient...
than the Xorg interface. On FreeBSD, SDL can be installed using the `devel/sdl20` package or port.

4. DGA: the Direct Graphics Access is an Xorg extension which allows a program to bypass the Xorg server and directly alter the framebuffer. Because it relies on a low level memory mapping, programs using it must be run as root. The DGA extension can be tested and benchmarked using `dga(1)`. When `dga` is running, it changes the colors of the display whenever a key is pressed. To quit, press `q`.

5. SVGAlib: a low level console graphics layer.

7.4.1.1. XVideo

To check whether this extension is running, use `xvinfo`:

```
% xvinfo
```

XVideo is supported for the card if the result is similar to:

```
X-Video Extension version 2.2
screen #0
Adaptor #0: "Savage Streams Engine"
number of ports: 1
port base: 43
operations supported: PutImage
supported visuals:
depth 16, visualID 0x22
depth 16, visualID 0x23
number of attributes: 5
"XV_COLORKEY" (range 0 to 16777215)
client settable attribute
client gettable attribute (current value is 2110)
"XV_BRIGHTNESS" (range -128 to 127)
client settable attribute
client gettable attribute (current value is 0)
"XV_CONTRAST" (range 0 to 255)
client settable attribute
client gettable attribute (current value is 128)
"XV_SATURATION" (range 0 to 255)
client settable attribute
client gettable attribute (current value is 128)
"XV_HUE" (range -180 to 180)
client settable attribute
client gettable attribute (current value is 0)
maximum XvImage size: 1024 x 1024
Number of image formats: 7
id: 0x32595559 (YUY2)
guid: 59555932-0000-0010-8000-00aa00389b71
```
The formats listed, such as YUV2 and YUV12, are not present with every implementation of XVideo and their absence may hinder some players.
This section introduces some of the software available from the FreeBSD Ports Collection which can be used for video playback.

7.4.2.1. MPlayer

MPlayer is a command-line video player with an optional graphical interface which aims to provide speed and flexibility. Other graphical front-ends to MPlayer are available from the FreeBSD Ports Collection.

MPlayer can be installed using the `multimedia/mplayer` package or port. Several compile options are available and a variety of hardware checks occur during the build process. For these reasons, some users prefer to build the port rather than install the package.

When compiling the port, the menu options should be reviewed to determine the type of support to compile into the port. If an option is not selected, MPlayer will not be able to display that type of video format. Use the arrow keys and spacebar to select the required formats. When finished, press Enter to continue the port compile and installation.

By default, the package or port will build the `mplayer` command line utility and the `gmplayer` graphical utility. To encode videos, compile the `multimedia/mencoder` port. Due to licensing restrictions, a package is not available for MEncoder.

The first time MPlayer is run, it will create `~/.mplayer` in the user's home directory. This subdirectory contains default versions of the user-specific configuration files.

This section describes only a few common uses. Refer to `mplayer(1)` for a complete description of its numerous options.

To play the file `testfile.avi`, specify the video interfaces with `-vo`, as seen in the following examples:

```
% mplayer -vo xv testfile.avi
% mplayer -vo sdl testfile.avi
% mplayer -vo x11 testfile.avi
mplayer -vo dga testfile.avi
mplayer -vo 'sdl:dga' testfile.avi
```
It is worth trying all of these options, as their relative performance depends on many factors and will vary significantly with hardware.

To play a DVD, replace `testfile.avi` with `dvd://N-dvd-device DEVICE`, where `N` is the title number to play and `DEVICE` is the device node for the DVD. For example, to play title 3 from `/dev/dvd`:

```
mplayer -vo xv dvd://3 -dvd-device /dev/dvd
```

The default DVD device can be defined during the build of the MPlayer port by including the `WITH_DVD_DEVICE=/path/to/desired/device` option. By default, the device is `/dev/cd0`. More details can be found in the port's `Makefile.options`.

To stop, pause, advance, and so on, use a keybinding. To see the list of keybindings, run `mplayer -h` or read `mplayer(1)`.

Additional playback options include `-fs -zoom`, which engages fullscreen mode, and `-framedrop`, which helps performance.

Each user can add commonly used options to their `~/.mplayer/config` like so:

```
vo=xv
fs=yes
zoom=yes
```

`mplayer` can be used to rip a DVD title to a `.vob`. To dump the second title from a DVD:

```
mplayer -dumpstream -dumpfile out.vob dvd://2 -dvd-device /dev/dvd
```

The output file, `out.vob`, will be in MPEG format.

Anyone wishing to obtain a high level of expertise with UNIX™ video should consult `mplayerhq.hu/DOCS` as it is technically informative. This documentation should be considered as required reading before submitting any bug reports.

Before using `mencoder`, it is a good idea to become familiar with the options described at `mplayerhq.hu/DOCS/HTML/en/mencoder.html`. There are innumerable ways to improve quality, lower bitrate, and change formats, and some of these options may make the difference between good or bad performance. Improper combinations of command line options can yield output files that are unplayable even by `mplayer`.

Here is an example of a simple copy:

```
% mencoder input.avi -oac copy -ovc copy -o output.avi
```

To rip to a file, use `-dumpfile` with `mplayer`.

To convert `input.avi` to the MPEG4 codec with MPEG3 audio encoding, first install the `audio/lame` port. Due to licensing restrictions, a package is not available. Once installed, type:

```
% mencoder input.avi -oac mp3lame -lameopts br=192 -ovc lavc -lavcopts vcodec=mpeg4:vhq -o output.avi
```

156
This will produce output playable by applications such as `mplayer` and `xine`. Input `.avi` can be replaced with `dvd://1 -dvd-device /dev/dvd` and run as root to re-encode a DVD title directly. Since it may take a few tries to get the desired result, it is recommended to instead dump the title to a file and to work on the file.

### 7.4.2.2. xine

xine is a video player with a reusable base library and a modular executable which can be extended with plugins. It can be installed using the `multimedia/xine` package or port. In practice, xine requires either a fast CPU with a fast video card, or support for the XVideo extension. The xine video player performs best on XVideo interfaces.

By default, the xine player starts a graphical user interface. The menus can then be used to open a specific file. Alternatively, xine may be invoked from the command line by specifying the name of the file to play:

```
% xine -g -p mymovie.avi
```

Refer to `xine-project.org/faq` for more information and troubleshooting tips.

### 7.4.2.3. Transcode

Transcode provides a suite of tools for re-encoding video and audio files. Transcode can be used to merge video files or repair broken files using command line tools with stdin/stdout stream interfaces.

In FreeBSD, Transcode can be installed using the `multimedia/transcode` package or port. Many users prefer to compile the port as it provides a menu of compile options for specifying the support and codecs to compile in. If an option is not selected, Transcode will not be able to encode that format. Use the arrow keys and spacebar to select the required formats. When finished, press Enter to continue the port compile and installation.

This example demonstrates how to convert a DivX file into a PAL MPEG-1 file (PAL VCD):

```
% transcode -i input.avi -V --export_prof vcd-pal -o output_vcd
```

% `mplex` -f 1 -o output_vcd.mpg output_vcd.m1v output_vcd.mpa

The resulting MPEG file, `output_vcd.mpg`, is ready to be played with MPlayer. The file can be burned on a CD media to create a video CD using a utility such as `multimedia/vcdimager` or `sysutils/cdrdao`.

In addition to the manual page for `transcode`, refer to `transcoding.org/cgi-bin/transcode` for further information and examples.

### 7.5. TV card

TV cards can let you watch TV on your computer. Many cards are connected via RCA or S-video inputs and some cards also have FM radio support.

FreeBSD can use the `bktr(4)` program to support PCI interface TV cards, if the card uses the Brooktree Bt848/849/878/879 video capture chip. To verify which cards have support, refer to `bktr(4)`.
7.5.1. To use the TV card, you'll need to load the bktr(4) driver.

This can be done by adding the following line to the /boot/loader.conf file:

```
bktr_load="YES"
```

Alternatively, you can compile the TV card into the kernel by adding the following line to your custom kernel configuration:

```
device bktr
device iicbus
device iicbb
device smbus
```

These extra drivers are necessary because the TV card's components are connected through the I2C bus. Following this, you'll need to compile and install a new kernel.

To test the tuner (Tuner), restart the system after installing the new kernel.

The TV card should appear in the boot message, similar to this example:

```
bktr0: <BrookTree 848A> mem 0xd7000000-0xd7000fff irq 10 at device 10.0 on pci0
iicbb0: <I2C bit-banging driver> on bti2c0
iicbus0: <Philips I2C bus> on iicbb0 master-only
iicbus1: <Philips I2C bus> on iicbb0 master-only
smbus0: <System Management Bus> on bti2c0
bktr0: Pinnacle/Miro TV, Philips SECAM tuner.
```

This information varies depending on your hardware. If necessary, you can use `sysctl(8)` for system detection parameters and custom kernel options. For example, to force the use of Philips SECAM tuner, you could add the following line to your kernel configuration:

```
options OVERRIDE_TUNER=6
```

You can also use `sysctl(8)`:

```
sysctl hw.bt848.tuner=6
```

Refer to the bktr(4) manual and sysctl(8) for more information.

7.5.2. Useful applications:

- `multimedia/fxtv` provides TV-in-a-window and image/audio/video capture capabilities.
- `multimedia/xawtv` is another TV application with similar features.
- `audio/xmradio` provides an application for using the FM radio tuner of a TV card.

More applications are available in the FreeBSD Ports Collection.
If any problems are encountered with the TV card, check that the video capture chip and the tuner are supported by `bktr(4)` and that the right configuration options were used. For more support or to ask questions about supported TV cards, refer to the `freebsd-multimedia` mailing list.

7.6. MythTV

MythTV is a popular, open source Personal Video Recorder (PVR) application. This section demonstrates how to install and setup MythTV on FreeBSD. Refer to `mythtv.org/wiki` for more information on how to use MythTV.

MythTV requires a frontend and a backend. These components can either be installed on the same system or on different machines.

The frontend can be installed on FreeBSD using the `multimedia/mythtv-frontend` package or port. Xorg must also be installed and configured as described in `X Window`. Ideally, this system has a video card that supports X-Video Motion Compensation (XvMC) and, optionally, a Linux Infrared Remote Control (LIRC)-compatible remote.

To install both the backend and the frontend on FreeBSD, use the `multimedia/mythtv` package or port. A MySQL™ database server is also required and should automatically be installed as a dependency. Optionally, this system should have a tuner card and sufficient storage to hold recorded data.

7.6.1. Hardware

MythTV uses Video for Linux (V4L) to access video input devices such as encoders and tuners. In FreeBSD, MythTV works best with USB DVB-S/C/T cards as they are well supported by the `multimedia/webcamd` package or port which provides a V4L userland application. Any Digital Video Broadcasting (DVB) card supported by webcamd should work with MythTV. A list of known working cards can be found at `wiki.freebsd.org/WebcamCompat`. Drivers are also available for Hauppauge cards in the `multimedia/pvr250` and `multimedia/pvrxxx` ports, but they provide a non-standard driver interface that does not work with versions of MythTV greater than 0.23. Due to licensing restrictions, no packages are available and these two ports must be compiled.

The `wiki.freebsd.org/HTPC` page contains a list of all available DVB drivers.

7.6.2. Setting Up MythTV

To use MythTV:

```
pkg install mythtv
```

or from Port package set:

```
cd /usr/ports/multimedia/mythtv
make install
```

Once installed, set up the MythTV database:

```
mysql -uroot -p < /usr/local/shared/mythtv/database/mc.sql
```

Then, configure the backend:

```
159
```
Finally, start the backend:

```
sysrc mythbackend_enable=yes
service mythbackend start
```

In FreeBSD, access to image scanners is provided by SANE (Scanner Access Now Easy), which is available in the FreeBSD Ports Collection. SANE will also use some FreeBSD device drivers to provide access to the scanner hardware.

FreeBSD supports both SCSI and USB scanners. Depending upon the scanner interface, different device drivers are required. Be sure the scanner is supported by SANE prior to performing any configuration. Refer to [http://www.sane-project.org/sane-supported-devices.html](http://www.sane-project.org/sane-supported-devices.html) for more information about supported scanners.

This chapter describes how to determine if the scanner has been detected by FreeBSD. It then provides an overview of how to configure and use SANE on a FreeBSD system.

### 7.7.1. 檢查掃描器

The GENERIC kernel includes the device drivers needed to support USB scanners. Users with a custom kernel should ensure that the following lines are present in the custom kernel configuration file:

```
device usb
device uhci
device ohci
device ehci
```

To determine if the USB scanner is detected, plug it in and use `dmesg` to determine whether the scanner appears in the system message buffer. If it does, it should display a message similar to this:

```
ugen0.2: <EPSON> at usbus0
```

In this example, an EPSON Perfection™ 1650 USB scanner was detected on `/dev/ugen0.2`.

If the scanner uses a SCSI interface, it is important to know which SCSI controller board it will use. Depending upon the SCSI chipset, a custom kernel configuration file may be needed. The GENERIC kernel supports the most common SCSI controllers. Refer to `/usr/src/sys/conf/NOTES` to determine the correct line to add to a custom kernel configuration file. In addition to the SCSI adapter driver, the following lines are needed in a custom kernel configuration file:

```
device scbus
device pass
```

Verify that the device is displayed in the system message buffer:
If the scanner was not powered-on at system boot, it is still possible to manually force detection by performing a SCSI bus scan with `camcontrol`:

```
camcontrol rescan all
```

Re-scan of bus 0 was successful
Re-scan of bus 1 was successful
Re-scan of bus 2 was successful
Re-scan of bus 3 was successful

The scanner should now appear in the SCSI devices list:

```
camcontrol devlist
<IBM DDRS-34560 S97B> at scbus0 target 5 lun 0 (pass0,da0)
<IBM DDRS-34560 S97B> at scbus0 target 6 lun 0 (pass1,da1)
<AGFA SNAPSCAN 600 1.10> at scbus1 target 2 lun 0 (pass3)
<PHILIPS CDD3610 CD-R/RW 1.00> at scbus2 target 0 lun 0 (pass2,cd0)
```

Refer to `scsi(4)` and `camcontrol(8)` for more details about SCSI devices on FreeBSD.

### 7.7.2. SANE

The SANE system is split in two parts: the backends (`graphics/sane-backends`) and the frontends (`graphics/sane-frontends` or `graphics/xsane`). The backends provide access to the scanner. Refer to [http://www.sane-project.org/sane-supported-devices.html](http://www.sane-project.org/sane-supported-devices.html) to determine which backend supports the scanner. The frontends provide the graphical scanning interface.

`graphics/sane-frontends` installs `xscanimage` while `graphics/xsane` installs `xsane`.

要由 Binary 套件安装這兩個部份可:

```
pkg install xsane sane-frontends
```

或由 Port 套件集安裝

```
cd /usr/ports/graphics/sane-frontends
make install clean
cd /usr/ports/graphics/xsane
make install clean
```

After installing the `graphics/sane-backends` port or package, use `sane-find-scanner` to check the scanner detection by the SANE system:

```
sane-find-scanner -q
```
The output should show the interface type of the scanner and the device node used to attach the scanner to the system. The vendor and the product model may or may not appear.

Some USB scanners require firmware to be loaded. Refer to `sane-find-scanner(1)` and `sane(7)` for details.

Next, check if the scanner will be identified by a scanning frontend. The SANE backends include `scanimage` which can be used to list the devices and perform an image acquisition. Use `scanimage -L` to list the scanner devices. The first example is for a SCSI scanner and the second is for a USB scanner:

```
scanimage -L
device `snapscan:/dev/pass3' is an AGFA SNAPSCAN 600 flatbed scanner
```

```
scanimage -L
device `epson2:libusb:/dev/usb:/dev/ugen0.2' is a Epson GT-8200 flatbed scanner
```

In this second example, `epson2:libusb:/dev/usb:/dev/ugen0.2` is the backend name (`epson2`) and `/dev/ugen0.2` is the device node used by the scanner.

If `scanimage` is unable to identify the scanner, this message will appear:

```
scanimage -L
No scanners were identified. If you were expecting something different, check that the scanner is plugged in, turned on and detected by the `sane-find-scanner` tool (if appropriate). Please read the documentation which came with this software (README, FAQ, manpages).
```

If this happens, edit the backend configuration file in `/usr/local/etc/sane.d/` and define the scanner device used. For example, if the undetected scanner model is an EPSON Perfection™ 1650 and it uses the `epson2` backend, edit `/usr/local/etc/sane.d/epson2.conf`. When editing, add a line specifying the interface and the device node used. In this case, add the following line:

```
usb /dev/ugen0.2
```

Save the edits and verify that the scanner is identified with the right backend name and the device node:

```
scanimage -L
device `epson2:libusb:/dev/usb:/dev/ugen0.2' is a Epson GT-8200 flatbed scanner
```

Once `scanimage -L` sees the scanner, the configuration is complete and the scanner is now ready to use.

While `scanimage` can be used to perform an image acquisition from the command line, it is often preferable to use a graphical interface to perform image scanning. The `graphics/sane-frontends` package or port installs a simple but efficient graphical interface, `xscanimage`. 
Alternately, xsane, which is installed with the `graphics/xsane` package or port, is another popular graphical scanning frontend. It offers advanced features such as various scanning modes, color correction, and batch scans. Both of these applications are usable as a GIMP plugin.

7.7.3. 扫描器权限

In order to have access to the scanner, a user needs read and write permissions to the device node used by the scanner. In the previous example, the USB scanner uses the device node `/dev/ugen0.2` which is really a symlink to the real device node `/dev/usb/0.2.0`. The symlink and the device node are owned, respectively, by the `wheel` and `operator` groups. While adding the user to these groups will allow access to the scanner, it is considered insecure to add a user to `wheel`. A better solution is to create a group and make the scanner device accessible to members of this group. This example creates a group called `usb`:

```
pw groupadd usb
```

Then, make the `/dev/ugen0.2` symlink and the `/dev/usb/0.2.0` device node accessible to the `usb` group with write permissions of `0660` or `0664` by adding the following lines to `/etc/devfs.rules`:

```
[system=5]
add path ugen0.2 mode 0660 group usb
add path usb/0.2.0 mode 0666 group usb
```

Finally, add the users to `usb` in order to allow access to the scanner:

```
pw groupmod usb -m joe
```

For more details refer to `pw(8)`. 

163
8.1. 概述

核心（Kernel）是 FreeBSD 作业系统最重要的部分之一。它负责记忆体管理、安全控制、网络、硬盘存取等等。尽管目前 FreeBSD 多数可以用动态设定，但有时仍需要设定并编译自订的核心。

读完这章，您将了解:

- 何时需要编译自订核心。
- 如何取得硬体资讯。
- 如何量身订做核心设定档。
- 如何使用核心设定档来建立并编译新的核心。
- 如何安装新的核心。
- 发生错误时如何排除问题。

所有在本章所列出的指令均应以 root 来执行。

8.2. 为何要编译自订的核心?

早期的 FreeBSD 的核心（Kernel）被称为”巨石“。因为当时的核心是一个非常大的程式，且只支援固定的硬体装置，如果您想改变核心的设定，就必须编译一个新的核心并重新开机，才能使用。

现今，多数在 FreeBSD 核心的效能已采用模组（Module）的方式包装，并可依需求动态从核心载入或卸载。这使得执行中的核心能够快速适应新硬体环境并在核心开启新的效能，这就是所谓的模组化核心（Modular Kernel）。

尽管如此，还是有一些效能因使用到静态的核心设定须要编译，因为这些效能与核心紧密结合，无法做成可动态载入的模组。且部份强调安全性环境会尽量避免载入与卸载核心模组，且只要将需要的效能静态的编译到核心当中。

编译自订的核心几乎是对每位进阶的 BSD 使用者所必须经历的过程。尽管这工作可能比较耗时，但在 FreeBSD 的使用上会有许多好处。跟必须支援大多数各式硬体的 GENERIC 核心相比，自订的核心可以更”贴心“，只支援”自己的硬体“的部分就好。自订核心有许多优点，如:

- 加速开机，因为自订的核心只需要侦测您系统上存在的硬体，所以让启动所花的过程更流畅通快。
- 减少记忆体使用，自订的核心通常会比 GENERIC 核心使用更少的记忆体，这很重要，因为核心必须一直存放於实体记忆体内，会让其他应用程式无法使用。因此，自订核心对于记忆体较小的系统来说，发挥很大的作用。
- 支援额外的硬体，自订的核心可以增加一些 GENERIC 核心没有提供的硬体支援。

在编译自订核心之前，请思考要这么做的原因，若是因为需要特定硬体的支援，很可能已有既有的模组可以使用。

核心模组会放在 /boot/kernel 並且可使用 kldload(8) 动态载入到执行中的核心。大部份的核心驱动程式都有可载入的模组与操作手册。例如 ath(4) 无线乙太网络驱动程式在其操作手册有以下资讯：

Alternatively, to load the driver as a module at boot time, place the following line in loader.conf (5):

164
加入 if_ath_load="YES" 到 /boot/loader.conf 會於開機期間自動載入這個模組。

部份情況在 /boot/kernel 會沒有所關模組，對於某些子系統大多是真實的。

8.3. 檢測系統硬體在編輯核心設定檔之前，建議先調查清楚機器各項硬體資訊。在雙作業系統的環境，也可透過其他作業系統來了解目前機器上硬體資訊。舉例來說，Microsoft™ 裝置管理員 (Device Manager) 內會有目前已安裝的硬體資訊。

若 FreeBSD 是唯一安裝的作業系統，則可使用 dmesg(8) 來查看開機時系統偵測到的硬體資訊。FreeBSD 上大多數硬體驅動程式都有操作手冊會列出支援的硬體。例如，以下幾行是說 psm(4) 驅動程式偵測到了一隻滑鼠:

```
psm0: <PS/2 Mouse> irq 12 on atkbdc0
psm0: [GIANT-LOCKED]
psm0: [ITHREAD]
psm0: model Generic PS/2 mouse, device ID 0
```

因為該硬體存在，此驅動程式便不需要從自訂核心設定檔中移除。

若 dmesg 輸出的結果未顯示開機時硬體的部份，則可改為查詢 /var/run/dmesg.boot 檔案的內容。另外，也可以透過 pciconf(8) 工具來查詢硬體資訊，該工具會列出更詳細的硬體資訊如:

```
% pciconf -lv
ath0@pci0:3:0:0:
class = 0x020000
card = 0x058a1014
chip = 0x1014168c
rev = 0x01
hdr = 0x00
vendor = 'Atheros Communications Inc.'
device = 'AR5212 Atheros AR5212 802.11abg wireless'
class = network
subclass = ethernet
```

以上輸出資訊說明 ath 驅動程式已經找到一個無線乙太網路裝置。

在 man(1) 指令加上 -k 旗標可提供有用的資訊，例如，這可列出包含指定裝置品牌或名稱的手冊頁面清單:

```
man -k Atheros
ath(4) - Atheros IEEE 802.11 wireless network driver
ath_hal(4) - Atheros Hardware Access Layer
```

準備好硬體清單之後，參考該清單來確認已安裝的硬體驅動程式在編輯自訂核心設定時沒有被移除。
設定檔
為要建立自訂核心設定檔並編譯自訂核心，必須先安裝完整的FreeBSD原始碼樹。
若/usr/src目錄不存或空的，代表尚未安裝原始碼可以使用Subversion並依據使用Subversion中的操作說明來安裝。
完成原始碼安裝完成後，需檢查/usr/src/sys內的檔案。該目錄內包含數個子目錄，這些子目錄代表著支援的硬體架構如下：amd64, i386, ia64, powerpc以及sparc64。在指定架構目錄中的內容只對該架構有效，其餘部份的程式碼與硬體架構無關，可通用所有平台。
每個支援的硬體架構中會有conf子目錄，裡面含有助於該架構使用的GENERIC核心設定檔。請不要直接對GENERIC檔案做編輯。複製該檔案為另一個名稱，並對複製出來的檔案做編輯，慣例上檔名會全部使用大寫字元。當維護多台安裝不同的硬體的FreeBSD機器時，將檔名後方加上機器的主機名稱（Host name）是個不錯的方法。以下範例使用amd64架構的GENERIC設定檔建立了一個複本名稱為MYKERNEL:
```bash
cd /usr/src/sys/amd64/conf
cp GENERIC MYKERNEL
```
現在可以使用任何ASCII文字編輯器來自訂MYKERNEL。預設的編輯器為vi，在FreeBSD也內建一個易於初學者使用的編輯器叫做ee。
核心設定檔的格式很簡單，每一行會有代表裝置（Device）或子系統（Subsystem）的關鍵字、參數及簡短的說明。任何在符號之後的文字會被當做註解並且略過。要移除核心對某個裝置或子系統的支援，僅需要在代表該裝置或子系統的行前加上符號。請不要在您還不能解用途的行前加上或移除#符號。
移除對裝置或選項的支援很容易会造成核心損壞。例如，若從核心設定檔ata(4)驅動程式，那麼使用ATA磁碟驅動程式的系統便無法開機。因此當您不確定時，請在核心保留該項目支援。
除了在設定檔中提供的簡短說明之外，尚有其他的說明在NOTES檔案中，可在與該架構GENERIC相同的目錄底下找到。要查看所有架構通用的選項，請參考/usr/src/sys/conf/NOTES。

設定檔中可以使用include指令（Directive）。該指令可以引進其他設定檔到目前的設定檔，這讓只需根據現有檔案設定做些微調整時更簡單。若只有少量的額外選項或驅動程式需要設定，該指令可引進GENERIC並設定額外增加的選項，如範例所示:
```bash
include GENERIC
```

当完成自訂的與設定档，请備份到/usr/src位置之外。或者，將核心設定檔放在其他地方，然後建立一個符號連結（Symbolic link）至該檔案：
```bash
cd /usr/src/sys/amd64/conf
mkdir /root/kernels
cp GENERIC /root/kernels/MYKERNEL
ln -s /root/kernels/MYKERNEL
```
使用此方法，设定档只含与GENERIC核心不同的部份。当升级有新功能加入 GENERIC时，也可一并引用，除非特别使用nooptions或nodevice选项来排除设定。更详细的设定档指令及其说明可在config(5)找到。

要产生含所有可用选项的设定档，可以root执行以下指令:

```
cd /usr/src/sys/arch/conf && make LINT
```

8.5. 编译与安装自订核心

完成自订设定档的编辑并储存之后，便可根据以下步骤编译核心的原始码:

**Procedure:**

1. 切换至此目录:
   ```
 # cd /usr/src
   ```

2. 指定自订核心设定档的名称来编译新的核心:
   ```
 # make buildkernel KERNCONF=MYKERNEL
   ```

3. 安装使用指定核心设定档所编译的新核心。此指令将会复制新核心到/boot/kernel/kernel并将旧核心备份到/boot/kernel.old/kernel:
   ```
 # make installkernel KERNCONF=MYKERNEL
   ```

4. 关机并重新开机载入新的核心，若发生错误请参考无法使用核心开机。

预设在自订核心编译完成之后，所有核心模组也同被重新编译。要快速更新核心或只编译自订的模组，需在开始编译之前先编辑/etc/make.conf。

例如，使用以下变数可指定要编译的模组清单来取代预设编译所有模组的设定:

```
MODULES_OVERRIDE = linux acpi
```

或者，可使用以下变数来从编译程序中排除要编译的模组:

```
WITHOUT_MODULES = linux acpi sound
```
尚有其他可用的變數，請參考make.conf(5)取得詳細資訊。

8.6. 如果發生錯誤，可能發生以下四種類型的問題:

- **config 失敗**
  若 config 失敗，會列出不正確的行號。使用以下訊息為例，需要與 GENERIC 或 NOTES 比對來確認第 17 行輸入的內容:
  ```
 config: line 17: syntax error
  ```

- **make 失敗**
  若 make 失敗，通常是因為核心設定檔未提供足夠的資訊讓 config 找到問題。請仔細檢查設定檔，若仍不清楚問題，請寄發電子郵件給 FreeBSD general questions mailing list 並附上核心設定檔。

- **無法使用核心開機**
  若新核心無法開機或無法辨識裝置，這不是問題！幸好，FreeBSD 有良好的機制可以從不相容的核心復原。只需要在 FreeBSD 開機載入程式 (Boot loader) 選擇要用來開機的核心便可以，當系統開機選單出現時選擇 "Escape to a loader prompt" 選項，並在指令提示後輸入 `boot kernel.old` 或替換為任何其他已經知道可以正常開機的核心名稱。

  使用好的核心開機之後，檢查設定檔並嘗試再編譯一次。

  ```
 /var/log/messages
  ```
  是有用資源，它在每次成功開機時會記錄核心訊息。同樣的，dmesg(8) 也會印出自本次開機後的核？

- **核心可運作，但 ps(1) 無法運作**
  若核心版本與系統工具所編譯的版本不同，例如，有一個核心使用 -CURRENT 的原始碼編譯並安裝在 -RELEASE 的系統上，許多系統狀態指令如 ps(1) 及 vmstat(8) 將會無法運作。要修正此問題，請使用與核心相同版本的原始碼樹 (Source tree) 重新編譯並安裝 World。

  使用與作業系統其他部份版本不同的核心永遠不會是一個好主意。
列印

even though many people have tried to get rid of printing, it is still an important ability. Printing is composed of two basic components, including the way to send data to the printer, as well as the format of data the printer can interpret.

9.1. Quick Start

Basic printing capabilities can be quickly set up, with the printer able to print plain ASCII text. If you need to print other types of files, please refer to the filter.

1. Create a directory to store files to be printed:

   ```
 # mkdir -p /var/spool/lpd/lp
 # chown daemon:daemon /var/spool/lpd/lp
 # chmod 770 /var/spool/lpd/lp
   ```

2. As root, create /etc/printcap with the following contents:

   ```
 lp: sh:
 mx#0:
 sd=/var/spool/lpd/lp:
 lf=/var/log/lpd-errs:
   ```

   - This line is for printers connected to a USB port.
   - Printers connected to parallel or "printer" ports require:
   - Printers connected to network ports require:
   - Replace network-printer-name with the DNS host name of the network printer.

3. Edit /etc/rc.conf and add the following line to enable lpd:

   ```
 lpd_enable="YES"
   ```

   Start the service:
   ```
 # service lpd start
 Starting lpd.
   ```

4. Test printing:

   ```
 # printf "1. This printer can print.
 2. This is the second line."
 | lpr
   ```

   If the two printed lines do not start from the left edge, but appear "stair step" (Stairstep), please refer to avoid printing in plain text printers stair step print.

   Now you can use lpr to print text files, just give the file name in the command line, or pipe output to lpr.
幸了位訊數檢，所稜性複雜方式不同，且通如查增加的序列印型及表機參，不同同號線佈線並不較限USB，於難速度上度。並列有，但設長較線與的簡單纜制。而序列快速連仍然可以使用，連線則比腦的列印。若要的方式，且可以提供，網簡單較直建連使用通常是安裝最快速線接議有路連是能還連表機則給多直部分印接網少埠(Parallel)“或連(Printer)”表機印會埠接到並列，舊式的印表機會印接到電腦面印會印接到電並列印的印表機印會印接到電腦面印會印接到電並列印的印表機會印接到電。

9.2.1. 網表機印可以與這些型通。類(Serial)見到埠較的序列。腦表機接，是享有讓表機則接台，而有一部份印印共夠電使用，路連是能還連表機則給多直部分印接網少埠(Parallel)“或連(Printer)”表機印會埠接到並列，舊式的印表機會印接到電腦面印會印接到電並列印的印表機會印接到電。

9.2. 表機印線170的資料。大部份網埠送也可列印接表機傳直印號路連是原資料，而佇指定。部份印理資料的方式，表機會佇使用的決名稱也會在這時的定依例據佇定所認列表機工作，列印(Print queue)數可以網協送得使用得使用。可這個址問避免夠網IP新來正確址印態指定名稱位到路。讓更主機靜對應能的表機應動IP態，位，則道。可域接路網連接到路印區表機網直且檢無查位同以及數必須表機要的是要與序列印重數訊知通，其中最個通道訊置則名稱接器可使用，而裝會是的的序列裝在主名稱機板變化性很大。需方式依求一種舊式已些應，除埠也是另纜頭與需要的線用外，很、接，接特殊佈線用在印的表機上埠連。

連路到網表機接並列印的裝置表機當作接器，並列印轉另埠USB稱可以，有了被表機使用。有印有這種接多電連接器來腦埠，且有到轉。可以用接至許埠連連表機甚USB接並列印已”商供應再採用這種不裝使用埠並列置重設不會。

埠問USB可能會在部份印題，因此通常可以造使用埠USB改重設成表機/dev/unlpt0到偵測個裝立當印USB表機兩FreeBSD，會置項目:建上腦何埠。印任可以USB表機可用的接到電存動都會置偵測接上，此裝是表機它不論印否連，則在文則。行佇上增加字換號符是表機般數種，序列印數9600傳輸速率有會使用的。但一率一率(Baud rate)及USB。也有序列

| lpr textfile.txt |
| ls -lh |
| /dev/lpt0 |
| /dev/cuaU0 |
| /dev/cuau0 |
| /dev/ulpt0 |
| /dev/cuau1 |
| /dev/unlpt0 |
| /dev/lpt0 |
多。

9.3. 常见的页面描述语言

传递给打印机的数据必须使用打印机能够理解的语言，这些语言称为页面描述语言 (Page Description Languages) 或 PDL。

ASCII 纯 ASCII 文字是传递资料到打印机的最简化方式，一个字元对应一个要列印的字：资料中的 A 会列印一个 A 在页面。可以使用的格式非常少，没有办法选择字型或者比例。强迫使用简单的纯 ASCII 是为了让文字可以直接从电脑列印，只需一点或甚至不需要编码或翻译，列印的结果可以直接对应传送给的内容。

部分便宜的印表机无法列印纯 ASCII 文字，这让这些印表机较难设定。

PostScript™

PostScript™ 与 ASCII 几乎相反，与简单的文字不同，PostScript™ 言言有一套指令可以绘出最终所要的文件，可以使用不同的字型与图形，但是，这样强大的功能是有代价的，绘製页面需要填写程式语言，通常这个程式语言会由应用程式产生，所以使用者是看不到的。

便宜的印表机有时会移除 PostScript™ 的相容性来节省成本。

PCL (Printer Command Language)

PCL 由 ASCII 延伸而来，加入跳脱序列 (Escape sequence) 来标示格式、选项字型以及列印图形。大部份印表机都支援 PCL5，少数支援较新的 PCL6 或 PCLXL，这些后续的版本是 PCL5 的超集合 (Superset)，并可以提供更快的列印速度。

以主机为基础 (Host-Based)

制造商可能会使用简单的处理器和较小的的记忆体来降低印表机的成本，这些印表机无法列印纯文字，相反的，文字与图形会在机器上的驱动程式画完后传送印表机。这些称为以主机为基础 (Host-based) 的印表机。

驱动程式与以主机为基础的印表机通讯通常会透过专用或无文件的通讯协定，这让这些印表机只能在最常用的应用系统上运作。

9.3.1. 转换 PostScript™ 至其他 PDL

Port 套件与 FreeBSD 工具集有多可以处理 PostScript™ 输出的应有程式，此表整理出了可转换 PostScript™ 成其他常用 PDL 的工具：

<table>
<thead>
<tr>
<th>PDL 格式</th>
<th>产生由</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCL 或 PCL5</td>
<td>print/ghostscript9-base</td>
<td>单色使用 -sDEVICE=ljet4、彩色使用 -sDEVICE=cljet5</td>
</tr>
<tr>
<td>PCLXL 或 PCL6</td>
<td>print/ghostscript9-base</td>
<td>单色使用 -sDEVICE=pxlmono、彩色使用 -sDEVICE=pxlcolor</td>
</tr>
<tr>
<td>ESC/P2</td>
<td>print/ghostscript9-base</td>
<td>-sDEVICE=uniprint</td>
</tr>
<tr>
<td>XQX</td>
<td>print/foo2zjs</td>
<td></td>
</tr>
</tbody>
</table>

9.3.2. 摘要

要可以列印最简单的方式就是选择支援 PostScript™ 的印表机，再来是支援 PCL 的印表机，有了 print/ghostscript9-base 这些印表机也可像原生支援 PostScript™ 的印表机一般使用。有直接支援 PostScript™ 或 PCL 的印表机通常也会直接支援纯 ASCII 档案。
行列式印
表機
如同
典型的
喷墨
式印
表機
通常不
支援
PostScript™
或
PCL
,這種印
表機
通常可以列印
純
ASCII
文
字
檔
。print/ghostscript9-base
支援
部份這種印
表機
使用的
PDL
,不過
要在這種印
表機上
列印完
全
以
圖
型
為
基礎的頁面通常會
非
常
緩
慢
,由
於
需要
傳
送
大
量
的資料並列
印。
以主
機為
基礎的印
表機
通常
較
難
設定
,有些會因
為
用了專用的
PDL
而
無
法
使用,
盡
可能
避免
使用這
類
的印
表機
。有
關
各種
PDL
的介紹可至
http://www.undocprint.org/
formats/
page_description_languages
。各種
型
號
印
表機
所使用的
特
定
PDL
可至
http://www.openprinting.org/
printers
查
詢
。
9.4.
直接列印
對於
偶爾
列印,
檔
案可以
直
接
傳
送
到印
表機
裝
置
,無
需
做
任
何設定
。例
如,要
傳
送
一個
名稱
為
sample.txt
的
檔
案到
USB
印
表機:
# cp sample.txt /dev/unlpt0
要
直
接使用網
路
印
表機
列印需
看
該印
表機支援
的
功
能
,但
大多
數
會接受
埠
號
9100
的列印作
業
,可使用
nc(1)
來完成。要使用
DNS
主
機
名稱
為
netlaser
的印
表機
列印與
上述
相同的
檔
案可
: nc netlaser 9100 < sample.txt
9.5. LPD (行列式印
表機
Daemon)
在背景列印一個
d檔
案稱
作
Spooling
緩
衝
程式
(Spooler)
讓
使用者能
夠繼
續
執
行電
腦
的其他程式而不需要
等
候
印
表機
緩
慢
的完成列印
工
作。
FreeBSD
內
含
的
緩
衝
程式
(Spooler)
稱
作
lpd(8)
,而列印
工
作會使用
lpr(1)
來提
交
。
9.5.1.
初始
設定
建
立
要用來
儲存
列印
工
作的
目錄
、
設定
擁
有
關
係
及
權限
來
避免
其他使用者可以
檢
視
這些
档
案的內容
:
# mkdir -p /var/spool/lpd/lp
# chown daemon:daemon /var/spool/lpd/lp
# chmod 770 /var/spool/lpd/lp
印
表機
會
定
義
在
/etc/printcap
每
台
印
表機項目
所包
含
的
詳細
資料有
名稱
、
連
接的接
頭
以
及
各種其他
設定
。建
立
/etc/printcap
使用以下內容
:
9.5.2. Use `lpr(1)` to print documents.

Documents are sent to the printer with `lpr`. A file to be printed can be named on the command line or piped into `lpr`. These two commands are equivalent, sending the contents of `doc.txt` to the default printer:

```
% lpr doc.txt
% cat doc.txt | lpr
```

Printers can be selected with `-P`. To print to a printer called `laser`:

```
% lpr -Plaser doc.txt
```

9.5.3. Filters

The examples shown so far have sent the contents of a text file directly to the printer. As long as the printer understands the content of those files, output will be printed correctly. Some printers are not capable of printing plain text, and the input file might not even be plain text. Filters allow files to be translated or processed. The typical use is to translate one type of input, like plain text, into a form that the printer can understand, like PostScript™ or PCL. Filters can also be used to provide additional features, like adding page numbers or highlighting source code to make it easier to read.

The filters discussed here are input filters or text filters. These filters convert the incoming file into different forms. Use `su(1)` to become root before creating the files.
Filters are specified in /etc/printcap with the if= identifier. To use /usr/local/libexec/lf2crlf as a filter, modify /etc/printcap like this:

```
lp:lp=/dev/unlpt0:
sh:mx#0:
sd=/var/spool/lpd/lp:
if=/usr/local/libexec/lf2crlf:
lf=/var/log/lpd-errs:
```

The backslash line continuation characters at the end of the lines in printcap entries reveal that an entry for a printer is really just one long line with entries delimited by colon characters. An earlier example can be rewritten as a single less-readable line:

```
lp:lp=/dev/unlpt0:sh:mx#0:sd=/var/spool/lpd/lp:if=/usr/local/libexec/lf2crlf:lf=/var/log/lpd-errs:
```

9.5.3.1. 避免在纯文本印表机阶梯列印

Typical FreeBSD text files contain only a single line feed character at the end of each line. These lines will "stairstep" on a standard printer:

A printed file looks like the steps of a staircase scattered by the wind

A filter can convert the newline characters into carriage returns and newlines. The carriage returns make the printer return to the left after each line. Create /usr/local/libexec/lf2crlf with these contents:

```
#!/bin/sh
CR=$'
'
/usr/bin/sed -e "s/$/${CR}/g"
```

Set the permissions and make it executable:

```
chmod 555 /usr/local/libexec/lf2crlf
```

Modify /etc/printcap to use the new filter:

```
if=/usr/local/libexec/lf2crlf:
```

①
Test the filter by printing the same plain text file. The carriage returns will cause each line to start at the left side of the page.

9.5.3.2.  

使用 `print/enscript` 在 PostScript™ 印表機美化純文字內容。GNU Enscript 將純文本文件轉換為格式良好並能用於 PostScript™ 打印機的 PostScript™。它會為每頁添加頁數、使長行對齊，並提供許多其他功能以使打印的文本文件更易於閱讀。根據本地紙張尺寸，從 Port 套件安裝 `print/enscript-letter` 或 `print/enscript-a4`。

創建 `/usr/local/libexec/enscript` 並包含以下內容:

```bash
#!/bin/sh
/usr/local/bin/enscript -o -
```

為文件設置權限並使其可執行:

```
chmod 555 /usr/local/libexec/enscript
```

修改 `/etc/printcap` 以使用新的過濾器:

```bash
:if=/usr/local/libexec/enscript:
```

測試此過濾器，將純文本文件打印。

9.5.3.3. 列印 PostScript™ 到 PCL 印表機

許多程序生成 PostScript™ 文檔。然而，便宜的印表機通常僅可理解純文本或 PCL。此過濾器會將 PostScript™ 文件轉換為 PCL，然後将其發送到印表機。

通過 Port 套件安裝 Ghostscript PostScript™ 直譯器，`print/ghostscript9-base`。

創建 `/usr/local/libexec/ps2pcl` 並包含以下內容:

```bash
#!/bin/sh
/usr/local/bin/gs -dSAFER -dNOPAUSE -dBATCH -q -sDEVICE=ljet4 -sOutputFile=- -
```

為文件設置權限並使其可執行:

```
chmod 555 /usr/local/libexec/ps2pcl
```

PostScript™ 入力將被此腳本渲染並轉換為 PCL，然後被發送到印表機。

修改 `/etc/printcap` 以使用此新的輸入過濾器:

```bash
:if=/usr/local/libexec/ps2pcl:
```

測試此過濾器，將一個小的 PostScript™ 程序發送到它：

```
175
```

The entries in `/etc/printcap` are really definitions of queues. There can be more than one queue for a single printer. When combined with filters, multiple queues provide users more control over how their jobs are printed.

As an example, consider a networked PostScript™ laser printer in an office. Most users want to print plain text, but a few advanced users want to be able to print PostScript™ files directly. Two entries can be created for the same printer in `/etc/printcap`:

```
textprinter:
 lp=9100@officelaser:
 sh:
 mx#0:
 sd=/var/spool/lpd/textprinter:
 if=/usr/local/libexec/enscript:
 lf=/var/log/lpd-errs:
```

```
psprinter:
 lp=9100@officelaser:
 sh:
 mx#0:
 sd=/var/spool/lpd/psprinter:
 lf=/var/log/lpd-errs:
```

Documents sent to `textprinter` will be formatted by the `/usr/local/libexec/enscript` filter shown in an earlier example. Advanced users can print PostScript™ files on `psprinter`, where no filtering is done.

This multiple queue technique can be used to provide direct access to all kinds of printer features. A printer with a duplexer could use two queues, one for ordinary single-sided printing, and one with a filter that sends the command sequence to enable double-sided printing and then sends the incoming file.

9.5.5.1. `lpq(1)`

`lpq(1)` shows the status of a user's print jobs. Print jobs from other users are not shown.

Show the current user's pending jobs on a single printer:

```
% lpq -Plp
```

Show the current user's pending jobs on all printers:

```
% lpq
```

```
Rank Owner Job Files Total Size
1st jsmith 0 (standard input) 12792 bytes
```

Show the current user's pending jobs on all printers:

```
% lpq
```

```
Rank Owner Job Files Total Size
1st jsmith 0 (standard input) 12792 bytes
```
9.5.5.2. `lprm(1)`

`lprm(1)` is used to remove print jobs. Normal users are only allowed to remove their own jobs. `root` can remove any or all jobs.

Remove all pending jobs from a printer:

```
lprm -Plp -
```

`dfA002smithy` dequeued

`cfA002smithy` dequeued

`dfA003smithy` dequeued

`cfA003smithy` dequeued

`dfA004smithy` dequeued

`cfA004smithy` dequeued

9.5.5.3. `lpc(8)`

`lpc(8)` is used to check and modify printer status. `lpc` is followed by a command and an optional printer name. `all` can be used instead of a specific printer name, and the command will be applied to all printers. Normal users can view status with `lpc(8)`. Only `root` can use commands which modify printer status.

Show the status of all printers:

```
% lpc status all

lp:
queuing is enabled
printing is enabled
```

Prevent a printer from accepting new jobs, then begin accepting new jobs again:

```
lpc disable lp
```

```
lp: queuing disabled
```

```
lpc enable lp
```

```
lp: queuing enabled
```

Stop printing, but continue to accept new jobs. Then begin printing again:

```
lpc stop lp
```

```
lp: printing disabled
```

```
lpc start lp
```

```
lp: printing enabled
```

demon started

Restart a printer after some error condition:

```
lpc restart lp
```

```
lp: no daemon to abort
lp: printing enabled
```

demon restarted

Turn the print queue off and disable printing, with a message to explain the problem to users:

```
lpc down lp Repair parts will arrive on Monday
```

```
lp: printer and queuing disabled
status message is now: Repair parts will arrive on Monday
```

Re-enable a printer that is down:

```
179
```
Printers are often shared by multiple users in businesses and schools. Additional features are provided to make sharing printers more convenient.

9.5.6.1. 別名

The printer name is set in the first line of the entry in /etc/printcap. Additional names, or aliases, can be added after that name. Aliases are separated from the name and each other by vertical bars:

lp|repairsprinter|salesprinter:

Aliases can be used in place of the printer name. For example, users in the Sales department print to their printer with

% lpr -Psalesprinter sales-report.txt

Users in the Repairs department print to their printer with

% lpr -Prepairsprinter repairs-report.txt

All of the documents print on that single printer. When the Sales department grows enough to need their own printer, the alias can be removed from the shared printer entry and used as the name of a new printer. Users in both departments continue to use the same commands, but the Sales documents are sent to the new printer.

9.5.6.2. 頭

It can be difficult for users to locate their documents in the stack of pages produced by a busy shared printer. Header pages were created to solve this problem. A header page with the user name and document name is printed before each print job. These pages are also sometimes called banner or separator pages.

Enabling header pages differs depending on whether the printer is connected directly to the computer with a USB, parallel, or serial cable, or is connected remotely over a network.

Header pages on directly-connected printers are enabled by removing the (Suppress Header) line from the entry in /etc/printcap. These header pages only use line feed characters for new lines.

Some printers will need the /usr/shared/examples/printing/hpif filter to prevent stairstepped text. The filter configures PCL printers to print both carriage returns and line feeds when a line feed is received.

Header pages for network printers must be configured on the printer itself. Header page entries in /etc/printcap are ignored. Settings are usually available from the printer front panel or a configuration web page accessible with a web browser.
9.6. 其他列印系統

Several other printing systems are available in addition to the built-in `lpd(8)`. These systems offer support for other protocols or additional features.

9.6.1. CUPS (Common UNIX™ Printing System)

CUPS is a popular printing system available on many operating systems. Using CUPS on FreeBSD is documented in a separate article: [CUPS](http://hplipopensource.com/hplip-web/index.html).

9.6.2. HPLIP


The port handles all the installation details on FreeBSD. Configuration information is shown at [http://hplipopensource.com/hplip-web/install/manual/hp_setup.html](http://hplipopensource.com/hplip-web/install/manual/hp_setup.html).

9.6.3. LPRng

LPRng was developed as an enhanced alternative to `lpd(8)`. The port is `sysutils/LPRng`. For details and documentation, see [http://www.lprng.com/](http://www.lprng.com/).
Chapter 10. Linux® Binary Compatibility

10.1. Overview

FreeBSD provides Linux™ Binary compatibility, allowing users to install and execute most Linux™ Binary without modification.

It has been reported that under some circumstances, Linux™ Binary performs better in FreeBSD than in Linux™.

However, some features that are working in Linux™ may not work in FreeBSD.

For example, if Linux™ Binary makes excessive calls to i386™ specific system calls, such as starting virtual 8086 mode, it may not work in FreeBSD.

FreeBSD 10.3 supports 64-bit Linux™ Binary compatibility.

At the end of this chapter, you will have learned:

• How to enable Linux™ Binary compatibility in FreeBSD.
• How to install other Linux™ libraries.
• How to install Linux™ applications in FreeBSD.
• Details of Linux™ compatibility implementation in FreeBSD.

Before starting to read this chapter, you need to:

• Know how to install third-party software.
要在開機時開啟Linux™相容性，可以加入這行到/etc/rc.conf:

```
linux_enable="YES"
```

在64-位元的機器上，/etc/rc.d/abi會自動載入用來做64-位元模擬的模組。

Since the Linux™ binary compatibility layer has gained support for running both 32- and 64-bit Linux™ binaries (on 64-bit x86 hosts), it is no longer possible to link the emulation functionality statically into a custom kernel.

10.2.1. 手動安裝其他程式庫

若有Linux™應用程式在設定Linux™Binary相容性後出現缺少共用程式庫的情況，確認這個Linux™需要哪個共用程式庫並手動安裝。

在Linux™系統，可使用`ldd`來找出應用程式需要哪個共用程式庫。例如，檢查linuxdoom需要哪個共用程式庫，在有安裝Doom的Linux™系統執行這個指令:

```
% ldd linuxdoom
```

```
libXt.so.3 (DLL Jump 3.1) => /usr/X11/lib/libXt.so.3.1.0
libX11.so.3 (DLL Jump 3.1) => /usr/X11/lib/libX11.so.3.1.0
libc.so.4 (DLL Jump 4.5pl26) => /lib/libc.so.4.6.29
```

然後，複製所有Linux™系統輸出結果中最後一欄的檔案到FreeBSD系統的`/compat/linux`。

複製完後，建立符號連結(Symbolic link)至輸出結果第一欄的名稱。以這個例子會在FreeBSD系統產生以下檔案:

```
/compat/linux/usr/X11/lib/libXt.so.3.1.0
/compat/linux/usr/X11/lib/libXt.so.3 -> libXt.so.3.1.0
/compat/linux/usr/X11/lib/libX11.so.3.1.0
/compat/linux/usr/X11/lib/libX11.so.3 -> libX11.so.3.1.0
/compat/linux/lib/libc.so.4.6.29
/compat/linux/lib/libc.so.4 -> libc.so.4.6.29
```

若Linux™共用程式庫已經存在，並符合ldd輸出結果第一欄的主要修訂版號，則不需要複製該行最後一欄的檔案，使用既有的程式庫應該可運作。若有較新的版本建議仍要複製共用程式庫，只要符號連結指向新版的程式庫，舊版便可移除。

例如，以下程式庫已存在FreeBSD系統:

```
/compat/linux/lib/libc.so.4.6.27
/compat/linux/lib/libc.so.4 -> libc.so.4.6.27
```

且ldd顯示Binary需要使用較新的版本:

```
libc.so.4 (DLL Jump 4.5pl26) -> libc.so.4.6.29
```

雖然既有的程式庫只有在最後一碼過時一或兩個版本，程式應該仍可使用稍微舊的版本執行，雖然如此，推薦還是替換既有的libc.so為較新的版本:
一様來說，只有在安裝Linux™程式到FreeBSD完的前幾次會需要查看Linux™ Binary相依的共用程式庫。之後系統便有足夠的Linux™共用程式庫能夠執行新安裝的Linux™ Binary，便不再需要額外的動作。

10.2.2. 安裝Linux™ELF Binary

ELF Binary有時時候需要額外的步驟。當執行無商標(Unbranded)的ELF Binary，會產生錯誤訊息：

```
% ./my-linux-elf-binary
ELF binary type not known
Abort
```

要協助FreeBSD核心區別是FreeBSD ELF Binary還是Linux™ Binary，可使用`brandelf(1)`:

```
% brandelf -t Linux my-linux-elf-binary
```

由於GNU工具鏈會自動放置適當的商標資訊到ELF Binary，通常不需要這個步驟。

10.2.3. 安裝以Linux™RPM為基礎的應用程式

要安裝Linux™RPM為基礎的應用程式，需先安裝`archivers/rpm4`套件或Port。安裝完成之後，root可以使用這個指令安裝.rpm:

```
cd /compat/linux
rpm2cpio < /path/to/linux.archive.rpm | cpio -id
```

如果需要，`brandelf`已安裝的ELF Binary。注意，這將會無法乾淨地解除安裝。

10.2.4. 設定主機名稱解析器

如果DNS無法運作或出現這個錯誤：

```
resolv+:
"bind" is an invalid keyword
resolv+:
"hosts" is an invalid keyword
```

將`/compat/linux/etc/host.conf`設定如下:

```
order hosts, bind
multi on
```

這指定先搜尋`/etc/hosts`，其次為DNS。當`/compat/linux/etc/host.conf`不存在，Linux™應用程式會使用`/etc/host.conf`並會警告不相容的FreeBSD語法。如果名稱伺服器未設定使用`/etc/resolv.conf`的話，則可移除`bind`。

184
This section describes how Linux™ binary compatibility works and is based on an email written to FreeBSD chat mailing list by Terry Lambert (tlambert@primenet.com). (Message ID: <199906020108.SAA07001@usr09.primenet.com>).

FreeBSD has an abstraction called an "execution class loader". This is a wedge into the execve(2) system call.

Historically, the UNIX™ loader examined the magic number (generally the first 4 or 8 bytes of the file) to see if it was a binary known to the system, and if so, invoked the binary loader. If it was not the binary type for the system, the execve(2) call returned a failure, and the shell attempted to start executing it as shell commands. The assumption was a default of "whatever the current shell is".

Later, a hack was made for sh(1) to examine the first two characters, and if they were :\n
FreeBSD has a list of loaders, instead of a single loader, with a fallback to the #! loader for running shell interpreters or shell scripts.

For the Linux™ABI support, FreeBSD sees the magic number as an ELF binary. The ELF loader looks for a specialized brand, which is a comment section in the ELF image, and which is not present on SVR4/Solaris™ ELF binaries.

For Linux™ binaries to function, they must be branded as type Linux using brandelf(1):

```
brandelf -t Linux file
```

When the ELF loader sees the Linux brand, the loader replaces a pointer in the proc structure. All system calls are indexed through this pointer. In addition, the process is flagged for special handling of the trap vector for the signal trampoline code, and several other (minor) fix-ups that are handled by the Linux™ kernel module.

The Linux™ system call vector contains, among other things, a list of sysent[] entries whose addresses reside in the kernel module. When a system call is called by the Linux™ binary, the trap code dereferences the system call function pointer off the proc structure, and gets the Linux™, not the FreeBSD, system call entry points.

Linux™ mode dynamically reroots lookups. This is, in effect, equivalent to union to file system mounts. First, an attempt is made to lookup the file in /compat/linux/original-path. If that fails, the lookup is done in /original-path. This makes sure that binaries that require other binaries can run.

For example, the Linux™ toolchain can all run under Linux™ABI support. It also means that the Linux™ binaries can load and execute FreeBSD binaries, if there are no corresponding Linux™ binaries present, and that a uname(1) command can be placed in the /compat/linux directory tree to ensure that the Linux™ binaries cannot tell they are not running on Linux™.

In effect, there is a Linux™ kernel in the FreeBSD kernel. The various underlying functions that implement all of the services provided by the kernel are identical to both the FreeBSD system call table entries, and the Linux™ system call table entries: file system operations, virtual memory operations, signal delivery, and System V IPC. The only difference is that FreeBSD binaries get the FreeBSD glue functions, and Linux™ binaries get the Linux™ glue functions. The FreeBSD glue functions are statically linked into the kernel, and the Linux™ glue functions can be statically linked, or they can be accessed via a kernel module.

Technically, this is not really emulation, it is an ABI implementation. It is sometimes called "Linux™ emulation" because the implementation was done at a time when there was no other word to
describe what was going on. Saying that FreeBSD ran Linux™ binaries was not true, since the code was not compiled in.
系统管理

FreeBSD使用手册

剩下的这些章节涵盖了全方位的FreeBSD系统管理。

每章节的开头会先描述在该章节后您会学到的，也会详述在您看这些资料时应有的背景知识。这些章节是让您在需要查资料的时候翻阅用的。

您不需要依照特定的顺序来读，也不需要将这些章节全部过读之后才开始用FreeBSD。
11.1. 概述
在 FreeBSD 使用過程中，相當重要的環節之一就是如何正確設定系統。本章著重於介紹 FreeBSD 的設定流程，包括一些可以調整 FreeBSD 效能的參數設定。

讀完這章，您將了：
• rc.conf 設定的基礎概念及/usr/local/etc/rc.d 启動 Script。
• 如何設定並測試網路卡。
• 如何在網路裝置上設定虛擬主機。
• 如何使用在/etc 中的各种設定檔。
• 如何使用 sysctl(8) 變數調校 FreeBSD。
• 如何調校磁碟效能及修改核心限制。

在開始閱讀這章之前，您需要：
• 了：解 UNIX™ 及 FreeBSD 基礎 (FreeBSD 基礎)。
• 熟悉核心設定與編譯的基礎 (設定 FreeBSD 核心)。

11.2. 启動服務
許多使用者會使用 Port 套件集安裝第三方軟體到 FreeBSD 且需要安裝服務在系統初始化時可啟動該軟體。服務，例如 mail/postfix 或 www/apache22 只是眾多需要在系統初始化時啟動的軟體之中的兩個。本章節將說明可用來啟動第三方軟體的程序。

在 FreeBSD 大多數內建的服務，例如 cron(8) 也是透過系統啟動 Script 來執行。
這個 Script 會確保要執行的 utility 會在虛構的服務 DAEMON 之後啟動，也同時提供設定與追蹤程序 ID（Process ID，PID）的方法。

接著此應用程式便可將下放到 /etc/rc.conf 中：

```
utility_enable="YES"
```

使用這種方式可以簡單的處理指令列參數、引用 /etc/rc.subr 所提供的預設函數、與 rcorder(8) 相容並可在 rc.conf 簡單的設定。

11.2.2. 使用服務來啟動其他服務

其他的服務可以使用 inetd(8) 來啟動，在 inetd 超級伺服器有如如何使用 inetd(8) 以及其設定的深入說明。

在某些情況更適合使用 cron(8) 來啟動系統服務，由於 cron(8) 會使用 crontab(5) 的擁有人來執行這些程序，所以這個方法有不 少優點，這讓一般的使用者也可以啟動與維護自己的應用程式。

cron(8) 的 @reboot 功能，可用來代替指定詳細的時間，而該工作會在系統初始化時執行。

11.3. 設定 cron(8) 在 FreeBSD

其中最有用的其中一項工具便 是 cron，這個工具會在背景執行並且定期檢查 /etc/crontab 是否有要執行的工作然後搜尋 /var/cron/tabs 是否有自訂的 crontab 檔案，這些檔案用來安 排要讓 cron 在指定的時間執行的工作，crontab 中的每一個項目定義了一個要執行的工作，又稱作 cron job。

這裡使用了兩種類型的設定檔：其一是系統 crontab，系統 crontab 不應該被修改，其二為使用者 crontab，使用者 crontab 可以依需要建立與編輯。這兩種檔案的格式在 crontab(5) 有說明。系統 crontab /etc/crontab 的格式含有在使用者 crontab 所沒有的 who 欄位，在系統 crontab，cron 會依照該欄位所指定的使用者來執行指令，而在使用者 crontab，會以建立 crontab 的使用者來執行指令。

使用者 crontab 讓個別使用者可以安排行自己的工作，root 使用者也可有自己使用者 crontab 來安排不在系統 crontab 中的作。以下為系統 crontab /etc/crontab 的範例項目：

```
/etc/crontab - root's crontab for FreeBSD
$FreeBSD: head/zh_TW.UTF-8/books/handbook/book.xml 53653 2019-12-03 17:05:41Z
rcyu $
```

①
```bash
SHELL=/bin/sh
PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin

②
#
#minute hour mday month wday who command
③
#*/5 * * * * root /usr/libexec/atrun
④
```

以字元為首的行代表註解。可在檔案中放置註解提醒要執行什麼動作及為何要執行。註解不可與指令同行，否則會被當做指令的一部份，註解必須在新的一行，空白行則會被忽略。

②等號(=)字元用來定義任何環境設定。在這個例子當中，使用了等號來定義SHELL及PATH。若SHELL被省略，cron則會使用預設的Bourne shell。若PATH被省略，則必須指定指令或Script的完整路徑才能執行。

③此行定義了在系統crontab會使用到的七個欄位：minute，hour，mday，month，wday，who以及command。
minute欄位是指定指令要執行的時間中的分，hour指定指令要執行的時，mday是月裡面的日，month是月，以及wday是週裡面的日。這些欄位必須數值代表24小時制的時間或*來代表所有可能的值。
who這個欄位只有系統crontab才有的，用來指定要用那一個使用者來執行指令。最後一個欄位則是要執行的指令。

④這個項目定義了該工作所使用的數值，*/5後接著數個*字元指的是一個月的每一週的每一日的每一小時的每5分鐘會使用root執行/usr/libexec/atrun。指令可含任何數量的參數，但若指令要使用多行則需以反斜線"連線字元換行。
在 crontab(5) 有 讨 谈 cron 使用的 環境變數,若 Script 中 含 有 任 何 會 使用 常用 字元 刪除 檔案 的 指令,那 麼 檢查 Script 可 正常 在 cron 的 環境運作 非常 重 要。

編輯完成 crontab 之後 儲存 檔案,編輯完的 crontab 會 自動 安裝 且 cron 會 讀取 該 crontab 並 在 其 指定 的 時指 执行 其 cron job。要 列出 crontab 中 有 那 一些 cron job 可使用此 指令:

```
% crontab
```
```
 0 14
* *
* *
/usr/home/dru/bin/mycustomscript.sh
```

要 移除 使用在 使用者 crontab 中的 cron job 可:

```
% crontab
```
```
-r
remove crontab for dru? y
```

11.4.
管理 FreeBSD 中的 服 務 FreeBSD 在 系統 初始 化 時 使用 rc(8) 系統 的 启動 Script。列於 /etc/rc.d 的 Script 提供了 基本 的 服務 可 使用 service(8) 加上 start,stop 以 及 restart 選項 來 控制。例 如,使用 以下 指令 可以 重新 启動 sshd(8):

```
service sshd restart
```

這個 程序 可以 用來 在 执行 中 的 系統 上 启動 服 務,而在 rc.conf(5) 中 有 指定 的 服務 則 會 在 開機 時 自動 启動。例 如,要在 系統 開機 時 開啟 natd(8),可入下到 /etc/rc.conf:

```
natd_enable="YES"
```

若 natd_enable="NO" 行 已 存在,則 將 NO 變為 YES,在 下次 開機 時 rc(8) script 便會 自動 載入 任想 依的 服 務,詳細 如下 所述。

由於 rc(8) 系統 主要用 於 在 系統 開機 與 關機 時 启動 與 停止 服 務,只有 傳當 有 服務 的 變數 設定 在 /etc/rc.conf 時 start,stop 以 及 restart 才 會 有 作用。例 如 sshd restart 只會 在 /etc/rc.conf 中 的 sshd_enable 設為 YES 時 执行,若要 不 透過 /etc/rc.conf 的 設定 重 新 启動 sshd(8) 可執 行 以下 指令:

```
service sshd onerestart
```

要 檢查 一個 服 務 是 否 有 在 /etc/rc.conf 開啟,可執 務 的 rc(8) Script 加上 rcvar。這個 例子 會 檢查 sshd(8) 是 否 在 /etc/rc.conf 已經 開啟:

```
service sshd rcvar
```
```
```
```
sshd
```
```
sshd_enable = "YES"
```

行 sshd 的輸出來自上述指令,而非 root console。

要判斷是一個服務是否正再執行,可使用 status,例如要確認 sshd(8) 是否正常在執行:

```bash
service sshd status
sshd is running as pid 433.
```

在某些情況,也可以 reload 一個服務。這個動作會嘗試發送一個信號給指定的服務,強制服務重新載入其設定檔,在大多數的情況下,發送給服務的信號是 SIGHUP。並不是每個服務都支援此功能。

rc(8) 系統會用在網路服務及也應該用在大多數的系統初。例

如執行 `/etc/rc.d/bgfsck` Script 會印出以下訊息:

```
Starting background file system checks
```

這個 Script 用來在背景做檔案系統檢查,只有在系統初始化時要執行。許

多系統服務會相依其他服務來運作,例

如 yp(8) 及其他以 RPC 为基礎的服務在 rpcbind(8) 服務啟動前可能會啟動失敗。要解決這種問題,就必須在啟動 Script 上方的解中加入相

依及其他 meta-data。在系統初始化時會用 rcorder(8) 程式分析這些解來決定要以什麼順序來執行系統服務以滿足相

依。

因 rc.subr(8) 的需要,以下的關鍵字必須加入到所有的啟動 Script 方可 "enable" 启動 Script:

- PROVIDE: 設定此檔案所提供的服務。

以下關鍵字可能會在每個啟動 Script 的上引,雖然非必要,但對於 rcorder(8) 是非常有用的提示:

- REQUIRE: 列出此服務需要引用的服务。有使用此關鍵字的 Script 會在指定服務啟動之後才執行。

- BEFORE: 列出相依此服務的服務。有使用此關鍵字的 Script 會在指定的服務啟動之前執行。

透細的設定每個啟動 Script 的這些關鍵字,管理者便可對 Script 的啟動順序進行微調,而不需使用到其他 UNIX™ 作業系統所使用的 "runlevels"。

額外的資訊可在 rc(8) 以及 rc.subr(8) 中找到。請參考此文章來取得如何建立自訂 rc(8) Script 的操作說明。

11.4.1. 管理系統特定的設定

系統設定資訊的主要位於 `/etc/rc.conf`,這個檔案的設定資訊範圍非常廣且會在系統啟動時讀取來設定系統,它也提供設定資訊給 rc* 檔案使用。

在 `/etc/rc.conf` 中的設定項目會覆蓋在 `/etc/defaults/rc.conf` 的預設設定,不應直接受編輯該檔案中的預設設定,所有系統特定的設定應到 `/etc/rc.conf` 所修改。

在叢集應用時要將系統特定的設定與各站特定的設定分開,藉此減少管理成本有好幾種方法,建議的方法是將系統特定的設定放置在 `/etc/rc.conf.local`,例如以下將要套用到所有系統的設定項目放在 `/etc/rc.conf`:

```bash
sshd_enable="YES"
keyrate="fast"
```
而只套用到此系統的設定放在 `/etc/rc.conf.local`:

```bash
defaultrouter="10.1.1.254"
hostname="node1.example.org"
ifconfig_fxp0="inet 10.1.1.1/8"
```

升级系统并不会覆写 `/etc/rc.conf`，所以系统设定资讯不会因此遗失。

/etc/rc.conf 以及 /etc/rc.conf.local 两个档案都会使用 sh(1) 解析，这让系统操作者能够建立较复杂的设定方案。请参考 rc.conf(5) 来取得更多有关此主题的资讯。

11.5. 設定网络介面卡

对 FreeBSD 管理者来说加入与设定网络介面卡（Network Interface Card, NIC）会是一件常见的工作。

11.5.1. 找到正确的驱动程式
首先，要先确定 NIC 的型号及使用的晶片。
FreeBSD 支援各种 NIC, 可检查该 FreeBSD 发布版本的硬体相容性清单来查看是否有支援该 NIC。

若有支援该 NIC, 接著要确定该 NIC 所需要的 FreeBSD 驱动程式名称。请参考 /usr/src/sys/conf/NOTES 及 /usr/src/sys/arch/conf/NOTES 来取得 NIC 驱动程式清单及其支援的晶片组合相关资讯。当有疑问是，请阅读该驱动程式的操作手册，会提供支援硬体及该驱动程式已知问题的资讯。

GENERIC 核心已有常见 NIC 的驱动程式，意思是在开机关时应该会检测到 NIC。可以输入 `more /var/run/dmesg.boot` 来检视系统的开机资讯并使用空白键捲动文字。在此例中，两个乙太网路 NIC 使用系统已有的 dc(4) 驱动程式：

```bash
dc0: <82c169 PNIC 10/100BaseTX> port 0xa000-0xa0ff mem 0xd3800000-0xd380000ff irq 15 at device 11.0 on pci0
miibus0: <MII bus> on dc0
bmtphy0: <BCM5201 10/100baseTX PHY> PHY 1 on miibus0
bmtphy0: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto
dc0: Ethernet address: 00:a0:cc:da:da:da
```

```bash
dc1: <82c169 PNIC 10/100BaseTX> port 0x9800-0x98ff mem 0xd3000000-0xd300000ff irq 11 at device 12.0 on pci0
miibus1: <MII bus> on dc1
bmtphy1: <BCM5201 10/100baseTX PHY> PHY 1 on miibus1
bmtphy1: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto
dc1: Ethernet address: 00:a0:cc:da:da:db
```
若在 GENERIC 中没有该 NIC 的驱动程式，但有可用的驱动程式，那么在设定及使用 NIC 前要先载入该驱动程式。有两种方式可以完成这件事：

• 最简单的方式是使用 kldload(8) 载入 NIC 要使用的核心模组。要在开机时自动载入，可加入适当的设定到 /boot/loader.conf。不是所有 NIC 驱动程式皆可当做模组使用。

• 或者，静态编译对 NIC 的支援到自订核心，请参考 /usr/src/sys/conf/NOTES, /usr/src/sys/arch/conf/NOTES 及驱动程式的操作手册来了解要在自订核心设定档中要加入那些设定。要取得更多有关重新编译核心的资讯可参考设定 FreeBSD 核心。若在开机时有侦测到 NIC，就不需要再重新编译核心。

11.5.1.1. 使用 Windows™ NDIS 驱动程式很不幸的，仍有很多供应商并没有提供它们驱动程式的技术文件给开源社群，因为这些文件有关商业机密。因此，FreeBSD 及其他作业系统的开发人员只剩下两种方案可以选择：透过长期与艰苦的过程做逆向工程来开发驱动程式或使用现有供 Microsoft™ Windows™ 平台用的驱动程式 Binary。

FreeBSD 对 Network Driver Interface Specification (NDIS) 有提供“原生”的支援，这包含 ndisgen(8) 可用来转换 Windows™ XP 驱动程式成可在 FreeBSD 上使用的格式。由於 ndis(4) 驱动程式使用的是 Windows™ XP binary，所以只能在 i386™ 及 amd64 系统上执行。PCI, CardBus, PCMCIA 以及 USB 装置也都有支援。

要使用 ndisgen(8) 需要三样东西：

1. FreeBSD 核心原始码。
2. 一个 .SYS 附档名的 Windows™ XP 驱动程式 Binary。
3. 一个 .INF 附档名的 Windows™ XP 驱动程式设定档。

下载供指定 NIC 使用的 .SYS 及 .INF 档。通常这些档案可以在驱动程式的 CD 或者供应商的网站上找到。以下范例会使用 W32DRIVER.SYS 及 W32DRIVER.INF。

驱动程式的位元宽度必须与 FreeBSD 的版本相符。例如 FreeBSD/i386 需要使用 Windows™ 32-bit 驱动程式，而 FreeBSD/amd64 则需要使用 Windows™ 64-bit 驱动程式。

下个步骤是编译驱动程式 Binary 成可载入的核心模组。以 root 身份使用 ndisgen(8):

```
ndisgen /path/to/W32DRIVER.INF /path/to/W32DRIVER.SYS
```

这个指令是互动式的，会提示输入任何所需的额外资讯，新的核心模组会被产生在目前的目录，使用 kldload(8) 来载入新的模组:

```
kldload ./W32DRIVER_SYS.ko
```

除了产生的核心模组之外，ndis.ko 以及 if_ndis.ko 也必须载入，会在任何有相依 ndis(4) 的模组被载入时一併自动载入。若没有自动载入，则需使用以下指令手动生成:

```
kldload ndis
kldload if_ndis
```

第一个指令会载入 ndis(4) miniport 驱动程式包装程式，而第二个指令会载入所产生的 NIC 驱动程式。

检查 dmesg(8) 查看是否有任何载入错误，若一切正常，输出结果应会如下所示:
ndis0: <Wireless-G PCI Adapter> mem 0xf4100000-0xf4101fff irq 3 at device 8.0 on pci1
ndis0: NDIS API version: 5.0
ndis0: Ethernet address: 0a:b1:2c:d3:4e:f5
ndis0: 11b rates: 1Mbps 2Mbps 5.5Mbps 11Mbps
ndis0: 11g rates: 6Mbps 9Mbps 12Mbps 18Mbps 36Mbps 48Mbps 54Mbps

到此之後
ndis0 可以像 任 何 其他 NIC 設定 使用。

要 設定 系統 於 開機 時 載入 ndis(4) 模組, 可 複製 產生 的 模組 W32DRIVER_SYS.ko
do(output) 到 /boot/modules。然後 加入 下行到 /boot/loader.conf:
W32DRIVER_SYS_load="YES"

11.5.2. 設定 網路 卡

載入 正確 的 NIC 驅動 程式 之後, 接著 需要 設定 介面 卡, 這個 作業 可能 在 安裝 時 已經 使用 了。

要 查看 NIC 設定 可 輸入 以下 指令:

% ifconfig
dc0:
  flags = 8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
  options = 80008<VLAN_MTU,LINKSTATE>
  ether 00:a0:cc:da:da:da
  inet 192.168.1.3 netmask 0xffffff00 broadcast 192.168.1.255
  media: Ethernet autoselect (100baseTX <full-duplex>)
  status: active
dc1:
  flags = 8802<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
  options = 80008<VLAN_MTU,LINKSTATE>
  ether 00:a0:cc:da:da:db
  inet 10.0.0.1 netmask 0xffffff00 broadcast 10.0.0.255
  media: Ethernet 10baseT/UTP
  status: no carrier
lo0:
  flags = 8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384
  options = 3<RXCSUM,TXCSUM>
  inet6 fe80::1%lo0 prefixlen 64 scopeid 0x4
  inet6 ::1 prefixlen 128
  inet 127.0.0.1 netmask 0xff000000
nd6 options = 3<PERFORMNUD,ACCEPT_RTADV>

在這個 例子 中 列出 以下 裝置:

• dc0: 第一個 乙太 網路 介面。
• dc1: 第二個 乙太 網路 介面。
• lo0: Loopback 裝置。
FreeBSD would use the device driver program name attached to the NIC at boot time to determine the interface card sequence to name NICs. For example, sis2 is pointing to the sis(4) driver program's third NIC.

In this example, dc0 is up and running. The main references are:

1. **UP** represents that the interface card is set up and ready to go.
2. The interface card has an Internet address, 192.168.1.3.
3. The interface card has an effective subnet mask, 0xffffff00, equivalent to 255.255.255.0.
4. The interface card has an effective broadcast address, 192.168.1.255.
5. The Ethernet MAC address is 00:a0:cc:da:da:da.
6. The physical interface media is set to automatic selection (media: Ethernet autoselect (100baseTX <full-duplex)). In this example, dc1 is set to use 10baseT/UTP media. To get more information about available driver programs, please refer to the operating manual.
7. The state of the interface card is active (status: active), indicating that a carrier signal has been detected. If dc1 represents the interface card that is not plugged into the Ethernet cable, the state is status: no carrier, which is normal.

If `ifconfig(8)` output is as follows:

dc0:
flags = 8843<BCR,SIMPLEX,MULTICAST> metric 0 mtu 1500
options = 80008<VLAN_MTU,LINKSTATE>
ether 00:a0:cc:da:da:da
media: Ethernet autoselect
status: active

Then it represents that the interface card has not been set up. The interface card must be set up by the root. NIC settings can be completed by running `ifconfig(8)`, but will disappear after a reboot unless the settings are also added to `/etc/rc.conf`. If there is a DHCP server on the LAN, just add this line:

```bash
ifconfig_dc0="DHCP"
```

Replace `dc0` with the system's correct value.

After adding this line, according to testing and troubleshooting instructions, operations continue.

If the network is already configured, it may have NIC settings. Before making any settings, please check `/etc/rc.conf` again.

In this example, there is no DHCP server, so the NIC must be manually configured. Enter one line for each NIC on the system, such as:

```bash
ifconfig_dc0="inet 192.168.1.3 netmask 255.255.255.0"
ifconfig_dc1="inet 10.0.0.1 netmask 255.255.255.0 media 10baseT/UTP"
```

Replace `dc0` and `dc1` with the correct IP address information for the system. Please refer to the driver program's operating manual, `ifconfig(8)` and `rc.conf(5)` for more available options and `/etc/rc.conf` syntax.

If the network is not using DNS, please edit `/etc/hosts` to add the main machine's name and IP address. For more information, please refer to `hosts(5)` and `/usr/shared/examples/etc/hosts`.

If there is no DHCP server and you need to store the Internet network, then you need to manually configure the default gateway and name server:

```bash
192.168.1.1
```

The source for this information is the FreeBSD documentation.
11.5.3. 测试与疑难排解必要的变更储存在`/etc/rc.conf`之后，需要重新启动系统来测试网络设定并检查系统重新启动是否有任何设定错误。或者使用这个指令将设定套用到网络系统:

```
service netif restart
```

若预设的通讯闸已设定于`/etc/rc.conf`也一样要下这个指令:

```
service routing restart
```

网络系统重新启动后，便可接着测试`NIC`。

11.5.3.1. 测试乙太网路卡要检查乙太网路卡是否已正确设定可ping(8)介面卡自己，然后ping(8)其他於LAN上的主机:

```
% ping -c5 192.168.1.3
PING 192.168.1.3 (192.168.1.3): 56 data bytes
64 bytes from 192.168.1.3: icmp_seq=0 ttl=64 time=0.082 ms
64 bytes from 192.168.1.3: icmp_seq=1 ttl=64 time=0.074 ms
64 bytes from 192.168.1.3: icmp_seq=2 ttl=64 time=0.076 ms
64 bytes from 192.168.1.3: icmp_seq=3 ttl=64 time=0.108 ms
64 bytes from 192.168.1.3: icmp_seq=4 ttl=64 time=0.076 ms
--- 192.168.1.3 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.074/0.083/0.108/0.013 ms
```

```
% ping -c5 192.168.1.2
PING 192.168.1.2 (192.168.1.2): 56 data bytes
64 bytes from 192.168.1.2: icmp_seq=0 ttl=64 time=0.726 ms
64 bytes from 192.168.1.2: icmp_seq=1 ttl=64 time=0.766 ms
64 bytes from 192.168.1.2: icmp_seq=2 ttl=64 time=0.700 ms
64 bytes from 192.168.1.2: icmp_seq=3 ttl=64 time=0.747 ms
64 bytes from 192.168.1.2: icmp_seq=4 ttl=64 time=0.704 ms
--- 192.168.1.2 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
```

正確情在此網路例來說，有一個全，而其他所有在此網址路中的網遮罩位使用有一個網名別路缺推設定。止程序會在第一個別名項目名中般介面會有一個實真址多個路一個網("Alias")到一個網台過指定的用伺服器在網虛擬見即管，虛擬參考介正確法查可能然這在大部份問題，同但無的，更改為嘗試模選情況能很低介差。拒何未有卻，即使是用但的，更改為嘗試模選情況能很低介差。出並由的確輸沒的，這可能是因為或未路問板是說明文件來檢。0板插型的主NIC查，在一些舊要網考，或卡路線或很發生的，請，的卡是某息是次正對否煩再突衝遇部份使用者會tuning（7）是運若介面差但。
有一種更簡單的方式可以表達這些設定，便是使用以空隔的IP位址清單。只有第一個位址會使用指定的子網路遮罩，其他的位址則會使用255.255.255.255的子網路遮罩。

ifconfig_fxp0_aliases="inet 10.1.1.1-5/24 inet 202.0.75.17-20/28"

設定系統日誌產生與讀取系統日誌對系統管理來說是一件非常重要的事情，在系統日誌中的資訊可以用來偵測硬體與軟體的問題，同樣也可以偵測應用程式與系統設定的錯誤。這些資訊在安全性稽查與事件回應也同樣扮演了重要的角色，大多數系統Daemon與應用程式都會產生日誌項目。

FreeBSD提供了一個系統日誌程式syslogd用來管理日誌。預設syslogd會與系統開機時啟動。這可使用在/etc/rc.conf中的變數syslogd_enable來控制。而且有數個應用程式參數可在/etc/rc.conf使用syslogd_flags來設定。請參考syslogd(8)來取得更多可用參數的資訊。

此章節會介紹如何設定FreeBSD系統日誌程式來做本地與遠端日誌並且介绍如何執行日誌翻轉(Log rotation)與日誌管理。
may want to use only tabs as field separators here. Consult the syslog.conf(5) manpage.

*.err;kern.warning;auth.notice;mail.crit                /dev/console

*.notice;authpriv.none;kern.debug;lpr.info;mail.crit;news.err   /var/log/messages

security.*                                      /var/log/security

auth.info;authpriv.info                         /var/log/auth.log

mail.info                                       /var/log/maillog

lpr.info                                        /var/log/lpd-errs

ftp.info                                        /var/log/xferlog

cron.*                                          /var/log/cron

!-devd

*=debug                                        /var/log/debug.log

*.emerg                                         *

# uncomment this to log all writes to /dev/console to /var/log/console.log
#console.info                                   /var/log/console.log

# uncomment this to enable logging of all log messages to /var/log/all.log
# touch /var/log/all.log and chmod it to mode 600 before it will work
#*.*                                            /var/log/all.log

# uncomment this to enable logging to a remote loghost named loghost
#*.*                                            @loghost

# uncomment these if you're running inn
# news.crit                                     /var/log/news/news.crit
# news.err                                      /var/log/news/news.err
# news.notice                                   /var/log/news/news.notice

# Uncomment this if you wish to see messages produced by devd
# !devd

# *.>=info

!ppp

*.*                                             /var/log/ppp.log

!*

在這個範例中:

• 第8行會找出所有符合err或以上層級的訊息，還有kern.warning，auth.notice與mail.crit的訊息，然後將這些日誌訊息傳送到Console (/dev/console)。

• 第12行會找出所有符合mail設施中於info或以上層級的訊息，並記錄訊息至/var/log/maillog。

• 第17行使用了比較標記(=)來只找出符合debug層級的訊息，並將訊息記錄至/var/log/debug.log。

• 第33行是指定程式範例用法。這可以讓在該行以下的規則只對指定的程式生效。在此例中，只有由ppp產生的訊息會被記錄到/var/log/ppp.log。

所以可用層級從最嚴重到最不嚴重的順序為emerg，alert，crit，err，warning，notice，info及debug。設施(facility)則無特定順序，可用的有auth，authpriv，console，cron，daemon，ftp，kern，lpr，mail，mark，news，security，syslog，user，uucp及local0到local7。要注意在其他作業系統的設施可能會不同。
要記錄所有所有notice與以上層級的訊息到/var/log/daemon.log，可加入以下項目:

```
daemon.notice /var/log/daemon.log
```

要取得更多有關不同的層級與設施的資訊請參考syslog(3)及syslogd(8)。
要取得更多有關/etc/syslog.conf、語法以及更進階用法範例的資訊請參考syslog.conf(5)。

11.7.2. 日誌管理與翻轉

日誌檔案會成長的非常快速，這會消耗磁碟空間並且更難在日誌中找到有用的資訊，日誌管理便是為了解決這種問題。在FreeBSD可以使用newsyslog來管理日誌檔案，這個內建的程式會定期翻轉（Rotate）與壓縮日誌檔案，並且可選性的建立遺失的日誌檔案並在日誌檔案被移動位置時通知程式。日誌檔案可能會由syslogd產生或由其他任何會產生日誌檔案的程式。

newsyslog會讀取其設定檔/etc/newsyslog.conf來决定其要採取的動作，每個要由newsyslog所管理的日誌檔案會在此設定檔中設定一行，每一行要說明檔案的擁有者、權限、何時要翻轉該檔案、選用的日誌翻轉旗標，如：壓縮，以及日誌翻轉時要通知的程式。以下為FreeBSD的預設設定:

```
configuration file for newsyslog
$FreeBSD: head/zh_TW.UTF-8/books/handbook/book.xml 53653 2019-12-03 17:05:41Z

rcyu $
#
Entries which do not specify the '/pid_file' field will cause the syslogd process to be signalled when that log file is rotated. This action is only appropriate for log files which are written to by the syslogd process (ie, files listed in /etc/syslog.conf). If there is no process which needs to be signalled when a given log file is rotated, then the entry for that file should include the 'N' flag.
#
The 'flags' field is one or more of the letters: BCDGJNUXZ or a '-'.
#
Note: some sites will want to select more restrictive protections than the defaults. In particular, it may be desirable to switch many of the 644 entries to 640 or 600. For example, some sites will consider the contents of maillog, messages, and lpd-errs to be confidential. In the future, these defaults may change to more conservative ones.
#
logfilename [owner:group] mode count size when flags [/pid_file] [sig_num]
/var/log/all.log 600 7 * @T00 J
/var/log/amd.log 644 7 100 * J
/var/log/auth.log 600 7 100 @0101T JC
/var/log/console.log 600 5 100 * J
/var/log/cron 600 3 100 * JC
/var/log/daily.log 640 7 * @T00 JN
/var/log/debug.log 600 7 100 * JC
/var/log/errors.log 640 7 * @T00 JN
/var/log/lpd-errs.log 640 7 * @T00 JN
/var/log/maillog.log 600 7 100 * J
/var/log/messages.log 600 7 100 * J
/var/log/mnttab.log 600 7 100 * J
/var/log/nfs.log 600 7 100 * J
/var/log/oldlog.log 600 7 100 * J
/var/log/procmail.log 600 7 100 * J
/var/log/sftp.log 600 7 100 * J
/var/log/ssl.log 600 7 100 * J
```

11.7.3.1. Log Server Configuration

A log server is a system that has been configured to accept logging information from other hosts. Before configuring a log server, check the following:

- If there is a firewall between the logging server and any logging clients, ensure that the firewall ruleset allows UDP port 514 for both the clients and the server.
- The logging server and all client machines must have forward and reverse entries in the local DNS. If the network does not have a DNS server, create entries in each system's `/etc/hosts`.

Proper name resolution is required so that log entries are not rejected by the logging server.

On the log server, edit `/etc/syslog.conf` to specify the name of the client to receive log entries from, the logging facility to be used, and the name of the log to store the host's log entries. This example adds the hostname of B, logs all facilities, and stores the log entries in `/var/log/logclient.log`.

Example 25.

```bash
+logclient.example.com
```

202
When adding multiple log clients, add a similar two-line entry for each client. More information about the available facilities may be found in `syslog.conf(5)`.

Next, configure `/etc/rc.conf`:

```
syslogd_enable="YES"
syslogd_flags="-a logclient.example.com -v -v"
```

The first entry starts syslogd at system boot. The second entry allows log entries from the specified client. The `-v -v` increases the verbosity of logged messages. This is useful for tweaking facilities as administrators are able to see what type of messages are being logged under each facility.

Multiple `-a` options may be specified to allow logging from multiple clients. IP addresses and whole netblocks may also be specified. Refer to `syslogd(8)` for a full list of possible options.

Finally, create the log file:

```
touch /var/log/logclient.log
```

At this point, syslogd should be restarted and verified:

```
service syslogd restart
pgrep syslog
```

If a PID is returned, the server restarted successfully, and client configuration can begin. If the server did not restart, consult `/var/log/messages` for the error.

11.7.3.2. 日誌客户端设定

A logging client sends log entries to a logging server on the network. The client also keeps a local copy of its own logs.

Once a logging server has been configured, edit `/etc/rc.conf` on the logging client:

```
syslogd_enable="YES"
syslogd_flags="-s -v -v"
```

The first entry enables syslogd on boot up. The second entry prevents logs from being accepted by this client from other hosts (`-s`) and increases the verbosity of logged messages.

Next, define the logging server in the client's `/etc/syslog.conf`. In this example, all logged facilities are sent to a remote system, denoted by the `@` symbol, with the specified hostname:

```
*. @logserv.example.com
```

After saving the edit, restart syslogd for the changes to take effect:
To test that log messages are being sent across the network, use `logger(1)` on the client to send a message to syslogd:

```
logger "Test message from logclient"
```

This message should now exist both in `/var/log/messages` on the client and `/var/log/logclient.log` on the log server.

If no messages are being received on the log server, the cause is most likely a network connectivity issue, a hostname resolution issue, or a typo in a configuration file. To isolate the cause, ensure that both the logging server and the logging client are able to ping each other using the hostname specified in their `/etc/rc.conf`. If this fails, check the network cabling, the firewall ruleset, and the hostname entries in the DNS server or `/etc/hosts` on both the logging server and clients. Repeat until the ping is successful from both hosts.

If the ping succeeds on both hosts but log messages are still not being received, temporarily increase logging verbosity to narrow down the configuration issue. In the following example, `/var/log/logclient.log` on the logging server is empty and `/var/log/messages` on the logging client does not indicate a reason for the failure. To increase debugging output, edit the `syslogd_flags` entry on the logging server and issue a restart:

```
syslogd_flags="-d -a logclient.example.com -v -v"
```

```
service syslogd restart
```

Debugging data similar to the following will flash on the console immediately after the restart:

```
logmsg: pri 56, flags 4, from logserv.example.com, msg syslogd: restart
syslogd: restarted
logmsg: pri 6, flags 4, from logserv.example.com, msg syslogd: kernel boot file is /boot/kernel/kernel
Logging to FILE /var/log/messages
syslogd: kernel boot file is /boot/kernel/kernel
cvthname (192.168.1.10)
validate: dgram from IP 192.168.1.10, port 514, name logclient.example.com; rejected in rule 0 due to name mismatch.
```

In this example, the log messages are being rejected due to a typo which results in a hostname mismatch. The client's hostname should be `logclient`, not `logclien`. Fix the typo, issue a restart, and verify the results:

```
service syslogd restart
```

```
logmsg: pri 56, flags 4, from logserv.example.com, msg syslogd: restart
```

syslogd: restarted

logmsg: pri 6, flags 4, from logserv.example.com, msg syslogd: kernel boot file is /boot/kernel/kernel.

logmsg: pri 166, flags 17, from logserv.example.com, msg Dec 10 20:55:02 <syslog.err> logserv.example.com syslogd: exiting on signal 2.

cvthname (192.168.1.10)

validate: dgram from IP 192.168.1.10, port 514, name logclient.example.com; accepted in rule 0.

logmsg: pri 15, flags 0, from logclient.example.com, msg Dec 11 02:01:28 trhodes: Test message 2

Logging to FILE /var/log/logclient.log
Logging to FILE /var/log/messages

At this point, the messages are being properly received and placed in the correct file.

As with any network service, security requirements should be considered before implementing a logging server. Log files may contain sensitive data about services enabled on the local host, user accounts, and configuration data. Network data sent from the client to the server will not be encrypted or password protected. If a need for encryption exists, consider using stunnel, which will transmit the logging data over an encrypted tunnel.

Local security is also an issue. Log files are not encrypted during use or after log rotation. Local users may access log files to gain additional insight into system configuration. Setting proper permissions on log files is critical. The built-in log rotator, newsyslog, supports setting permissions on newly created and rotated log files. Setting log files to mode 600 should prevent unwanted access by local users. Refer to newsyslog.conf(5) for additional information.

11.8.1. /etc configuration

There are several directories storing configuration, these directories have:

/etc - general system configuration.
/etc/defaults - system configuration defaults.
/etc/mail - sendmail(8) external settings as well as other MTA configuration.
/etc/ppp - user- and kernel-ppp program settings.
/usr/local/etc - installed application program configuration, may have application-program-specific subdirectories.
/usr/local/etc/rc.d - installed application program's rc(8) Script.
/var/db - automatically generated system configuration data, such as package data and locate(1) data.

11.8.2. Domain name system

11.8.2.1. /etc/resolv.conf - FreeBSD how to resolve internet domain name system (Internet Domain Name System, DNS) is by resolv.conf(5)
在/etc/resolv.conf中最常用的项目为:

- nameserver 解析程式（Resolver）要查询的名称伺服器IP位置，这些伺服器会依所列的顺序来查询，最多可以有三个。
- search 主机名称查询使用的搜寻清单。这通常会使用本主机名称所在的网络。
- domain 本地网域名称。

典型的/etc/resolv.conf会如下:

```
search example.com
nameserver 147.11.1.11
nameserver 147.11.100.30

search 与 domain 选项应择一使用。
```

当使用DHCP时, dhclient(8)通常会使用从DHCP伺服器所接收的资讯覆写/etc/resolv.conf。

/etc/hosts 是简单的文字资料库，会与DNS及NIS一併使用来提供主机名称与IP位址的对应。可将透过LAN所连接的在地电脑项目加入这个档案做最简单的命名，来代替设定一个named(8)伺服器。除此之外/etc/hosts可以用来自提供本地的网络名称记录，来减少常用名称向外部DNS伺服器查询的需求。

```bash
Host Database

This file should contain the addresses and aliases for local hosts that share this file. Replace 'my.domain' below with the domainname of your machine.

In the presence of the domain name service or NIS, this file may not be consulted at all; see /etc/nsswitch.conf for the resolution order.

::1 localhost localhost.my.domain
127.0.0.1 localhost localhost.my.domain

Imaginary network.
#10.0.0.2 myname.my.domain myname
#10.0.0.3 myfriend.my.domain myfriend
```
According to RFC 1918, you can use the following IP networks for private nets which will never be connected to the Internet:

   10.0.0.0    -   10.255.255.255  
   172.16.0.0  -   172.31.255.255  
   192.168.0.0 -   192.168.255.255  

In case you want to be able to connect to the Internet, you need real official assigned numbers. Do not try to invent your own network numbers but instead get one from your network provider (if any) or from your regional registry (ARIN, APNIC, LACNIC, RIPE NCC, or AfriNIC.)

```
/etc/hosts
```

The format is:

```
[Internet address] [official hostname] [alias1] [alias2] ...
```

Example:
```
10.0.0.1 myRealHostname.example.com myRealHostname foobar1 foobar2
```

Please see hosts(5) for more information.

Use `sysctl(8)` to adjust FreeBSD. `sysctl(8)` can be used to tweak FreeBSD systems, this contains many TCP/IP stacks and virtual memory system options, allowing experienced system administrators to quickly improve system performance. More than five hundred system variables can be used with `sysctl(8)` to read and set.

`systctl(8)` mainly provides two functions: reading and modifying system settings.

To check all the readable variables:
```
% sysctl -a
```

To read special variables, just specify the variable name:
```
% sysctl kern.maxproc
```
```
kern.maxproc: 1044
```

To set special variables, use the `variable= value` syntax:
```
% sysctl kern.maxfiles=5000
```
```
kern.maxfiles: 2088 -> 5000
```
sysctl 的设定值通常为字串、数字或布林值，其中布林值的1代表是，0代表否。

要在每次机器开机时自动设定一些变数可将其加入到 `/etc/sysctl.conf`。要取得更多资讯请参考 `sysctl.conf(5)`。

11.9.1. sysctl.conf

sysctl(8) 的设定档于 `/etc/sysctl.conf`，内容很像 `/etc/rc.conf`，设定数值使用 `variable=value` 格式。指定的数值会在系统进入多使用者模式时设定，但并非所有变数皆可在此模式设定。

例如，要关闭严格信号（Fatal signal）中止的记录并避免使用者看到其他使用者所执行的程序，可加入以下设定到 `/etc/sysctl.conf`:

```
Do not log fatal signal exits (e.g., sig 11)
kern.logsigexit=0

Prevent users from seeing information about processes that
are being run under another UID.
security.bsd.see_other_uids=0
```

11.9.2. 唯读 sysctl(8)

在有些情况下可能会需要修改唯读的 sysctl(8) 数值，而这会需要重新启动系统。

例如，某些笔电型号的 cardbus(4) 装置无法侦测到记忆体范围而且会失灵且有类似以下的错误:

```
cbb0: Could not map register memory
device_probe_and_attach: cbb0 attach returned 12
```

这个修正需要修改唯读的 sysctl(8) 设定。

加入 `hw.pci.allow_unsupported_io_range=1` 到 `/boot/loader.conf` 然后重新启动。现在 cardbus(4) 应可正常运作。

11.10. 调校磁碟

接下来的章节会讨论在磁碟装置上各种可调校的机制与选项。在大多数情况下，有使用机械元件的硬盘，如 SCSI 磁碟机，会导致整体系统效能低下的瓶颈。虽然已经有关于不使用机械元件的磁碟机解决方案，如固态硬盘，但在调校磁碟时，建议可以利用 `iostat(8)` 指令的能力来测试各种对系统的变更，这个指令可以让使用者取得系统 IO 相关的有用资讯。

11.10.1. Sysctl 变数

11.10.1.1. vfs.vmiodirenable

The `vfs.vmiodirenable` sysctl(8) variable may be set to either 0 (off) or 1 (on). It is set to 1 by default.

This variable controls how directories are cached by the system. Most directories are small, using just a single fragment (typically 1 K) in the file system and typically 512 bytes in the buffer cache.

With this variable turned off, the buffer cache will only cache a fixed number of directories, even if the system has a huge amount of memory. When turned on, this sysctl(8) allows the buffer cache to use the VM page cache to cache the directories, making all the memory available for caching directories. However, the minimum in-core memory used to cache a directory is the physical page size (typically 4 K) rather than 512 bytes. Keeping this option enabled is recommended if the system is running any services which manipulate large numbers of files. Such services can include web caches, large mail systems, and news systems. Keeping this option on will generally not reduce
11.10.1.2. vfs.write_behind

The vfs.write_behind sysctl(8) variable defaults to 1 (on). This tells the file system to issue media writes as full clusters are collected, which typically occurs when writing large sequential files. This avoids saturating the buffer cache with dirty buffers when it would not benefit I/O performance. However, this may stall processes and under certain circumstances should be turned off.

11.10.1.3. vfs.hirunningspace

The vfs.hirunningspace sysctl(8) variable determines how much outstanding write I/O may be queued to disk controllers system-wide at any given instance. The default is usually sufficient, but on machines with many disks, try bumping it up to four or five megabytes. Setting too high a value which exceeds the buffer cache's write threshold can lead to bad clustering performance. Do not set this value arbitrarily high as higher write values may add latency to reads occurring at the same time.

There are various other buffer cache and VM page cache related sysctl(8) values. Modifying these values is not recommended as the VM system does a good job of automatically tuning itself.

11.10.1.4. vm.swap_idle_enabled

The vm.swap_idle_enabled sysctl(8) variable is useful in large multi-user systems with many active login users and lots of idle processes. Such systems tend to generate continuous pressure on free memory reserves. Turning this feature on and tweaking the swapout hysteresis (in idle seconds) via vm.swap_idle_threshold1 and vm.swap_idle_threshold2 depresses the priority of memory pages associated with idle processes more quickly then the normal pageout algorithm. This gives a helping hand to the pageout daemon. Only turn this option on if needed, because the tradeoff is essentially pre-page memory sooner rather than later which eats more swap and disk bandwidth. In a small system this option will have a determinable effect, but in a large system that is already doing moderate paging, this option allows the VM system to stage whole processes into and out of memory easily.

11.10.1.5. hw.ata.wc

Turning off IDE write caching reduces write bandwidth to IDE disks, but may sometimes be necessary due to data consistency issues introduced by hard drive vendors. The problem is that some IDE drives lie about when a write completes. With IDE write caching turned on, IDE hard drives write data to disk out of order and will sometimes delay writing some blocks indefinitely when under heavy disk load. A crash or power failure may cause serious file system corruption. Check the default on the system by observing the hw.ata.wc sysctl(8) variable. If IDE write caching is turned off, one can set this read-only variable to 1 in /boot/loader.conf in order to enable it at boot time.

For more information, refer to ata(4).

11.10.1.6. SCSI_DELAY (kern.cam.scsi_delay)

The SCSI_DELAY kernel configuration option may be used to reduce system boot times. The defaults are fairly high and can be responsible for 15 seconds of delay in the boot process. Reducing it to 5 seconds usually works with modern drives. The kern.cam.scsi_delay boot time tunable should be used. The tunable and kernel configuration option accept values in terms of milliseconds and not seconds.
A file system cannot be modified with `tunefs(8)` while it is mounted. A good time to enable Soft Updates is before any partitions have been mounted, in single-user mode. Soft Updates is recommended for UFS file systems as it drastically improves meta-data performance, mainly file creation and deletion, through the use of a memory cache. There are two downsides to Soft Updates to be aware of. First, Soft Updates guarantee file system consistency in the case of a crash, but could easily be several seconds or even a minute behind updating the physical disk. If the system crashes, unwritten data may be lost. Secondly, Soft Updates delay the freeing of file system blocks. If the root file system is almost full, performing a major update, such as `make installworld`, can cause the file system to run out of space and the update to fail.

11.10.2.1. 有关软更新的更多信息

Meta-data updates are updates to non-content data like inodes or directories. There are two traditional approaches to writing a file system's meta-data back to disk. Historically, the default behavior was to write out meta-data updates synchronously. If a directory changed, the system waited until the change was actually written to disk. The file data buffers (file contents) were passed through the buffer cache and backed up to disk later on asynchronously. The advantage of this implementation is that it operates safely. If there is a failure during an update, meta-data is always in a consistent state. A file is either created completely or not at all. If the data blocks of a file did not find their way out of the buffer cache onto the disk by the time of the crash, `fsck(8)` recognizes this and repairs the file system by setting the file length to 0. Additionally, the implementation is clear and simple. The disadvantage is that meta-data changes are slow. For example, `rm -r` touches all the files in a directory sequentially, but each directory change will be written synchronously to the disk. This includes updates to the directory itself, to the inode table, and possibly to indirect blocks allocated by the file. Similar considerations apply for unrolling large hierarchies using `tar -x`.

The second approach is to use asynchronous meta-data updates. This is the default for a UFS file system mounted with `mount -o async`. Since all meta-data updates are also passed through the buffer cache, they will be intermixed with the updates of the file content data. The advantage of this implementation is there is no need to wait until each meta-data update has been written to disk, so all operations which cause huge amounts of meta-data updates work much faster than in the synchronous case. This implementation is still clear and simple, so there is a low risk for bugs creeping into the code. The disadvantage is that there is no guarantee for a consistent state of the file system. If there is a failure during an operation that updated large amounts of meta-data, like a power failure or someone pressing the reset button, the file system will be left in an unpredictable state. There is no opportunity to examine the state of the file system when the system comes up again as the data blocks of a file could already have been written to the disk while the updates of the inode table or the associated directory were not. It is impossible to implement a `fsck(8)` which is able to clean up the resulting chaos because the necessary information is not available on the disk. If the file system has been damaged beyond repair, the only choice is to reformat it and restore from backup.

The usual solution for this problem is to implement dirty region logging, which is also referred to as journaling. Meta-data updates are still written synchronously, but only into a small region of the disk. Later on, they are moved to their proper location. Because the logging area is a small, contiguous region on the disk, there are no long distances for the disk heads to move, even during heavy operations, so these operations are quicker than synchronous updates. Additionally, the complexity of the implementation is limited, so the risk of bugs being present is low. A disadvantage is that all meta-data is written twice, once into the logging region and once to the proper location, so performance "pessimization" might result. On the other hand, in case of a crash, all pending meta-data operations can be either quickly rolled back or completed from the logging area after the system comes up again, resulting in a fast file system startup.

Kirk McKusick, the developer of Berkeley FFS, solved this problem with Soft Updates. All pending...
meta-data updates are kept in memory and written out to disk in a sorted sequence ("ordered meta-data updates"). This has the effect that, in case of heavy meta-data operations, later updates to an item "catch" the earlier ones which are still in memory and have not already been written to disk. All operations are generally performed in memory before the update is written to disk and the data blocks are sorted according to their position so that they will not be on the disk ahead of their meta-data. If the system crashes, an implicit "log rewind" causes all operations which were not written to the disk appear as if they never happened. A consistent file system state is maintained that appears to be the one of 30 to 60 seconds earlier. The algorithm used guarantees that all resources in use are marked as such in their blocks and inodes. After a crash, the only resource allocation error that occurs is that resources are marked as "used" which are actually "free". fsck(8) recognizes this situation, and frees the resources that are no longer used. It is safe to ignore the dirty state of the file system after a crash by forcibly mounting it with mount -f. In order to free resources that may be unused, fsck(8) needs to be run at a later time. This is the idea behind the background fsck(8): at system startup time, only a snapshot of the file system is recorded and fsck(8) is run afterwards. All file systems can then be mounted "dirty", so the system startup proceeds in multi-user mode. Then, background fsck(8) is scheduled for all file systems where this is required, to free resources that may be unused. File systems that do not use Soft Updates still need the usual foreground fsck(8).

The advantage is that meta-data operations are nearly as fast as asynchronous updates and are faster than logging, which has to write the meta-data twice. The disadvantages are the complexity of the code, a higher memory consumption, and some idiosyncrasies. After a crash, the state of the file system appears to be somewhat "older". In situations where the standard synchronous approach would have caused some zero-length files to remain after the fsck(8), these files do not exist at all with Soft Updates because neither the meta-data nor the file contents have been written to disk. Disk space is not released until the updates have been written to disk, which may take place some time after running rm(1). This may cause problems when installing large amounts of data on a file system that does not have enough free space to hold all the files twice.

11.11. 調校核心

11.11.1. 檔案/程序限

11.11.1.1. kern.maxfiles

The kern.maxfiles sysctl(8) variable can be raised or lowered based upon system requirements. This variable indicates the maximum number of file descriptors on the system. When the file descriptor table is full, file: table is full will show up repeatedly in the system message buffer, which can be viewed using dmesg(8).

Each open file, socket, or fifo uses one file descriptor. A large-scale production server may easily require many thousands of file descriptors, depending on the kind and number of services running concurrently.

In older FreeBSD releases, the default value of kern.maxfiles is derived from maxusers in the kernel configuration file. kern.maxfiles grows proportionally to the value of maxusers. When compiling a custom kernel, consider setting this kernel configuration option according to the use of the system. From this number, the kernel is given most of its pre-defined limits. Even though a production machine may not have 256 concurrent users, the resources needed may be similar to a high-scale web server.

The read-only sysctl(8) variable kern.maxusers is automatically sized at boot based on the amount of memory available in the system, and may be determined at run-time by inspecting the value of kern.maxusers. Some systems require larger or smaller values of kern.maxusers and values of 64, 128, and 256 are not uncommon. Going above 256 is not recommended unless a huge number of file descriptors is needed. Many of the tunable values set to their defaults by kern.maxusers may be individually overridden at boot-time or run-time in /boot/loader.conf. Refer to loader.conf(5) and /boot/defaults/loader.conf for more details and some hints.

In older releases, the system will auto-tune maxusers if it is set to 0. When setting this option, set maxusers to at least 4, especially if the system runs Xorg or is used to compile software. The most
The maximum number of processes, which is set to $20 + 16 \times \text{maxusers}$, can only be 36 if maxusers is set to 1. Even a simple task like reading a manual page will start up nine processes to filter, decompress, and view it. Setting maxusers to 64 allows up to 1044 simultaneous processes, which should be enough for nearly all uses. If, however, the error is displayed when trying to start another program, or a server is running with a large number of simultaneous users, increase the number and rebuild.

maxusers does not limit the number of users which can log into the machine. It instead sets various table sizes to reasonable values considering the maximum number of users on the system and how many processes each user will be running.

The kern.ipc.soacceptqueue sysctl(8) variable limits the size of the listen queue for accepting new TCP connections. The default value of 128 is typically too low for robust handling of new connections on a heavily loaded web server. For such environments, it is recommended to increase this value to 1024 or higher. A service such as sendmail(8), or Apache may itself limit the listen queue size, but will often have a directive in its configuration file to adjust the queue size. Large listen queues do a better job of avoiding Denial of Service (DoS) attacks.

The NMBCLUSTERS kernel configuration option dictates the amount of network Mbufs available to the system. A heavily-trafficked server with a low number of Mbufs will hinder performance. Each cluster represents approximately 2 K of memory, so a value of 1024 represents 2 megabytes of kernel memory reserved for network buffers. A simple calculation can be done to figure out how many are needed. A web server which maxes out at 1000 simultaneous connections where each connection uses a 6 K receive and 16 K send buffer, requires approximately 32 MB worth of network buffers to cover the web server. A good rule of thumb is to multiply by 2, so $2 \times 32 \text{ MB} / 2 \text{ KB} = 32768$. Values between 4096 and 32768 are recommended for machines with greater amounts of memory. Never specify an arbitrarily high value for this parameter as it could lead to a boot time crash. To observe network cluster usage, use -m with netstat(1).

The kern.ipc.nmbclusters loader tunable should be used to tune this at boot time. Only older versions of FreeBSD will require the use of the NMBCLUSTERS kernel config(8) option.

For busy servers that make extensive use of the sendfile(2) system call, it may be necessary to increase the number of sendfile(2) buffers via the NSFBUFS kernel configuration option or by setting its value in /boot/loader.conf (see loader(8) for details). A common indicator that this parameter needs to be adjusted is when processes are seen in the sfbufa state. The sysctl(8) variable kern.ipc.nsfbufs is read-only. This parameter nominally scales with kern.maxusers, however it may be necessary to tune accordingly.

Even though a socket has been marked as non-blocking, calling sendfile(2) on the non-blocking socket may result in the sendfile(2) call blocking until enough struct sf_buf's are made available.

The net.inet.ip.portrange.* sysctl(8) variables control the port number ranges automatically bound to TCP and UDP sockets. There are three ranges: a low range, a default range, and a high range. Most network programs use the default range which is controlled by net.inet.ip.portrange.first and net.inet.ip.portrange.last, which default to 1024 and 5000, respectively. Bound port ranges are used for outgoing connections and it is possible to run the system out of ports under certain circumstances. This most commonly occurs when running a heavily loaded web proxy. The port range is not an issue when running a server which handles mainly incoming connections, such as a web server, or has a limited number of outgoing connections, such as a mail relay. For situations where there is a shortage of ports, it is recommended to increase net.inet.ip.portrange.last modestly. A value of 10000, 20000, or 30000 may be reasonable. Consider firewall effects when changing the port range. Some firewalls may block large ranges of ports, usually low-numbered.
ports, and expect systems to use higher ranges of ports for outgoing connections. For this reason, it is not recommended that the value of `net.inet.ip.portrange.first` be lowered.

11.11.2.2. TCP bandwidth delay product limiting can be enabled by setting the `net.inet.tcp.inflight.enable` `sysctl(8)` variable to 1. This instructs the system to attempt to calculate the bandwidth delay product for each connection and limit the amount of data queued to the network to just the amount required to maintain optimum throughput.

This feature is useful when serving data over modems, Gigabit Ethernet, high speed WAN links, or any other link with a high bandwidth delay product, especially when also using window scaling or when a large send window has been configured. When enabling this option, also set `net.inet.tcp.inflight.debug` to 0 to disable debugging. For production use, setting `net.inet.tcp.inflight.min` to at least 6144 may be beneficial. Setting high minimums may effectively disable bandwidth limiting, depending on the link. The limiting feature reduces the amount of data built up in intermediate route and switch packet queues and reduces the amount of data built up in the local host's interface queue. With fewer queued packets, interactive connections, especially over slow modems, will operate with lower Round Trip Times. This feature only effects server side data transmission such as uploading. It has no effect on data reception or downloading.

Adjusting `net.inet.tcp.inflight.stab` is not recommended. This parameter defaults to 20, representing 2 maximal packets added to the bandwidth delay product window calculation. The additional window is required to stabilize the algorithm and improve responsiveness to changing conditions, but it can also result in higher `ping(8)` times over slow links, though still much lower than without the inflight algorithm. In such cases, try reducing this parameter to 15, 10, or 5 and reducing `net.inet.tcp.inflight.min` to a value such as 3500 to get the desired effect. Reducing these parameters should be done as a last resort only.

11.11.3. 虚擬記憶體

11.11.3.1. `kern.maxvnodes`

A vnode is the internal representation of a file or directory. Increasing the number of vnodes available to the operating system reduces disk I/O. Normally, this is handled by the operating system and does not need to be changed. In some cases where disk I/O is a bottleneck and the system is running out of vnodes, this setting needs to be increased. The amount of inactive and free RAM will need to be taken into account.

To see the current number of vnodes in use:
```bash
sysctl vfs.numvnodes
```

```bash
tvfs.numvnodes: 91349
```

To see the maximum vnodes:
```bash
sysctl kern.maxvnodes
```

```bash
kern.maxvnodes: 100000
```

If the current vnode usage is near the maximum, try increasing `kern.maxvnodes` by a value of 1000. Keep an eye on the number of `vfs.numvnodes`. If it climbs up to the maximum again, `kern.maxvnodes` will need to be increased further. Otherwise, a shift in memory usage as reported by `top(1)` should be visible and more memory should be active.
有時系統會需要更多的交换空间，本章节会介绍两种增加交换空间的方式：一种是在现有的分割区或新的硬盘增加交换空间，另一种则是在现有的分割区中建立一个交换档。

11.12.1. 使用新硬盘或既有分割区增加交换空间
在新的磁碟上增加交换空间比使用既有的分割区会有较好的效率。设定分割区与硬碟在加入磁碟中有说明，另外规划分割区配置会讨论到分割区的配置与交换分割区大小需考量的事项。

使用 `swapon` 来增加交换分割区到系统，例如:
```
swapon /dev/ada1s1b
```

可以使用任何尚未挂载过、甚至已经有包含资料的分割区做为交换空间，但在含有资料的分割区上使用 `swapon` 会覆盖并清除该分割区上所有的资料，请在执行 `swapon` 之前确认真的要使用该分割区增加交换空间。

要在开机时自动加入此交换分割区，可加入以下项目到 `/etc/fstab`:
```
/dev/ada1s1b none swap sw 0 0
```
请参考 `fstab(5)` 来取得在 `/etc/fstab` 中项目的说明。更多有关 `swapon` 的资讯可以在 `swapon(8)` 找到。

11.12.2. 建立交换档
以下例子会建立一个64M的交换档于 `/usr/swap0` 来取代使用分割区建立交换空间。

使用交换档开启交换空间前需要在核心编译或载入 `md(4)` 所需的模组，请参考设定 FreeBSD 核心了理解有关编译自订核心的资讯。

例26. 建立交换档于 FreeBSD 10.X 及以后版本
1. 建立交换档:
   ```
 # dd if=/dev/zero of=/usr/swap0 bs=1m count=64
   ```
2. 在新档案设定适当的权限:
   ```
 # chmod 0600 /usr/swap0
   ```
3. 加入行到 `/etc/fstab` 以让系统知道交换档的资讯:
   ```
 md99 none swap sw,file=/usr/swap0,late 0 0
   ```

已使用 `md(4)` 裝置的 `md99`，保留较低的装置编号供互动操作时使用。
交換空間會於系統啟動時增加。若要立即增加交換空間，请参考 `swapon(8)`:

```
swapon -aL
```

例

27. 建立交換檔於 FreeBSD 9.X 及先前版本

1. 建立交換檔 `/usr/swap0`:

```
dd if=/dev/zero of=/usr/swap0 bs=1m count=64
```

2. 設定適當的權限於 `/usr/swap0`:

```
chmod 0600 /usr/swap0
```

3. 在 `/etc/rc.conf` 開啟交換檔:

```
swapfile="/usr/swap0" # Set to name of swap file
```

4. 交換空間會於系統啟動時增加。若要立即增加交換空間，可指定一個未使用的記憶體裝置。請參考記憶體磁碟取得更多有關記憶體裝置的資訊。

```
mdconfig -a -t vnode -f /usr/swap0 -u 0 && swapon /dev/md0
```

電源與資源管理以有效率的方式運用硬體資源是很重要的，電源與資源管理讓作業系統可以監控系統的限制，並且在系統溫度意外升高時能發出警報。早期提供電源管理的規範是進階電源管理 (Advanced Power Management, APM)，APM 可根據系統的使用狀況來控制電源用量。然而，使用 APM 要作業系統來管理系統的電源用量和溫度屬性是困難且沒有彈性，因為硬體是由 BIOS 所管理，使用者對電源管理設定只有有限的設定性與可見性，且 APMBIOS 是由供應商提供且特定於某些硬體平臺，而作業系統中必須透過 APM 驅動程式作為中介存取 APM 軟體介面才能夠管理電源等級。

在 APM 有四個主要的問題。第一，電源管理是由供應商特定的 BIOS 來完成，與作業系統是分開的。例如，使用者可在 APMBIOS 設定硬碟的閒置時同，若過時間時 BIOS 可在未徵得作業系統的同意下降低硬碟的轉速。第二，APM 的邏輯是內嵌在 BIOS 當中的，並且在作業系統範圍之外運作，這代表使用者只能夠透過燒錄新的韌體到 ROM 來修正 APMBIOS 中的問題，而這樣的程序是危險的，若失敗，可能會讓系統進入無法復原的狀態。第三，APM 是供應商特定的技術，這代表有許多複雜的作業，在一個供應商的 BIOS 找到的問題在其他的供應商卻沒有解決。最後一點，APMBIOS 沒有足夠的空間來實作複雜的電源管理政策或良好適應主機用途的程式。

Plug and Play BIOS (PNPBIOS) 在很多情況下並不可靠，PNPBIOS 是 16 位元的技術，所以作業系統必須模擬 16 位元才能存取 PNPBIOS。FreeBSD 提供了一個 APM 驅動程式來做 APM，應可用在 2000 年之前所製造的系統，該驅動程式的說明於 `apm(4)`。APM 的後繼者是進階設置與電源介面 (Advanced Configuration and Power Interface, ACPI)。ACPI 是 215
ACPI is present in all modern computers that conform to the ia32 (x86), ia64 (Itanium), and amd64 (AMD) architectures. The full standard has many features including CPU performance management, power planes control, thermal zones, various battery systems, embedded controllers, and bus enumeration. Most systems implement less than the full standard. For instance, a desktop system usually only implements bus enumeration while a laptop might have cooling and battery management support as well. Laptops also have suspend and resume, with their own associated complexity.

An ACPI-compliant system has various components. The BIOS and chipset vendors provide various fixed tables, such as FADT, in memory that specify things like the APIC map (used for SMP), config registers, and simple configuration values. Additionally, a bytecode table, the Differentiated System Description Table DSDT, specifies a tree-like name space of devices and methods.

The ACPI driver must parse the fixed tables, implement an interpreter for the bytecode, and modify device drivers and the kernel to accept information from the ACPI subsystem. For FreeBSD, Intel™ has provided an interpreter (ACPI-CA) that is shared with Linux™ and NetBSD. The path to the ACPI-CA source code is `src/sys/contrib/dev/acpica`. The glue code that allows ACPI-CA to work on FreeBSD is in `src/sys/dev/acpica/Osd`. Finally, drivers that implement various ACPI devices are found in `src/sys/dev/acpica`.

For ACPI to work correctly, all the parts have to work correctly. Here are some common problems, in order of frequency of appearance, and some possible workarounds or fixes. If a fix does not resolve the issue, refer to [取得與回報除錯資訊](取得與回報除錯資訊) for instructions on how to submit a bug report.

11.13.2.1. 滑鼠問題
In some cases, resuming from a suspend operation will cause the mouse to fail. A known workaround is to add `hint.psm.0.flags="0x3000"` to `/boot/loader.conf`.

11.13.2.2. 待機/喚醒
ACPI has three suspend to RAM (STR) states, S1-S3, and one suspend to disk state (STD), called S4. STD can be implemented in two separate ways. The S4 BIOS is a BIOS-assisted suspend to disk and S4 OS is implemented entirely by the operating system. The normal state the system is in when plugged in but not powered up is "soft off" (S5).
Use `sysctl hw.acpi` to check for the suspend-related items. These example results are from a Thinkpad:

- `hw.acpi.supported_sleep_state: S3 S4 S5`
- `hw.acpi.s4bios: 0`

Use `acpiconf -s` to test S3, S4, and S5. An `s4bios` of one (1) indicates S4 BIOS support instead of S4 operating system support.

When testing suspend/resume, start with S1, if supported. This state is most likely to work since it does not require much driver support. No one has implemented S2, which is similar to S1. Next, try S3. This is the deepest STR state and requires a lot of driver support to properly reinitialize the hardware.

A common problem with suspend/resume is that many device drivers do not save, restore, or reinitialize their firmware, registers, or device memory properly. As a first attempt at debugging the problem, try:

```
sysctl debug.bootverbose=1
sysctl debug.acpi.suspend_bounce=1
acpiconf -s 3
```

This test emulates the suspend/resume cycle of all device drivers without actually going into S3 state. In some cases, problems such as losing firmware state, device watchdog time out, and retrying forever, can be captured with this method. Note that the system will not really enter S3 state, which means devices may not lose power, and many will work fine even if suspend/resume methods are totally missing, unlike real S3 state.

Harder cases require additional hardware, such as a serial port and cable for debugging through a serial console, a Firewire port and cable for using `dcons(4)`, and kernel debugging skills.

To help isolate the problem, unload as many drivers as possible. If it works, narrow down which driver is the problem by loading drivers until it fails again. Typically, binary drivers like `nvidia.ko`, display drivers, and USB will have the most problems while Ethernet interfaces usually work fine. If drivers can be properly loaded and unloaded, automate this by putting the appropriate commands in `/etc/rc.suspend` and `/etc/rc.resume`. Try setting `hw.acpi.reset_video` to 1 if the display is messed up after resume. Try setting longer or shorter values for `hw.acpi.sleep_delay` to see if that helps.

Try loading a recent Linux™ distribution to see if suspend/resume works on the same hardware. If it works on Linux™, it is likely a FreeBSD driver problem. Narrowing down which driver causes the problem will assist developers in fixing the problem. Since the ACPI maintainers rarely maintain other drivers, such as sound or ATA, any driver problems should also be posted to the `freebsd-current` list and mailed to the driver maintainer. Advanced users can include debugging `printf(3)`s in a problematic driver to track down where in its resume function it hangs.

Finally, try disabling ACPI and enabling APM instead. If suspend/resume works with APM, stick with APM, especially on older hardware (pre-2000). It took vendors a while to get ACPI support correct and older hardware is more likely to have BIOS problems with ACPI.

11.13.2.3. 系統無回應

Most system hangs are a result of lost interrupts or an interrupt storm. Chipsets may have problems based on boot, how the BIOS configures interrupts before correctness of the APIC (MADT) table, and routing of the System Control Interrupt (SCI).

Interrupt storms can be distinguished from lost interrupts by checking the output of `vmstat -i` and looking at the line that has `acpi0`. If the counter is increasing at more than a couple per second,
there is an interrupt storm. If the system appears hung, try breaking to DDB (CTRL+ALT+ESC on console) and type show interrupts.

When dealing with interrupt problems, try disabling APIC support with hint.apic.0.disabled="1" in /boot/loader.conf.

11.13.2.4. Panics are relatively rare for ACPI and are the top priority to be fixed. The first step is to isolate the steps to reproduce the panic, if possible, and get a backtrace. Follow the advice for enabling options DDB and setting up a serial console in or setting up a dump partition. To get a backtrace in DDB, use tr. When handwriting the backtrace, get at least the last five and the top five lines in the trace.

Then, try to isolate the problem by booting with ACPI disabled. If that works, isolate the ACPI subsystem by using various values of debug.acpi.disable. See acpi(4) for some examples.

11.13.2.5. System in待機 or 關機後仍開機 First, try setting hw.acpi.disable_on_poweroff="0" in /boot/loader.conf. This keeps ACPI from disabling various events during the shutdown process. Some systems need this value set to 1 (the default) for the same reason. This usually fixes the problem of a system powering up spontaneously after a suspend or poweroff.

11.13.2.6. BIOS 有問題的Bytecode Some BIOS vendors provide incorrect or buggy bytecode. This is usually manifested by kernel console messages like this:

```
ACPI-1287: *** Error: Method execution failed [_SB_.PCI0.LPC0.FIGD._STA]
(Node 0xc3f6d160), AE_NOT_FOUND
```

Often, these problems may be resolved by updating the BIOS to the latest revision. Most console messages are harmless, but if there are other problems, like the battery status is not working, these messages are a good place to start looking for problems.

11.13.3. 覆蓋預設的AML The BIOS bytecode, known as ACPI Machine Language (AML), is compiled from a source language called ACPI Source Language (ASL). The AML is found in the table known as the Differentiated System Description Table (DSDT).

The goal of FreeBSD is for everyone to have working ACPI without any user intervention. Workarounds are still being developed for common mistakes made by BIOS vendors. The Microsoft™ interpreter (acpi.sys and acpiec.sys) does not strictly check for adherence to the standard, and thus many BIOS vendors who only test ACPI under Windows™ never fix their ASL. FreeBSD developers continue to identify and document which non-standard behavior is allowed by Microsoft™’s interpreter and replicate it so that FreeBSD can work without forcing users to fix the ASL.

To help identify buggy behavior and possibly fix it manually, a copy can be made of the system’s ASL. To copy the system’s ASL to a specified file name, use acpidump with -t, to show the contents of the fixed tables, and -d, to disassemble the AML:

```
acpidump -td > my.asl
```

Some AML versions assume the user is running Windows™. To override this, set...
hw.acpi.osname = "Windows 2009" in /boot/loader.conf, using the most recent Windows™ version listed in the ASL.

Other workarounds may require my.asl to be customized. If this file is edited, compile the new ASL using the following command. Warnings can usually be ignored, but errors are bugs that will usually prevent ACPI from working correctly.

```
iasl -f my.asl
```

Including -f forces creation of the AML, even if there are errors during compilation. Some errors, such as missing return statements, are automatically worked around by the FreeBSD interpreter. The default output filename for iasl is DSDT.aml. Load this file instead of the BIOS's buggy copy, which is still present in flash memory, by editing /boot/loader.conf as follows:

```
acpi_dsdt_load="YES"
acpi_dsdt_name="/boot/DSDT.aml"
```

Be sure to copy DSDT.aml to /boot, then reboot the system. If this fixes the problem, send a diff(1) of the old and new ASL to freebsd-acpi so that developers can work around the buggy behavior in acpica.

11.13.4. 取得與回報除錯資訊

The ACPI driver has a flexible debugging facility. A set of subsystems and the level of verbosity can be specified. The subsystems to debug are specified as layers and are broken down into components (ACPI_ALL_COMPONENTS) and ACPI hardware support (ACPI_ALL_DRIVERS). The verbosity of debugging output is specified as the level and ranges from just report errors (ACPI_LV_ERROR) to everything (ACPI_LV_VERBOSE). The level is a bitmask so multiple options can be set at once, separated by spaces. In practice, a serial console should be used to log the output so it is not lost as the console message buffer flushes. A full list of the individual layers and levels is found in acpi(4).

Debugging output is not enabled by default. To enable it, add options ACPI_DEBUG to the custom kernel configuration file if ACPI is compiled into the kernel. Add ACPI_DEBUG=1 to /etc/make.conf to enable it globally. If a module is used instead of a custom kernel, recompile just the acpi.ko module as follows:

```
cd /sys/modules/acpi/acpi && make clean && make ACPI_DEBUG=1
```

Copy the compiled acpi.ko to /boot/kernel and add the desired level and layer to /boot/loader.conf.

The entries in this example enable debug messages for all ACPI components and hardware drivers and output error messages at the least verbose level:

```
debug.acpi.layer="ACPI_ALL_COMPONENTS ACPI_ALL_DRIVERS"
debug.acpi.level="ACPI_LV_ERROR"
```

If the required information is triggered by a specific event, such as a suspend and then resume, do not modify /boot/loader.conf. Instead, use sysctl to specify the layer and level after booting and preparing the system for the specific event. The variables which can be set using sysctl are named the same as the tunables in /boot/loader.conf.

Once the debugging information is gathered, it can be sent to freebsd-acpi so that it can be used by the FreeBSD ACPI maintainers to identify the root cause of the problem and to develop a solution.
Before submitting debugging information to this mailing list, ensure the latest BIOS version is installed and, if available, the embedded controller firmware version.

When submitting a problem report, include the following information:

• Description of the buggy behavior, including system type, model, and anything that causes the bug to appear. Note as accurately as possible when the bug began occurring if it is new.

• The output of `dmesg` after running `boot -v`, including any error messages generated by the bug.

• The `dmesg` output from `boot -v` with ACPI disabled, if disabling ACPI helps to fix the problem.

• Output from `sysctl hw.acpi`. This lists which features the system offers.

• The URL to a pasted version of the system's ASL. Do not send the ASL directly to the list as it can be very large. Generate a copy of the ASL by running this command:

```
acpidump -dt > name-system.asl
```

Substitute the login name for `name` and manufacturer/model for `system`. For example, use `njl-FooCo6000.asl`.

Most FreeBSD developers watch the FreeBSD-CURRENT mailing list, but one should submit problems to `freebsd-acpi` to be sure it is seen. Be patient when waiting for a response. If the bug is not immediately apparent, submit a bug report. When entering a PR, include the same information as requested above. This helps developers to track the problem and resolve it. Do not send a PR without emailing `freebsd-acpi` first as it is likely that the problem has been reported before.

11.13.5. 参考文献

More information about ACPI may be found in the following locations:

• The FreeBSD ACPI Mailing List Archives (https://lists.freebsd.org/pipermail/freebsd-acpi/)

• The ACPI Specification

• `acpi(4)`, `acpi_thermal(4)`, `acpidump(8)`, `iasl(8)`, and `acpidb(8)`
FreeBSD

FreeBSD is an open-source operating system that provides a robust and reliable foundation for building and deploying applications. This chapter will introduce you to the FreeBSD boot process and the tools available for managing and customizing FreeBSD.

12.1. FreeBSD Boot Process

When you start your FreeBSD system, the boot process begins with the detection and loading of the core FreeBSD kernel. This process is known as the bootstrap (Booting) process.

The bootstrap process starts by loading the kernel from the hard drive or other storage device. The kernel then initializes the hardware and prepares the system for use. During this process, the kernel loads the necessary modules and configures the system.

12.2. FreeBSD Procedure

The FreeBSD boot process includes several steps that are executed in a specific order. These steps are designed to ensure a smooth and efficient transition from the boot loader to the FreeBSD kernel.

• The bootloader, which is responsible for loading the kernel, displays a splash screen (Splash screen) that provides information about the system.
• The bootloader then loads the kernel into memory. The kernel then initializes the hardware and prepares the system for use.
• The kernel loads the necessary modules and configures the system.
• The system then proceeds to load the necessary drivers and applications.
• The final stage of the boot process involves the loading of the FreeBSD file system and the execution of the init(8) process, which is responsible for starting other processes and services.

12.3. FreeBSD Device Hints

FreeBSD uses device hints to provide information about the physical devices in the system. These hints are used by the bootloader to determine the appropriate boot loader and the correct kernel.

Device hints are specified in a configuration file (Device Hints) that is stored on the system's hard drive. The configuration file provides information about the storage devices in the system, including their size, type, and location.

12.4. FreeBSD Splash Screen

The splash screen (Splash screen) is an important part of the FreeBSD boot process. It provides information about the system and allows users to select the appropriate boot loader.

The splash screen is displayed when the bootloader loads the kernel. It provides information about the system's hardware and software, including the number of processors, the amount of memory, and the version of the FreeBSD kernel.

12.5. FreeBSD Boot Loader

The bootloader is responsible for loading the kernel into memory. It is a crucial component of the boot process and is used to load the kernel from the hard drive or other storage device.

The bootloader is a generic term that refers to the program that loads the kernel into memory. It is responsible for detecting the kernel image and loading it into memory.

12.6. FreeBSD Boot Loader Options

The bootloader provides a number of options that can be used to customize the boot process. These options are specified in the bootloader configuration file (Device Hints) and can be used to control the boot loader's behavior.

• The bootloader can be configured to load the kernel from a specific device or partition.
• The bootloader can be configured to load the kernel from a specific location on the storage device.
• The bootloader can be configured to load the kernel from a specific kernel image.

12.7. FreeBSD Boot Manager

The boot manager is a program that provides a graphical interface for managing the boot process. It is used to select the appropriate boot loader and to configure the bootloader options.

The boot manager is a graphical application that provides a simple interface for managing the boot process. It is used to select the appropriate boot loader and to configure the bootloader options.

12.8. FreeBSD Boot Loader Compatibility

FreeBSD supports a wide range of boot loaders, including UEFI, GRUB, and other custom boot loaders.

• UEFI is a standard for booting computer systems that provides a unified interface for boot loaders. FreeBSD supports UEFI and can be used with a variety of UEFI boot loaders.
• GRUB is a widely used boot loader that is compatible with a wide range of operating systems. FreeBSD supports GRUB and can be used with a variety of GRUB boot loaders.

12.9. FreeBSD Boot Loader Performance

The bootloader is a crucial component of the boot process and is responsible for loading the kernel into memory. It is essential to have a fast and efficient bootloader to ensure a smooth and efficient boot process.

The bootloader can be optimized by using a fast hardware-assisted boot loader or by using a lightweight boot loader that is designed to load the kernel quickly.

12.10. FreeBSD Boot Loader Security

The bootloader is a critical component of the boot process and is responsible for loading the kernel into memory. It is essential to have a secure bootloader to protect the system from attack.

The bootloader can be secured by using a trusted boot loader, such as Secure boot or UEFI Secure boot. These boot loaders are designed to prevent unauthorized access to the system and to ensure the integrity of the boot process.
能夠提供更具有彈性的載入程式。核心會接著開始偵測裝置並初始化這些裝置供使用。核心開機程序完成之後，核心便會傳送控制權給使用者程序\textit{init(8)},這個程序會確保磁碟在可以使用的狀態，然後啟動使用者層級的資源設置來掛載檔案系統、設定網絡卡以能夠連線網路、啟動那些被設定在開機時要啟動的程序。本章節將更詳細介紹這些階段並示範如\textit{FreeBSD}開機程序互動。

12.2.1. 開機管理程式有時會稱在MBR中的開機管理程式為開機程序的第零階段(Stage zero)，\textit{FreeBSD}預設會使用\textit{boot0}開機管理程式。由\textit{FreeBSD}安裝程式所安裝的MBR便是以\texttt{/boot/boot0}為基礎。\texttt{boot0}的大小與容量被限制在446個位元組是由於切割表與0x55AA識別碼位於MBR的最後端。若安裝多個作業系統使用\texttt{boot0}，則會在開機時顯示如下範例的訊息：

\texttt{例28. boot0}屏幕截圖

<table>
<thead>
<tr>
<th>F1 Win</th>
<th>F2 FreeBSD</th>
<th>Default: F2</th>
</tr>
</thead>
</table>

其作他作業系統若在\textit{FreeBSD}之後才安裝則會覆蓋現有的MBR，若這件事情發生了，或者要使用\textit{FreeBSD}MBR取代現有的MBR可使用以下指令：

\texttt{# fdisk -B -b /boot/boot0 device}

其中\texttt{device}開機磁碟，例如第一個IDE磁碟為\texttt{ad0}，第二個IDE控制器的第一個IDE磁碟為\texttt{ad2}，第一個SCSI磁碟為\texttt{da0}。要建立自訂的MBR設置請參考\texttt{boot0cfg(8)}。

12.2.2. 階段一與階段二概念上，第一與第二個階段均為磁碟上同一個區域上同一個程式的一部分，由於空間上的限制，它們被分成兩部份，但會一併安裝。它們會由\textit{FreeBSD}安裝程式或\texttt{bsdlabel}從\texttt{/boot/boot}複製而來。這兩個階段均位於檔案系統之外，在開機切割區的第一個磁軌，從第一個磁碟扇區（Sector）開始，這個位置便是\texttt{boot0}或其他開機管理程式所會儲存的地方，並會尋找可以執行的程式以繼續開機程序。第一個階段的\textit{boot1}非常的簡單，因為它只能有512位元組的大小。它只能認得儲存切割區資訊的\textit{FreeBSD bsdlabel}以及尋找並執行\textit{boot2}。階段二\textit{boot2}稍微複雜一點，能夠理解\textit{FreeBSD}檔案系統來搜尋檔案。它可以提供一個簡單的介面來選擇要執行的核心或載入程式。它所執行的載入程式（loader）更複雜並能讀取開機設定檔。若開機程序在階段二中斷，則會顯示以下的互動畫面：

\texttt{例29. boot2}屏幕截圖

```
```

FreeBSD/i386 BOOT
Default: 0:ad (0,a)
```
要更换已安装的 `boot1` 与 `boot2` 可使用 `bsdlabel`，其中 `diskslice` 是要开机的磁碟与切割区，例如 `ad0s1` 代表第一个 IDE 磁碟的第一个切割区:

```
# bsdlabel -B diskslice
```

若只使用磁碟名称，如 `ad0`，`bsdlabel` 便会以"危险专用的模式"来建立磁碟，而不会建立任何分割区。这个可能与预期的行动不同，所以在按下 `Return` 键之前请再确认 `diskslice`。

12.2.3 阶段三

`loader` 是三阶段开机程序的最后阶段，载入程式位于档案系统之中，通常在 `/boot/loader`。

`loader` 主要目的是利用拥有更复杂指令集的强大直译器作为基础的内建指令集提供一个互动的方式来设定。

在初始化的过程中，`loader` 会侦测 `Console` 与磁碟，并找出可以用作开机的磁碟。在由 `Script` 或互动输入使用者指令的地方会设定相关的变数，并启动直译器。

`loader` 接著会读取 `/boot/loader.rc`，这个程式预设又会读取 `/boot/defaults/loader.conf` 来设定合理的变数预设值及读取 `/boot/loader.conf` 来对这些变数做本地的更改。

`loader.rc` 接著会依这些变数来运作，读取选择模组与核心。

最后，在预设情况下 `loader` 会待候键盘输入 10 秒钟，若没有被中断的话会接著启动核心。若被使用者中断，则会向使用者显示提示字元，此时使用者可以使用户指令集来调整变数、卸载所有模组、载入模组，然后最后开机或重新开机。

载入程式内建指令中列出了最常使用的 `loader` 指令。要完整了解所有可用的指令，请参考 `loader(8)`。

变数说明

- `autoboot seconds` 若在指定时间（秒）内没有中断，会继续启动核心。这个指令会显示倒数，预设的时间为 10 秒钟。

- `boot [-options] [kernelname]` 使用任何指定的选项或核心名称立即启动核心，要由指令列指定核心名称必须先执行 `unload`，否则会使用先前载入过的核心。若 `kernelname` 不是完整的路径则会搜寻 `/boot/kernel` 及 `/boot/modules` 底下。

- `boot-conf` 依据指定的变数及最常用的 `kernel` 再做一次相同的自动模组设置。这只有在执行 `unload` 之后，尚未变更变数之前方可使用。

- `help [topic]` 显示自 `/boot/loader.help` 取得的说明。若指定的主题为 `index` 则会显示所有可用的主题。

- `include filename …` 读取指定的档案并直译每一行。若有错误则会立即中止 `include`。

- `load [-t type] filename` 由指定的档案名称载入核心、核心模组或指定类型的档案。任何於 `filename` 之后的参数都会递到该档案。若 `filename` 不是绝对位置则会搜寻 `/boot/kernel` 及 `/boot/modules` 底下。
ls [-l]
[78x775][
[82x775][path]
[301x775]顯示指定路徑中的檔案,若未指定路徑則會顯示根目錄中的檔案。若有指定-l,則會連檔案大小一同顯示。

lsdev [-v]
列出所有的裝置,這些裝置可能可以用來載入模組。若有指定-v則會顯示更詳細的資訊。

lsmod [-v]
顯示已載入的模組。若有指定-v則會顯示更詳細的資訊。

more filename
顯示指定的檔案,並於每LINES行顯示後會暫停。

reboot
立即重新啟動系統。

set variable, set variable=value
設定指定的環境變數。

unload
移除所有已載入的模組。

這裡有一些loader用法的實務範例。要使用一般的核心開機進入單使用者模式(Single-user mode)可:

boot -s
要卸載一般的核心與模組,然後載入先前或另一個指定的核心可:
unload
load kernel.old
使用kernel.GENERIC來代表安裝程式使用的預設核心,或kernel.old來代表在系統升級之前或設定自訂核心前安裝的核心。

使用以下指令來使用另一个核心載入一般模組:
unload
set kernel="kernel.old"
boot-conf
要載入一個已自動化的核心設置Script可:
load -t userconfig_script /boot/kernel.conf

表10.開機時核心互動參數

<table>
<thead>
<tr>
<th>项目</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>核心初始化時,會詢問要掛載為根檔案系統的裝置。</td>
</tr>
<tr>
<td>-C</td>
<td>由CDROM做為根檔案系統開機。</td>
</tr>
<tr>
<td>-s</td>
<td>開機進入單使用者模式。</td>
</tr>
</tbody>
</table>

開機時核心互動參數列出了常用的開機旗標,請參考boot(8)取得更多其他開機旗標的資訊。
項目

核心

啟動時提供更多信息。

一旦核心完成開機程序後，便會傳送控制權給使用者程序`init(8)`，該程序位於`/sbin/init`或在`loader`中的`init_path`變數所指的程式路徑。這是開機程序的最後一個階段。

開機程序會確保系統上的檔案系統的一致性（Consistency），若UFS檔案系統不一致且`fsck`無法修時，`init`會讓系統進入單使用者模式，讓系統管理者能夠直接解決問題，否則系統會開機進入多使用者模式。

12.2.4.1. 単使用者模式

使用者可以在開機時指定`-s`或在`loader`設定`boot_single`變數進入這個模式。也可以透過在多使用者模式執行`shutdown now`進入此模式。進入單使用者模式時會出現此訊息:

```
Enter full pathname of shell or RETURN for /bin/sh:
```

若使用者按下`Enter`，系統便會進入預設的Bourne shell。要指定使用其他的Shell則輸入該Shell的完整路徑。

單使用者模式通常用來修復因檔案系統不一致或開機設定檔發生錯誤造成無法開機，也可以用來重設忘記的root的密碼，因為在單使用者模式會給予對本地系統及設定檔完整的存取權。在這個模式下沒有網路功能。

雖然單使用者模式對修復系統很有幫助，但若系統放在不安全的場所便會有安全上的風險。預設，開機進入單使用者模式後，任何能夠存取實體主機的使用者便擁有系統的完整控制權。

若在`/etc/ttys`系統`console`更改為`insecure`，系統便會在初始化單使用者模式前先詢問root的密碼。這可增加一定程度的安全性，但便無法在忘記root密碼時重設密碼。

例如，在`/etc/ttys`設定不安全的Console:

```
# name  getty                           type    status          comments
#
# If console is marked "insecure", then init will ask for the root password
# when going to single-user mode.

console none                            unknown off insecure
```

不安全(`insecure`) console代表對Console的實體安全性評估為不安全(`insecure`)，所以只有知道root密碼的人可以使用單使用者模式。

12.2.4.2. 多使用者模式

若`init`正常找到檔案系統或在單使用者模式的使用者完成了操作並輸入`exit`離開單使用者模式，系統便會進入多使用者模式，在這個模式便會開始系統的資源設置。

資源設置系統(`Resource configuration system`)會從`/etc/defaults/rc.conf`讀取設定預設值及從`/etc/rc.conf`讀取系統特定的設定，接著會繼續掛載系統列於`/etc/fstab`的檔案系統，也會啟動網路服務、其他的系統Daemon, 然後執行本地已安裝套件的啟動Script。

要了解更多有關資源設置系統，請參考`rc(8)`及查看位於`/etc/rc.d`的Script。
FreeBSD system开机会在Console显示一系列讯息来表示开机进度。开机启动画面（Boot splash screen）是另一种可以将所有开机侦测与服务启动讯息隐藏的开机画面，但即使开启了启动画面，仍有少数的开机载入程式的讯息，如：开机选项选单以及倒数计时提示，仍会在开机时显示。在开机程序时可以按下键盘上的按键来关闭显示中的启动画面。

FreeBSD有两种基本的环境可以使用，一种是预设的传输虚拟Console指令列环境，在系统完成开机之后，便会显示Console登入提示。另一种环境则是设定好的图形环境，请参考X Window系统以取得更多有关如何安装与设定图形显示管理程式与图形化登入管理程式的资讯。

系统开机之后，启动画面预设会作为萤幕保护程式，一段时间未使用便会显示启动画面，并且会循环更改影像的亮度，从明亮到非常暗，然后再继续循环。启动萤幕保护程式的设定可在/etc/rc.conf增加一行saver=来更改。有许多内建的萤幕保护程式可用，在splash(4)中有说明。saver=的选项只会在虚拟Console被套用至，对图形化显示程式并不会有任何影响。

透过安装sysutils/bsd-splash-changer套件或Port，可在开机时显示随机挑选的启动画面。启动画面功能支援256色的点阵图（.bmp）、ZSoft PCX（.pcx）或TheDraw（.bin）格式。.bmp, .pcx或.bin图片必须放在根分割区，例如于/boot。启动图片档必须使用320x200像素或更低的解析度以能够在标准VGA介面卡上运作，要在预设256色、320x200像素或更低的解析度设定开机启动图片，可加入下行到/boot/loader.conf，并替换splash.bmp为实际要使用的点阵图片档：

splash_bmp_load="YES"
bitmap_load="YES"
bitmap_name="/boot/splash.bmp"

要使用PCX档则可替换点阵图片档：
splash_pcx_load="YES"
bitmap_load="YES"
bitmap_name="/boot/splash.pcx"

若要改使用https://en.wikipedia.org/wiki/TheDraw格式的ASCII图档可：
splash_txt="YES"
bitmap_load="YES"
bitmap_name="/boot/splash.bin"

要使用较大图片来填满整个显示画面支援的解析度最大可至1024x768像素，VESA模组也必须在系统开机时载入。若使用自订的核心，请确定自订核心设定档中有含有VESA核心设定选项。要载入VESA模组来显示启动画面可在/boot/loader.conf上述例子中提到的三行之前加入下行：

vesa_load="YES"

其他有用的loader.conf选项还有：
beastie_disable="YES"
这个会关闭开机选项选单的显示，但倒数计时提示仍会在。即使关闭了开机选项选单，在倒数计时提示时226
輸入選擇的選項還會啟動對應的開機選項。

這個選項會替換預設與上色的小惡魔圖示一起顯示於開機選項選單右側的"FreeBSD"文字。

要取得更多資訊,請參考splash(4), loader.conf(5)以及vga(4)。

12.4. 裝置提示在一開始系統啟動時,開機loader(8)會讀取device.hints(5),這個檔中儲存了核心開機資訊,即變數,有時我們又會稱其為"裝置提示"。這些"裝置提示"會傳送給裝置驅動程式做裝置的設置使用。裝置提示也可在階段3開機載入程式提示時指定,如階段三中的示範,其變數也可以使用set增加、使用unset移除、使用show檢視,也可覆蓋設定在/boot/device.hints的變數,但在開機載入程式輸入的裝置提示並不是永久有效的,在下一次重新開機很久後便會失效。

一旦系統開機後,便可使用kenv(1)來列出所有的變數。

/boot/device.hints的語法為一個變數一行,使用井字號"#"做為註解符號,每一行的結構如下:

```
hint.driver.unit.keyword = "value"
```

其中driver為裝置驅動程式名稱、unit為裝置驅動程式單位編號及keyword為提示關鍵字,關鍵字由以下選項所組成:

- **at**: 指定裝置所連結的匯流排(Bus)。
- **port**: 指定要使用的I/O開始位置。
- **irq**: 指定要使用的中斷請求編號。
- **drq**: 指定DMA頻道編號。
- **maddr**: 指定裝置所使用的實體記憶體位置。
- **flags**: 設定提供給裝置的各種標領域元。
- **disabled**: 若設為1則可關閉該裝置。

由於裝置驅動程式可能會接受或請求更多未列於此處的提示,建議先閱讀驅動程式的操作手冊。要取得更多資訊請參考device.hints(5),kenv(1),loader.conf(5)以及loader(8)。

12.5. 關機程序在使用shutdown(8)控制關閉時,init(8)會嘗試執行/etc/rc.shutdown Script接著傳送TERM信號給所有的程序,然後傳送KILL信號給未在時間內中止的程序。

要在支援電源管理的架構與系統關閉FreeBSD主機電源,可使用shutdown -p now來立即關閉電源,要重新啟動FreeBSD系統可使用shutdown -r now。操作人員必須為root或為operator的成員才可執行shutdown(8),擁有這些身分的人也可使用halt(8)與reboot(8),參考這些指令與shutdown(8)的操作手冊來取得更多資訊。要修改群組成員可參考使用者與基礎帳號管理。
電源管理需要以載入acpi(4)模組或將其靜態編譯至自訂核心中。
漏洞以做問造準備認全回使用者，並及範例遠經為攻，或是因取，有時是因某中，是因商者，或在天嘗意並不軟者，路在經端威脅存攻取系統的威脅含員工安響腦的完解了威脅意安裝整性工具必須惡行有，網全瓦打，如，系統管理者不能系統防火牆避免個保的整單增加層失策略層來專會禦CIA數存們性他資下不會在訂單他們訊信(安保、他們被整性全完們石的資料得到樣重會要。三期望腦如同們是電如，一個全的基CIA的其中一個代表著，字訊系統的核心原則便CIA訣安是導權任。資並路存任每，個網浩劫的讓入簡13.2.介取全性說明。例控制如強制存處開：閱讀這章之前，您需要在讀完這章，您安增加層全性三許面，且有原。FreeBSD討個基本在此章會攻。侵全性必須與網入身為如解。整，確保系統個上百著它例已經13.1. Chapter 13.全性
使用不安法 Blowfish 建庫 雜全 但 SHA512 改程式 算, 不更 改演設 算。會議 演全湊演 Blowfish 碼 以其 密 FreeBSD DES, MD5, SHA256, SHA512 及 漿演的 灘支援 於算 大是資 碼要之時, 必須 要有 密碼 使用且 密在複雜 碼必密 碼強密機制, 報的庫 訊技湊資料 應在複雜 碼密 編 13.2.3. 碼方式 trhodes 在安裝之後, 使用 的權限 指令。、 微特軟定升權限控制, 然後可以 設定稽查定外的鎖額的使用者需行。這個 體提供了使用者只能 報更細議 建第二種方式, 也是 較的方式, 安裝 /etc/group 密, 在完成需要管理存取 指令的應輸入之後, 使用權的, 這種方式使用者可以在需要 密權取的使用者的時碼 輸入存超級議 较處的方式, 是與 有不種方式可以 情況兩建 理這種。第一種, 也是 權例 FreeBSD, 需要與其他使用者共用系統管理在有一些案, 例/usr/sbin/nologin: Shell 取的方式是入存狀第二種止登 Shell 更改為防取, 以下範, 第一種是入存定存的, 並這個取閉任 碼。強地方使用權登碼帳號而有使用了一個未在其他關, 然後何無密的過密入存保障最帳號要稽查起點全做, 的一個系統的安保障之。本章接下來的部份 將接下來的部份 將何全設置執 FreeBSD 介紹在上說明如行這些基礎的安簡系統 (SOP) 疑時, 請團隊全詢向諮, 當有安慮。標準例行案全設置置操作程序伺服器的安伺服器、。在大多線上裝數機已經 有開發中, 都也動、手政型置設置應及組織多電政裝, 该全作站、的安包科策程序。許組織已經、有涵蓋全性桌上策含工腦的安的安到系統系統以著以始保設定開應路用由全保遵帳號守策時, 系統網政, 接層當要 建上確保全減並要的是了。 威脅重 威脅在管理者, 緩發生做為解。
密類個政少複雜足字元種10設定密字元滿接受碼度策子，複雜碼這些類代表密有型密，不論長度詳細的前碼例的，閉不會接受只滿的pam_passwdqc(8)，類碼在字元數字來中定密類大在如字例存，符及密小寫型：須型在的碼義以號、有五可以類，下複雜種義碼限碼複雜是它由長必了度設定。而度定控制密為模組根據密求的需符合使用者，然後取要，需要先成碼時合字元更改來強制使用混要模組密強制其的求可在使用者，此限將本節以上範如度及限與碼何設定密長下執PAM)來長碼可使用內密碼插碼的可模組性強度、証建密以及密地使用在本高策碼的政全的基礎之一。在FreeBSD強度密是系統安帳號強制13.2.4.策碼更改，這些OpenSSH在請參解更訊透基礎系統的一部份，所有來過加密過連金鑰路基礎的的線替算証登為。要了入應代密且使用以，如樣：密知，如。自從，以個資"OpenSSH東西"某道鑰碼"匙遠端重認證登使用入，例來說您同時要應(Two-factor authentication)針對passwd/etc/login.conf依然後修改算該行如下Blowfish，可更改要演為：

```
default required pam_passwdqc.so min=disabled,disabled,disabled,12,10
```

修改並存入類別法登算是以下行設定，且雜在湊演屬在該使用者的登於(Login class)設定雜，以此入類別機制為例湊。

```
similar=deny retry=3 enforce=users
```

6是號是始DES任不會有符MD5號則何用則開號的加密密湊，湊湊。若使用的一密機制碼雜雜庫符會以每便湊中該使用者的始資料其用來要知加密雜種某目算在何FreeBSD湊演使用者檢密前用，使用者可以碼道視來位

```
$2a$12
```

雜原的，不是儲存於密湊資料密碼加密過來的碼，會密中湊其的演為在何已存PAM)，其重才密有型三密足例。在以下密影這必須任要但代表所有使用者作不會雜，求執行湊何已存的

```
!z
```

Kerberos才。做路上使用外的的使用者可能會需要多Kerberos額能在其網。在"OpenSSH"中會有說明。
這個檔案儲存之後,更改密碼的使用者將會看到如下的訊息:

```
% passwd
Changing local password for trhodes
Old Password:
You can now choose the new password.
A valid password should be a mix of upper and lower case letters, digits and other characters. You can use a 12 character long password with characters from at least 3 of these 4 classes, or a 10 character long password containing characters from all the classes. Characters that form a common pattern are discarded by the check.
Alternatively, if no one else can see your terminal now, you can pick this as your password:
"trait-useful&knob".
Enter new password:
```

若輸入了不合乎密碼政策的密碼，則會被拒絕並顯示警告，然後使用者會有機會再重試，直到超過設定的允許重試次數。

大多數密碼政策會讓密碼在多天過後過期。要在FreeBSD設定密碼年齡日期，可在 `/etc/login.conf` 中該使用者的登入類別設定 `passwordtime`。在 `default` 登入類別已設定範例:

```
#       :passwordtime=90d:
```

因此，要設定此登入類別的密碼在 90 天之後過期只需要移除註解號(`#`)，然後儲存編輯結果並執行 `cap_mkdb /etc/login.conf`。

要在個別使用者設定期限，可將有效日期或到期的天數與使用者名稱傳給 `pw`:

```
# pw usermod -p 30-apr-2015 -n trhodes
```

如這個例子，有效日期的格式為天、月及年。要取得更多資訊可參考 `pw(8)`。

13.2.5. 偵測Root工具(Rootkit)

rootkit指的是試圖經授權取得系統 root 存取權的軟體。一旦安裝之後，這個惡意軟體將可以光明正大地開啟給另一個攻擊者進入的大門。實際上，一旦系統已被 rootkit 渗透且執行了搜索動作之後，該系統就應該從頭重新安裝，因為即使非常謹慎的資安或系統程式也可能會遺漏攻擊者留下的東西。

rootkit對管理者而言唯一有幫助的是：一旦偵測到，便代表某處已經被滲透，但這類型的應用程式躲藏的非常好，本節將會示範一個可以用來偵測 rootkit 的工具， `security/rkhunter`。

安裝此套件或 Port 之後，系統便可使用以下指令檢查。該指令提供許多資訊且會需要手動按下 ENTER 確認:
該程序完成之後，目前狀態的訊息便會顯示在畫面上。這個訊息包含了已檢查過多少檔案、可疑的檔案、可能的rootkit以及其他更多資訊。在檢查的過程中，可能會產生一些有關隱藏檔案、OpenSSH通訊協定選擇及已安裝軟體已知漏洞版本的通用性警告，這些問題可以立即處理或在更詳細的分析之後再處理。

每位管理者應了解在系統上執行了那些程式以及這些程式的用途。第三方工具如rkhunter與sysutils/lsof以及原生指令如netstat與ps可以系統上大量的資訊，記錄下一些是正常的，當有不適當的程式出現時提出疑問，然後找出答案。雖然理想要避免滲透，但也必須偵測是否已被滲透了。

13.2.6. Binary検驗
検驗系統檔案與Binary是很重要的，因為它可以提供系統管理者與資安團隊有關系統變更的資訊，能夠監視系統變更的軟體應用程式稱為入侵偵測系統(Intrusion Detection System, IDS)。

FreeBSD原生提供了基礎的IDS系統，雖然每天晚上會有安全性的信件會通知管理者相關的變更，但這些資訊是儲存在本地的，這讓惡意的使用者有機會能夠修改這些資訊來隱藏其對系統的變更。也因此，會建議建立一個獨立的Binary簽名並將這些簽名儲存在我們、root擁有的目錄或在可移除的USB磁碟或遠端rsync伺服器更優。內建mtree工具可以對一個目錄中的內容產生一個規格檔，產生規格檔會用到一個種子碼(Seed)或常數，然後在檢查規格是否更改過時也會需要使用這個種子碼或常數。這讓檢查一個檔案或Binary是否被修改變成可能的一件事。由於攻擊者並不知道種子碼，要仿冒或檢查檔案的校驗碼(Checksum)數值是幾乎不可能的。以下例子會產生一組SHA256雜湊，每一個在 /bin的系統Binary都會有，並會將這些值以隱藏黨儲存在我們/root/.bin_chksum_mtree:

```
# mtree -s 3483151339707503 -c -K cksum,sha256digest -p /bin > /root/.bin_chksum_mtree
# mtree: /bin checksum: 3427012225
```

3483151339707503 代表種子碼，這個值應該記錄下來且不可給其他人看。

檢視/root/.bin_cksum_mtree應會產生類似以下的輸出結果：

```
#          user: root
#       machine: dreadnaught
#          tree: /bin
#          date: Mon Feb  3 10:19:53 2014
# ...
```

```
#          user: root
#       machine: dreadnaught
#          tree: /bin
#          date: Mon Feb  3 10:19:53 2014
# .
# .               type=dir mode=0755 nlink=2 size=1024 
# .               time=1380277977.000000000 
# .               nlink=2 size=11704 time=1380277977.000000000 
# .               cksum=484492447 
# .               sha256digest=6207490fbdb5ed1904441fbfa941279055c3e24d3a4049aeb45094596400662a
# .               time=1380277977.000000000 
```

```
#          user: root
#       machine: dreadnaught
#          tree: /bin
#          date: Mon Feb  3 10:19:53 2014
# ...
```
機器的主機名稱、建立規格檔的日期與時間，以及建立此規格檔的使用者名稱皆會記錄在此報告中，報告當中還會有在目錄中每個Binary的校驗碼、大小、時間及SHA256編碼。

要檢驗Binary簽名是否被變更過，可使用先前產生的規格檔比對目錄前目錄的內容，然後儲存結果到檔案。這個指令需要當初產生原規格檔所使用的種子碼:

```bash
# mtree -s 3483151339707503 -p /bin < /root/.bin_chksum_mtree >> /root/.bin_chksum_output
# mtree: /bin checksum: 3427012225
```

這個動作應會產生與上次建立/​bin規格檔時產生的校驗碼相同，若在此目錄的Binary沒有被變更過，那麼/root/.bin_chksum_output這個輸出檔將會是空的。要模擬變更，可以使用`touch`更改/root/.bin_chksum_output的日期然後再執行檢驗指令一次:

```bash
# touch /bin/cat
# mtree -s 3483151339707503 -p /bin < /root/.bin_chksum_mtree >> /root/.bin_chksum_output
# more /root/.bin_chksum_output
```

```
cat changed modification time expected Fri Sep 27 06:32:55 2013 found Mon Feb  3 10:28:43 2014
```

建議對含有Binary以及設定檔的目錄建立規格，對含有敏感資料的目錄也是。通常會為/bin, /sbin, /usr/bin, /usr/sbin, /usr/local/bin, /etc 及 /usr/local/etc 建立規格。

也有更進階的IDS系統，例如security/aide。大多數情況mtree已可提供管理者所需的功能。將種子碼與校驗碼結果保存在惡意使用者無法存取的地方是十分重要的事。更多有關mtree的資訊可在mtree(8)找到。
FreeBSD (One-time Passwords In Everything, OPIE)

Once a code is used, the following can happen:

1. The code is generated and sent to the user, and they use it to log in.
2. The code is generated and sent to the user, and they use it to log in.

When a code is generated, it is used to generate another code, and this process continues. A code is never used twice.

In OPIE, there are two types of codes:

1. A code that is used to generate another code.
2. A code that is used to generate a seed.

These two types of codes are generated and stored in a hash table.

In OPIE, the following files are used:

- /etc/opiekeys
- /etc/opiepasswd

The code is generated and sent to the user, and they use it to log in.

In OPIE, the following files are used:

- /etc/opiekeys
- /etc/opiepasswd

The code is generated and sent to the user, and they use it to log in.

In OPIE, the following files are used:

- /etc/opiekeys
- /etc/opiepasswd

The code is generated and sent to the user, and they use it to log in.

In OPIE, the following files are used:

- /etc/opiekeys
- /etc/opiepasswd

The code is generated and sent to the user, and they use it to log in.

In OPIE, the following files are used:

- /etc/opiekeys
- /etc/opiepasswd

The code is generated and sent to the user, and they use it to log in.

In OPIE, the following files are used:

- /etc/opiekeys
- /etc/opiepasswd

The code is generated and sent to the user, and they use it to log in.

In OPIE, the following files are used:

- /etc/opiekeys
- /etc/opiepasswd

The code is generated and sent to the user, and they use it to log in.

In OPIE, the following files are used:

- /etc/opiekeys
- /etc/opiepasswd

The code is generated and sent to the user, and they use it to log in.

In OPIE, the following files are used:

- /etc/opiekeys
- /etc/opiepasswd

The code is generated and sent to the user, and they use it to log in.

In OPIE, the following files are used:

- /etc/opiekeys
- /etc/opiepasswd

The code is generated and sent to the user, and they use it to log in.

In OPIE, the following files are used:

- /etc/opiekeys
- /etc/opiepasswd

The code is generated and sent to the user, and they use it to log in.

In OPIE, the following files are used:

- /etc/opiekeys
- /etc/opiepasswd

The code is generated and sent to the user, and they use it to log in.

In OPIE, the following files are used:

- /etc/opiekeys
- /etc/opiepasswd

The code is generated and sent to the user, and they use it to log in.

In OPIE, the following files are used:

- /etc/opiekeys
- /etc/opiepasswd

The code is generated and sent to the user, and they use it to log in.

In OPIE, the following files are used:

- /etc/opiekeys
- /etc/opiepasswd

The code is generated and sent to the user, and they use it to log in.

In OPIE, the following files are used:

- /etc/opiekeys
- /etc/opiepasswd

The code is generated and sent to the user, and they use it to log in.
13.3.1. Initial OPIE

The first step in initializing OPIE is to execute the following command in a secure environment:

```
% opiepasswd -c
```

During the execution of the above command, the following message will appear:

```
Adding unfurl:
Only use this method from the console; NEVER from remote. If you are using
telnet, xterm, or a dial-in, type ^C now or
exit with no password.
Then run opiepasswd without the
```

```
-c
```

```
Using MD5 to compute responses.
Enter new secret pass phrase:
Again new secret pass phrase:
```

```
ID unfurl OTP key is 499 to4268
```

```
MOS MALL GOAT ARM AVID COED
```

```
-c
```

```
236
```

The ID unfurl OTP key will be displayed, which represents the one-time password, and it will be stored on the local machine. The OTP key is generated based on the seed and sequence number provided during the initialization process. To use the default seed, press return.

13.3.2. Initial OPIE in an insecure environment

If you need to initialize or change OPIE in an insecure environment, it is necessary to have a secure connection available. This can be achieved by running `opiekey` on a removable machine.

Initialization requires specifying the sequence number; 100 is a likely correct number. The seed can be specified or generated randomly. To initialize an insecure machine, follow the instructions provided by executing the `opiepasswd(1)` command:

```
% opiepasswd
```

```
Updating unfurl:
You need the response from an OTP generator.
```

```
Old secret pass phrase:
```

```
otp-md5 498 to4268 ext
```

```
Response: GAME GAG WELT OUT DOWN CHAT
```

```
New secret pass phrase:
```

```
otp-md5 499 to4269
```

```
Response: LINE PAP MILK NELL BUOY TROY
```

```
ID mark OTP key is 499 gr4269
```

```
LINE PAP MILK NELL BUOY TROY
```

```
When performing initial OPIE, follow the input response before moving to a secure connection and giving the same encrypted parameters to generate a key:

% opiekey 498 to 4268

Using the MD5 algorithm to compute response.

Reminder: Do not use opiekey from telnet or dial-in sessions.

Enter secret pass phrase:

GAME GAG WELT OUT DOWN CHAT

After generating a one-time key, return to the login screen and continue logging in.

13.3.3. Generate a single one-time key in initial OPIE, after logging in, the following prompt information is displayed:

% telnet example.com

Trying 10.0.0.1...

Connected to example.com

Escape character is '^['.

FreeBSD/i386 (example.com) (ttytypa)

login: <username>

otp-md5 498 gr4269 ext

Password:

OPIE's prompt provides a useful function, if you press Return when the key prompt is displayed, it will activate the response function and display the entered content. This function is very useful when trying to manually print out the key.

At this time, to generate a one-time key to respond to the login prompt, this must be done on a trusted and secure system where the opiekey(1) command can be executed. This command is available on Windows™, Mac OS™, and FreeBSD versions, and it requires a seed number and seed number as parameters in the command line, and be cut down to the main machine when logging in at the prompt.
Using the MD5 algorithm to compute response.

Reminder: Do not use opiekey from telnet or dial-in sessions.
Enter secret pass phrase: <secret password>

26: JOAN BORE FOSS DES NAY QUIT
27: LATE BIAS SLAY FOLK MUCH TRIG
28: SALT TIN ANTI LOON NEAL USE
29: RIO ODIN GO BYE FURY TIC
30: GREW JIVE SAN GIRD BOIL PHI

13.3.5. Limitation of use of UNIX™ passwords

OPIE can perform access control of the UNIX™ environment by controlling the IP address location. The file /etc/opieaccess is used to control this. Please refer to opieaccess(5) for more information.

Here is a sample of an opieaccess file:

```
permit 192.168.0.0 255.255.0.0
```

This line allows users with the specified source IP address range to use the UNIX™ passwords at any time.

If there is no entry in the opieaccess file, the default is to refuse all non-OPIE logins.

13.4. TCP Wrapper

TCP Wrapper is a host-based access control system which extends the abilities of inetd. It can be configured to provide logging support, return messages, and connection restrictions for the server daemons under the control of inetd. Refer to tcpd(8) for more information about TCP Wrapper and its features.

TCP Wrapper should not be considered a replacement for a properly configured firewall. Instead, TCP Wrapper should be used in conjunction with a firewall and other security enhancements in order to provide another layer of protection in the implementation of a security policy.

13.4.1. Initial configuration

To enable TCP Wrapper in FreeBSD, add the following lines to /etc/rc.conf:

```
inetd_enable="YES"
inetd_flags="-Ww"
```

Then, properly configure /etc/hosts.allow.

Unlike other implementations of TCP Wrapper, the use of hosts.deny is deprecated in FreeBSD. All configuration options should be placed in /etc/hosts.allow.
In the simplest configuration, daemon connection policies are set to either permit or block, depending on the options in `/etc/hosts.allow`. The default configuration in FreeBSD is to allow all connections to the daemons started with inetd.

Basic configuration usually takes the form of `daemon : address : action`, where `daemon` is the daemon which inetd started, `address` is a valid hostname, IP address, or an IPv6 address enclosed in brackets ([ ]), and `action` is either `allow` or `deny`. TCP Wrapper uses a first rule match semantic, meaning that the configuration file is scanned from the beginning for a matching rule. When a match is found, the rule is applied and the search process stops.

For example, to allow POP3 connections via the `mail/qpopper` daemon, the following lines should be appended to `hosts.allow`:

```
This line is required for POP3 connections:
qpopper : ALL : allow
```

Whenever this file is edited, restart inetd:

```
service inetd restart
```

13.4.2. 階設定

TCP Wrapper provides advanced options to allow more control over the way connections are handled. In some cases, it may be appropriate to return a comment to certain hosts or daemon connections. In other cases, a log entry should be recorded or an email sent to the administrator. Other situations may require the use of a service for local connections only. This is all possible through the use of configuration options known as wildcards, expansion characters, and external command execution.

Suppose that a situation occurs where a connection should be denied yet a reason should be sent to the host who attempted to establish that connection. That action is possible with `twist`. When a connection attempt is made, `twist` executes a shell command or script. An example exists in `hosts.allow`:

```
The rest of the daemons are protected.
ALL : ALL :: severity auth.info :: twist /bin/echo "You are not welcome to use %d from %h."
```

In this example, the message "You are not allowed to use daemon name from hostname." will be returned for any daemon not configured in `hosts.allow`. This is useful for sending a reply back to the connection initiator right after the established connection is dropped. Any message returned must be wrapped in quote (" ") characters.

It may be possible to launch a denial of service attack on the server if an attacker floods these daemons with connection requests.

Another possibility is to use `spawn`. Like `twist`, `spawn` implicitly denies the connection and may be used to run external shell commands or scripts. Unlike `twist`, `spawn` will not send a reply back to the host who established the connection. For example, consider the following configuration:

```
We do not allow connections from example.com:
```

239
This will deny all connection attempts from *.example.com and log the hostname, IP address, and the daemon to which access was attempted to /var/log/connections.log. This example uses the substitution characters %a and %h. Refer to hosts_access(5) for the complete list.

To match every instance of a daemon, domain, or IP address, use ALL. Another wildcard is PARANOID which may be used to match any host which provides an IP address that may be forged because the IP address differs from its resolved hostname. In this example, all connection requests to Sendmail which have an IP address that varies from its hostname will be denied:

```
Block possibly spoofed requests to sendmail:
sendmail : PARANOID : deny
```

Using the PARANOID wildcard will result in denied connections if the client or server has a broken DNS setup.

To learn more about wildcards and their associated functionality, refer to hosts_access(5).

When adding new configuration lines, make sure that any unneeded entries for that daemon are commented out in hosts.allow.

### 13.5. Kerberos

Kerberos is a network authentication protocol which was originally created by the Massachusetts Institute of Technology (MIT) as a way to securely provide authentication across a potentially hostile network. The Kerberos protocol uses strong cryptography so that both a client and server can prove their identity without sending any unencrypted secrets over the network. Kerberos can be described as an identity-verifying proxy system and as a trusted third-party authentication system. After a user authenticates with Kerberos, their communications can be encrypted to assure privacy and data integrity.

The only function of Kerberos is to provide the secure authentication of users and servers on the network. It does not provide authorization or auditing functions. It is recommended that Kerberos be used with other security methods which provide authorization and audit services.

The current version of the protocol is version 5, described in RFC 4120. Several free implementations of this protocol are available, covering a wide range of operating systems. MIT continues to develop their Kerberos package. It is commonly used in the US as a cryptography product, and has historically been subject to US export regulations. In FreeBSD, MITKerberos is available as the security/krb5 package or port. The Heimdal Kerberos implementation was explicitly developed outside of the US to avoid export regulations. The Heimdal Kerberos distribution is included in the base FreeBSD installation, and another distribution with more configurable options is available as security/heimdal in the Ports Collection.

In Kerberos users and services are identified as "principals" which are contained within an administrative grouping, called a "realm". A typical user principal would be of the form `user@REALM` (realms are traditionally uppercase).

This section provides a guide on how to set up Kerberos using the Heimdal distribution included in FreeBSD.

For purposes of demonstrating a Kerberos installation, the name spaces will be as follows:
The DNS domain (zone) will be example.org.

The Kerberos realm will be EXAMPLE.ORG.

Use real domain names when setting up Kerberos, even if it will run internally. This avoids DNS problems and assures inter-operation with other Kerberos realms.

13.5.1. Setting Heimdal KDC

The Key Distribution Center (KDC) is the centralized authentication service that Kerberos provides, the "trusted third party" of the system. It is the computer that issues Kerberos tickets, which are used for clients to authenticate to servers. Because the KDC is considered trusted by all other computers in the Kerberos realm, it has heightened security concerns. Direct access to the KDC should be limited.

While running a KDC requires few computing resources, a dedicated machine acting only as a KDC is recommended for security reasons.

To begin setting up a KDC, add these lines to /etc/rc.conf:

```
kdc_enable="YES"
kadmind_enable="YES"
```

Next, edit /etc/krb5.conf as follows:

```perl
[libdefaults]
default_realm = EXAMPLE.ORG

[realms]
EXAMPLE.ORG = {
kdc = kerberos.example.org
admin_server = kerberos.example.org
}

[domain_realm]
.example.org = EXAMPLE.ORG
```

In this example, the KDC will use the fully-qualified hostname kerberos.example.org. The hostname of the KDC must be resolvable in the DNS.

Kerberos can also use the DNS to locate KDCs, instead of a [realms] section in /etc/krb5.conf. For large organizations that have their own DNS servers, the above example could be trimmed to:

```perl
[libdefaults]
default_realm = EXAMPLE.ORG
[domain_realm]
.example.org = EXAMPLE.ORG
```

With the following lines being included in the example.org zone file:

```
_kerberos._udp IN SRV 01 00 88 kerberos.example.org.
```
In order for clients to be able to find the Kerberos services, they must have either a fully configured /etc/krb5.conf or a minimally configured /etc/krb5.conf and a properly configured DNS server.

Next, create the Kerberos database which contains the keys of all principals (users and hosts) encrypted with a master password. It is not required to remember this password as it will be stored in /var/heimdal/m-key; it would be reasonable to use a 45-character random password for this purpose. To create the master key, run kstash and enter a password:

```
kstash
Master key: xxxxxxxxxxxxxxxxxxxxxxx
Verifying password - Master key: xxxxxxxxxxxxxxxxxxxxxxx
```

Once the master key has been created, the database should be initialized. The Kerberos administrative tool kadmin(8) can be used on the KDC in a mode that operates directly on the database, without using the kadmind(8) network service, as kadmin -l. This resolves the chicken-and-egg problem of trying to connect to the database before it is created. At the kadmin prompt, use init to create the realm's initial database:

```
kadmin -l
kadmin> init EXAMPLE.ORG
```

Lastly, while still in kadmin, create the first principal using add. Stick to the default options for the principal for now, as these can be changed later with modify. Type ? at the prompt to see the available options.

```
kadmin> add tillman
Max ticket life [unlimited]:
Max renewable life [unlimited]:
Attributes []:
Password: xxxxxxxx
Verifying password - Password: xxxxxxxx
```

Next, start the KDC services by running service kdc start and service kadmind start. While there will not be any kerberized daemons running at this point, it is possible to confirm that the KDC is functioning by obtaining a ticket for the principal that was just created:

```
% kinit tillman
tillman@EXAMPLE.ORG
'Password:
```

Confirm that a ticket was successfully obtained using klist:
The temporary ticket can be destroyed when the test is finished:

```
% kdestroy
```

13.5.2. 設定

伺服器使用 Kerberos

The first step in configuring a server to use Kerberos authentication is to ensure that it has the correct configuration in `/etc/krb5.conf`. The version from the KDC can be used as-is, or it can be regenerated on the new system.

Next, create `/etc/krb5.keytab` on the server. This is the main part of “Kerberizing” a service—it corresponds to generating a secret shared between the service and the KDC. The secret is a cryptographic key, stored in a “keytab”. The keytab contains the server's host key, which allows it and the KDC to verify each others' identity. It must be transmitted to the server in a secure fashion, as the security of the server can be broken if the key is made public. Typically, the keytab is generated on an administrator's trusted machine using `kadmin`, then securely transferred to the server, e.g., with `scp(1)`; it can also be created directly on the server if that is consistent with the desired security policy. It is very important that the keytab is transmitted to the server in a secure fashion: if the key is known by some other party, that party can impersonate any user to the server!

Using `kadmin` on the server directly is convenient, because the entry for the host principal in the KDC database is also created using `kadmin`. Of course, `kadmin` is a kerberized service; a Kerberos ticket is needed to authenticate to the network service, but to ensure that the user running `kadmin` is actually present (and their session has not been hijacked), `kadmin` will prompt for the password to get a fresh ticket. The principal authenticating to the kadmin service must be permitted to use the `kadmin` interface, as specified in `kadmind.acl`. See the section titled “Remote administration” in `info heimdal` for details on designing access control lists. Instead of enabling remote kadmin access, the administrator could securely connect to the KDC via the local console or `ssh(1)`, and perform administration locally using `kadmin -l`.

After installing `/etc/krb5.conf`, use `add --random-key` in `kadmin`. This adds the server's host principal to the database, but does not extract a copy of the host principal key to a keytab. To generate the keytab, use `ext` to extract the server's host principal key to its own keytab:

```
kadmin
kadmin> add --random-key host/myserver.example.org
Max ticket life [unlimited]:
Max renewable life [unlimited]:
Principal expiration time [never]:
Password expiration time [never]:
Attributes []:
```

```
kadmin> ext_keytab host/myserver.example.org
```

243
Note that ext_keytab stores the extracted key in /etc/krb5.keytab by default. This is good when being run on the server being kerberized, but the --keytab path/to/file argument should be used when the keytab is being extracted elsewhere:

```
kadmin
kadmin> ext_keytab --keytab=/tmp/example.keytab host/myserver.example.org
kadmin>
```

The keytab can then be securely copied to the server using scp(1) or a removable media. Be sure to specify a non-default keytab name to avoid inserting unneeded keys into the system’s keytab.

At this point, the server can read encrypted messages from the KDC using its shared key, stored in krb5.keytab. It is now ready for the Kerberos-using services to be enabled. One of the most common such services is sshd(8), which supports Kerberos via the GSS-API. In /etc/ssh/sshd_config, add the line:

```
GSSAPIAuthentication yes
```

After making this change, you must restart sshd to apply the new settings:

```
service sshd restart
```

13.5.3. Setting a client to use Kerberos

As it was for the server, the client requires configuration in /etc/krb5.conf. Copy the file in place (securely) or re-enter it as needed. Test the client by using kinit, klist, and kdestroy from the client to obtain, show, and then delete a ticket for an existing principal. Kerberos applications should also be able to connect to Kerberos enabled servers. If that does not work but obtaining a ticket does, the problem is likely with the server and not with the client or the KDC. In the case of kerberized ssh(1), GSS-API is disabled by default, so test using ssh -o GSSAPIAuthentication=yes hostname.

When testing a Kerberized application, try using a packet sniffer such as tcpdump to confirm that no sensitive information is sent in the clear.

Various Kerberos client applications are available. With the advent of a bridge so that applications using SASL for authentication can use GSS-API mechanisms as well, large classes of client applications can use Kerberos for authentication, from Jabber clients to IMAP clients.

Users within a realm typically have their Kerberos principal mapped to a local user account. Occasionally, one needs to grant access to a local user account to someone who does not have a matching Kerberos principal. For example, tillman@example.org may need access to the local user account webdevelopers. Other principals may also need access to that local account.

The .k5login and .k5users files, placed in a user’s home directory, can be used to solve this problem. For example, if the following .k5login is placed in the home directory of webdevelopers,

```
tillman@example.org
jdoe@example.org
```

both principals listed will have access to that account without requiring a shared password:

```
tillman@example.org
jdoe@example.org
```

Refer to ksu(1) for more information about .k5users.

244
13.5.4. The major difference between the MIT and Heimdal implementations is that
\textbf{kadmin} has a different, but equivalent, set of commands and uses a different protocol. If the KDC is MIT, the Heimdal version of \textbf{kadmin} cannot be used to administer the KDC remotely, and vice versa.

Client applications may also use slightly different command line options to accomplish the same tasks. Following the instructions at \url{http://web.mit.edu/Kerberos/www/} is recommended. Be careful of path issues: the MIT port installs into \texttt{/usr/local/} by default, and the FreeBSD system applications run instead of the MIT versions if \texttt{PATH} lists the system directories first.

When using MIT Kerberos as a KDC on FreeBSD, the following edits should also be made to \texttt{rc.conf}:

- \texttt{kerberos5_server} = \texttt{/usr/local/sbin/krb5kdc}
- \texttt{kadmind5_server} = \texttt{/usr/local/sbin/kadmind}
- \texttt{kerberos5_server_flags} = \texttt{}
- \texttt{kerberos5_server_enable} = \texttt{YES}
- \texttt{kadmind5_server_enable} = \texttt{YES}

13.5.5. Kerberos, tricks, and troubleshooting

When configuring and troubleshooting Kerberos, keep the following points in mind:

- When using either Heimdal or MIT Kerberos from ports, ensure that the \texttt{PATH} lists the port's versions of the client applications before the system versions.
- If all the computers in the realm do not have synchronized time settings, authentication may fail. \texttt{NTP} \texttt{time} \texttt{校对} describes how to synchronize clocks using NTP.
- If the hostname is changed, the host/\texttt{principal} must be changed and the keytab updated. This also applies to special keytab entries like the \texttt{HTTP/\texttt{principal}} used for Apache's \texttt{www/mod_auth_kerb}.
- All hosts in the realm must be both forward and reverse resolvable in DNS or, at a minimum, exist in \texttt{/etc/hosts}. \texttt{CNAMEs} will work, but the A and PTR records must be correct and in place. The error message for unresolvable hosts is not intuitive: Kerberos5 refuses authentication because Read req failed: Key table entry not found.
- Some operating systems that act as clients to the KDC do not set the permissions for \texttt{ksu} to be setuid root. This means that \texttt{ksu} does not work. This is a permissions problem, not a KDC error.
- With MIT Kerberos, to allow a principal to have a ticket life longer than the default lifetime of ten hours, use \texttt{modify_principal} at the \texttt{kadmin(8)} prompt to change the \texttt{maxlife} of both the principal in question and the \texttt{krbtgt} principal. The principal can then use \texttt{kinit -l} to request a ticket with a longer lifetime.
- When running a packet sniffer on the KDC to aid in troubleshooting while running \texttt{kinit} from a workstation, the Ticket Granting Ticket (TGT) is sent immediately, even before the password is typed. This is because the Kerberos server freely transmits a TGT to any unauthorized request. However, every TGT is encrypted in a key derived from the user's password. When a user types their password, it is not sent to the KDC, it is instead used to decrypt the TGT that \texttt{kinit} already obtained. If the decryption process results in a valid ticket with a valid time stamp, the user has valid Kerberos credentials. These credentials include a session key for establishing secure communications with the Kerberos server in the future, as well as the actual TGT, which is encrypted with the Kerberos server's own key. This second layer of encryption allows the Kerberos server to verify the authenticity of each TGT.
- Host principals can have a longer ticket lifetime. If the user principal has a lifetime of a week but the host being connected to has a lifetime of nine hours, the user cache will have an expired host principal and the ticket cache will not work as expected.
- When setting up \texttt{krb5.dict} to prevent specific bad passwords from being used as described in \texttt{kadmind(8)}, remember that it only applies to principals that have a password policy assigned to them.
them. The format used in krb5.dict is one string per line. Creating a symbolic link to /usr/shared/dict/words might be useful.

13.5.6. 処理

Kerberos的限制

Since Kerberos is an all or nothing approach, every service enabled on the network must either be modified to work with Kerberos or be otherwise secured against network attacks. This is to prevent user credentials from being stolen and re-used. An example is when Kerberos is enabled on all remote shells but the non-Kerberized POP3 mail server sends passwords in plain text.

The KDC is a single point of failure. By design, the KDC must be as secure as its master password database. The KDC should have absolutely no other services running on it and should be physically secure. The danger is high because Kerberos stores all passwords encrypted with the same master key which is stored as a file on the KDC.

A compromised master key is not quite as bad as one might fear. The master key is only used to encrypt the Kerberos database and as a seed for the random number generator. As long as access to the KDC is secure, an attacker cannot do much with the master key.

If the KDC is unavailable, network services are unusable as authentication cannot be performed. This can be alleviated with a single master KDC and one or more slaves, and with careful implementation of secondary or fall-back authentication using PAM.

Kerberos allows users, hosts and services to authenticate between themselves. It does not have a mechanism to authenticate the KDC to the users, hosts, or services. This means that a trojanned kinit could record all user names and passwords. File system integrity checking tools like security/tripwire can alleviate this.

13.5.7. 相関資源と延伸情報

• The Kerberos FAQ
• Designing an Authentication System: a Dialog in Four Scenes
• RFC 4120, The Kerberos Network Authentication Service (V5)
• MIT Kerberos home page
• Heimdal Kerberos home page

13.6. OpenSSL

OpenSSL is an open source implementation of the SSL and TLS protocols. It provides an encryption transport layer on top of the normal communications layer, allowing it to be intertwined with many network applications and services.

The version of OpenSSL included in FreeBSD supports the Secure Sockets Layer 3.0 (SSLv3) and Transport Layer Security 1.0/1.1/1.2 (TLSv1/TLSv1.1/TLSv1.2) network security protocols and can be used as a general cryptographic library. In FreeBSD 12.0-RELEASE and above, OpenSSL also supports Transport Layer Security 1.3 (TLSv1.3).

OpenSSL is often used to encrypt authentication of mail clients and to secure web based transactions such as credit card payments. Some ports, such as www/apache24 and databases/postgresql11-server, include a compile option for building with OpenSSL. If selected, the port will add support using OpenSSL from the base system. To instead have the port compile against OpenSSL from the security/openssl port, add the following to /etc/make.conf:

```
DEFAULT_VERSIONS+= ssl=openssl
```

Another common use of OpenSSL is to provide certificates for use with software applications. Certificates can be used to verify the credentials of a company or individual. If a certificate has not...
been signed by an external Certificate Authority (CA), such as http://www.verisign.com, the application that uses the certificate will produce a warning. There is a cost associated with obtaining a signed certificate and using a signed certificate is not mandatory as certificates can be self-signed. However, using an external authority will prevent warnings and can put users at ease. This section demonstrates how to create and use certificates on a FreeBSD system. Refer to 設定 LDAP 伺服器 for an example of how to create a CA for signing one's own certificates. For more information about SSL, read the free OpenSSL Cookbook.

13.6.1. 產生憑證

To generate a certificate that will be signed by an external CA, issue the following command and input the information requested at the prompts. This input information will be written to the certificate. At the Common Name prompt, input the fully qualified name for the system that will use the certificate. If this name does not match the server, the application verifying the certificate will issue a warning to the user, rendering the verification provided by the certificate as useless.

```
openssl req -new -nodes -out req.pem -keyout cert.key -sha256 -newkey rsa:2048
Generating a 2048 bit RSA private key
..................+++
...++++
writing new private key to 'cert.key'

You are about to be asked to enter information that will be incorporated into your certificate request. What you are about to enter is what is called a Distinguished Name or a DN. There are quite a few fields but you can leave some blank. For some fields there will be a default value, if you enter '.' the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:PA
Locality Name (eg, city):Pittsburgh
Organization Name (eg, company) [Internet Widgits Pty Ltd]:My Company
Organizational Unit Name (eg, section):Systems Administrator
Common Name (eg, YOUR name):localhost.example.org
Email Address:trhodes@FreeBSD.org
Please enter the following 'extra' attributes to be sent with your certificate request
A challenge password:
An optional company name:
Other options, such as the expire time and alternate encryption algorithms, are available when creating a certificate. A complete list of options is described in openssl(1).
```

This command will create two files in the current directory. The certificate request, req.pem, can be sent to a CA who will validate the entered credentials, sign the request, and return the signed certificate.
The second file, `cert.key`, is the private key for the certificate and should be stored in a secure location. If this falls in the hands of others, it can be used to impersonate the user or the server.

Alternately, if a signature from a CA is not required, a self-signed certificate can be created. First, generate the RSA key:

```bash
openssl genrsa -rand -genkey -out cert.key 2048
0 semi-random bytes loaded
Generating RSA private key, 2048 bit long modulus
...+++
...+++
e is 65537 (0x10001)
```

Use this key to create a self-signed certificate. Follow the usual prompts for creating a certificate:

```bash
openssl req -new -x509 -days 365 -key cert.key -out cert.crt -sha256
```

You are about to be asked to enter information that will be incorporated into your certificate request. What you are about to enter is what is called a Distinguished Name or a DN. There are quite a few fields but you can leave some blank. If you enter '.', the field will be left blank.

```

Country Name ([2 letter code]) [AU]: US
State or Province Name (full name) [Some-State]: PA
Locality Name (eg, city): Pittsburgh
Organization Name (eg, company) [Internet Widgits Pty Ltd]: My Company
Organizational Unit Name (eg, section): Systems Administrator
Common Name (e.g. server FQDN or YOUR name) [:localhost.example.org]
Email Address [:trhodes@FreeBSD.org]

```

This will create two new files in the current directory: a private key file `cert.key`, and the certificate itself, `cert.crt`. These should be placed in a directory, preferably under `/etc/ssl/`, which is readable only by root. Permissions of `0700` are appropriate for these files and can be set using `chmod`.

13.6.2. 使用憑證

One use for a certificate is to encrypt connections to the Sendmail mail server in order to prevent the use of clear text authentication.

Some mail clients will display an error if the user has not installed a local copy of the certificate. Refer to the documentation included with the software for more information on certificate installation.

In FreeBSD 10.0-RELEASE and above, it is possible to create a self-signed certificate for Sendmail automatically. To enable this, add the following lines to `/etc/rc.conf`:

```bash
```

248
This will automatically create a self-signed certificate, /etc/mail/certs/host.cert, a signing key, /etc/mail/certs/host.key, and a CA certificate, /etc/mail/certs/cacert.pem. The certificate will use the Common Name specified in sendmail_cert_cn. After saving the edits, restart Sendmail:

# service sendmail restart

If all went well, there will be no error messages in /var/log/maillog. For a simple test, connect to the mail server's listening port using telnet:

# telnet example.com 25

Trying 192.0.34.166...
Connected to example.com.
Escape character is '^]'.
ehlo example.com
250-example.com Hello example.com [192.0.34.166], pleased to meet you
250-ENHANCEDSTATUSCODES
250-PIPELINING
250-8BITMIME
250-SIZE
250-DSN
250-ETRN
250-AUTH LOGIN PLAIN
250-STARTTLS
250-DELIVERBY
250 HELP
quit
221 2.0.0 example.com closing connection
Connection closed by foreign host.

If the STARTTLS line appears in the output, everything is working correctly.

13.7. VPN over IPsec

Internet Protocol Security (IPsec) is a set of protocols which sit on top of the Internet Protocol (IP) layer. It allows two or more hosts to communicate in a secure manner by authenticating and encrypting each IP packet of a communication session. The FreeBSD IPsec network stack is based on the http://www.kame.net/ implementation and supports both IPv4 and IPv6 sessions.

IPsec is comprised of the following sub-protocols:

• Encapsulated Security Payload (ESP): this protocol protects the IP packet data from third party...
interference by encrypting the contents using symmetric cryptography algorithms such as Blowfish and 3DES.

- **Authentication Header (AH):** this protocol protects the IP packet header from third party interference and spoofing by computing a cryptographic checksum and hashing the IP packet header fields with a secure hashing function. This is then followed by an additional header that contains the hash, to allow the information in the packet to be authenticated.

- **IP Payload Compression Protocol (IPComp):** this protocol tries to increase communication performance by compressing the IP payload in order to reduce the amount of data sent.

These protocols can either be used together or separately, depending on the environment.

IPsec supports two modes of operation. The first mode, **Transport Mode**, protects communications between two hosts. The second mode, **Tunnel Mode**, is used to build virtual tunnels, commonly known as Virtual Private Networks (VPNs). Consult `ipsec(4)` for detailed information on the IPsec subsystem in FreeBSD.

In FreeBSD 11 and later versions, IPsec is pre-installed. In earlier versions of FreeBSD, you can enable it by adding the following option to the kernel configuration:

```
options IPSEC
```

If IPsec debugging support is desired, the following kernel option should also be added:

```
options IPSEC_DEBUG debug
```

This rest of this chapter demonstrates the process of setting up an IPsecVPN between a home network and a corporate network. In the example scenario:

- Both sites are connected to the Internet through a gateway that is running FreeBSD.
- The gateway on each network has at least one external IP address. In this example, the corporate LAN's external IP address is 172.16.5.4 and the home LAN's external IP address is 192.168.1.12.
- The internal addresses of the two networks can be either public or private IP addresses. However, the address space must not collide. For example, both networks cannot use 192.168.1.x. In this example, the corporate LAN's internal IP address is 10.246.38.1 and the home LAN's internal IP address is 10.0.0.5.

**13.7.1.** In FreeBSD, set up a VPN:

To begin, `security/ipsec-tools` must be installed from the Ports Collection. This software provides a number of applications which support the configuration.

The next requirement is to create two `gif(4)` pseudo-devices which will be used to tunnel packets and allow both networks to communicate properly. As root, run the following commands, replacing `internal` and `external` with the real IP addresses of the internal and external interfaces of the two gateways:

```
ifconfig gif0 create
ifconfig gif0 internal1 internal2
ifconfig gif0 tunnel external1 external2
```

Verify the setup on each gateway, using `ifconfig`. Here is the output from Gateway 1:

```
250
```
Once complete, both internal IP addresses should be reachable using `ping(8)`:

priv-net# ping 10.0.0.5
PING 10.0.0.5 (10.0.0.5): 56 data bytes
64 bytes from 10.0.0.5: icmp_seq=0 ttl=64 time=42.786 ms
64 bytes from 10.0.0.5: icmp_seq=1 ttl=64 time=19.255 ms
64 bytes from 10.0.0.5: icmp_seq=2 ttl=64 time=20.440 ms
64 bytes from 10.0.0.5: icmp_seq=3 ttl=64 time=21.036 ms
--- 10.0.0.5 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 19.255/25.879/42.786/9.782 ms

corp-net# ping 10.246.38.1
PING 10.246.38.1 (10.246.38.1): 56 data bytes
64 bytes from 10.246.38.1: icmp_seq=0 ttl=64 time=28.106 ms
64 bytes from 10.246.38.1: icmp_seq=1 ttl=64 time=42.917 ms
64 bytes from 10.246.38.1: icmp_seq=2 ttl=64 time=127.525 ms
64 bytes from 10.246.38.1: icmp_seq=3 ttl=64 time=119.896 ms
64 bytes from 10.246.38.1: icmp_seq=4 ttl=64 time=154.524 ms
--- 10.246.38.1 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 28.106/94.594/154.524/49.814 ms

As expected, both sides have the ability to send and receive ICMP packets from the privately configured addresses. Next, both gateways must be told how to route packets in order to correctly send traffic from either network. The following commands will achieve this goal:

corp-net# route add 10.0.0.0 10.0.0.5 255.255.255.0
corp-net# route add net 10.0.0.0: gateway 10.0.0.5
priv-net# route add 10.246.38.0 10.246.38.1 255.255.255.0
At this point, internal machines should be reachable from each gateway as well as from machines behind the gateways. Again, use `ping(8)` to confirm:

```
corp-net# ping 10.0.0.8
PING 10.0.0.8 (10.0.0.8): 56 data bytes
64 bytes from 10.0.0.8: icmp_seq=0 ttl=63 time=92.391 ms
64 bytes from 10.0.0.8: icmp_seq=1 ttl=63 time=21.870 ms
64 bytes from 10.0.0.8: icmp_seq=2 ttl=63 time=198.022 ms
64 bytes from 10.0.0.8: icmp_seq=3 ttl=63 time=22.241 ms
64 bytes from 10.0.0.8: icmp_seq=4 ttl=63 time=174.705 ms
--- 10.0.0.8 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 21.870/101.846/198.022/74.001 ms

corp-net# ping 10.246.38.107
PING 10.246.38.1 (10.246.38.107): 56 data bytes
64 bytes from 10.246.38.107: icmp_seq=0 ttl=64 time=53.491 ms
64 bytes from 10.246.38.107: icmp_seq=1 ttl=64 time=23.395 ms
64 bytes from 10.246.38.107: icmp_seq=2 ttl=64 time=23.865 ms
64 bytes from 10.246.38.107: icmp_seq=3 ttl=64 time=21.145 ms
64 bytes from 10.246.38.107: icmp_seq=4 ttl=64 time=36.708 ms
--- 10.246.38.107 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 21.145/31.721/53.491/12.179 ms
```

Setting up the tunnels is the easy part. Configuring a secure link is a more in depth process. The following configuration uses pre-shared (PSK) RSA keys. Other than the IP addresses, the `/usr/local/etc/racoon/racoon.conf` on both gateways will be identical and look similar to:

```
path pre_shared_key "/usr/local/etc/racoon/psk.txt"; #location of pre-shared key file
log debug; #log verbosity setting: set to 'notify' when testing and debugging is complete
padding
{
 maximum_length 20;
 randomize off;
 strict_check off;
 exclusive_tail off;
}
timer # timing options. change as needed
```
counter 5;
interval 20 sec;
persend 1;
# natt_keepalive 15 sec;
phase1 30 sec;
phase2 15 sec;

listen # address [port] that racoon will listen on

isakmp 172.16.5.4 [500];
isakmp_natt 172.16.5.4 [4500];

remote 192.168.1.12 [500]

exchange_mode main,aggressive;
doi ipsec_doi;
situation identity_only;
my_identifier address 172.16.5.4;
peers_identifier address 192.168.1.12;
lifetime time 8 hour;
passive off;
proposal_check obey;
# nat_traversal off;
generate_policy off;

proposal {
encryption_algorithm blowfish;
hash_algorithm md5;
authentication_method pre_shared_key;
lifetime time 30 sec;
ahandshake dh_group 1;
}

sainfo (address 10.246.38.0/24 any address 10.0.0.0/24 any) # address

$network/$netmask $type address $network/$netmask $type ($type being any or esp)

{ pfs_group 1;
lifetime time 36000 sec;
encryption_algorithm blowfish,3des;

253
For descriptions of each available option, refer to the manual page for racoon.conf.

The Security Policy Database (SPD) needs to be configured so that FreeBSD and racoon are able to encrypt and decrypt network traffic between the hosts. This can be achieved with a shell script, similar to the following, on the corporate gateway. This file will be used during system initialization and should be saved as /usr/local/etc/racoon/setkey.conf.

```
flush;
spdflush;

To the home network
spdadd 10.246.38.0/24 10.0.0.0/24 any -P out ipsec esp/tunnel/172.16.5.4-192.168.1.12/use;
spdadd 10.0.0.0/24 10.246.38.0/24 any -P in ipsec esp/tunnel/192.168.1.12-172.16.5.4/use;
```

Once in place, racoon may be started on both gateways using the following command:

```
/usr/local/sbin/racoon -F -f /usr/local/etc/racoon/racoon.conf -l /var/log/racoon.log
```

The output should be similar to the following:

```
corp-net# /usr/local/sbin/racoon -F -f /usr/local/etc/racoon/racoon.conf
Foreground mode.
2006-01-30 01:35:48: INFO: received Vendor ID: KAME/racoon
2006-01-30 01:35:55: INFO: received Vendor ID: KAME/racoon
2006-01-30 01:36:04: INFO: ISAKMP-SA established 172.16.5.4[500]-192.168.1.12[500]
spi:623b9b3bd2492452:7deab82d54ff704a
2006-01-30 01:36:05: INFO: initiate new phase 2 negotiation: 172.16.5.4[0]-192.168.1.12[0]
2006-01-30 01:36:09: INFO: IPsec-SA established: ESP/Tunnel 192.168.1.12[0]-172.16.5.4[0] spi=28496098(0x1b2d0e2)
2006-01-30 01:36:09: INFO: IPsec-SA established: ESP/Tunnel 172.16.5.4[0]-192.168.1.12[0] spi=47784998(0x2d92426)
2006-01-30 01:36:13: INFO: respond new phase 2 negotiation: 172.16.5.4[0]-192.168.1.12[0]
2006-01-30 01:36:18: INFO: IPsec-SA established: ESP/Tunnel 192.168.1.12[0]-172.16.5.4[0] spi=124397467(0x76a279b)
2006-01-30 01:36:18: INFO: IPsec-SA established: ESP/Tunnel 172.16.5.4[0]-192.168.1.12[0] spi=175852902(0xa7b4d66)
```

To ensure the tunnel is working properly, switch to another console and use tcpdump(1) to view network traffic using the following command. Replace em0 with the network interface card as required:

```
```

tcpdump -i em0 host 172.16.5.4 and dst 192.168.1.12

Data similar to the following should appear on the console. If not, there is an issue and debugging the returned data will be required.

01:47:32.021683 IP corporatenetwork.com > 192.168.1.12.privatenetwork.com: ESP(spi=0x02acbf9f,seq=0xa)
01:47:33.022442 IP corporatenetwork.com > 192.168.1.12.privatenetwork.com: ESP(spi=0x02acbf9f,seq=0xb)
01:47:34.024218 IP corporatenetwork.com > 192.168.1.12.privatenetwork.com: ESP(spi=0x02acbf9f,seq=0xc)

At this point, both networks should be available and seem to be part of the same network. Most likely both networks are protected by a firewall. To allow traffic to flow between them, rules need to be added to pass packets. For the `ipfw(8)` firewall, add the following lines to the firewall configuration file:

```
ipfw add 00201 allow log esp from any to any
ipfw add 00202 allow log ah from any to any
ipfw add 00203 allow log ipencap from any to any
ipfw add 00204 allow log udp from any 500 to any
```

The rule numbers may need to be altered depending on the current host configuration.

For users of `pf(4)` or `ipf(8)`, the following rules should do the trick:

```
pass in quick proto esp from any to any
pass in quick proto ah from any to any
pass in quick proto ipencap from any to any
pass in quick proto udp from any port = 500 to any port = 500
pass in quick on gif0 from any to any
pass out quick proto esp from any to any
pass out quick proto ah from any to any
pass out quick proto ipencap from any to any
pass out quick proto udp from any port = 500 to any port = 500
pass out quick on gif0 from any to any
```

Finally, to allow the machine to start support for the VPN during system initialization, add the following lines to `/etc/rc.conf`:

```
ipsec_enable="YES"
ipsec_program="/usr/local/sbin/setkey"
ipsec_file="/usr/local/etc/racoon/setkey.conf" # allows setting up spd policies on boot
```

```
OpenSSH 是一套網路連線工具，可以用來安全地存取遠端的主機。此外，透過 SSH 連線可以建立 TCP/IP 連線通道或安全地轉送 TCP/IP 的封包。OpenSSH 會對所有傳輸的資料做加密，有效避免竊聽（Eavesdropping）或連線劫持（Connection hijacking）與其他網路層的攻擊。

OpenSSH 由 OpenBSD 專案所維護，且在 FreeBSD 預設會安裝。它可同時相容 SSH 版本 1 與 2 通訊協定。

當以未加密的方式在網路上傳送資料時，任何在客戶端與伺服器之間的網路竊聽程式（Network sniffer）皆可竊取使用者/密碼資訊或者在連線階段傳送的資料，OpenSSH 提供了數種認証與加密方式來避免這種事情發生。更多有關 OpenSSH 的資訊可於 http://www.openssh.com/ 取得。

本節會簡單介紹如何使用內建的客戶端工具安全地存取其他系統及安全地傳輸檔案到 FreeBSD 系統，然後會說明如何設定在 FreeBSD 系統上的 SSH 伺服器。更多資訊可於本章節所提及的操作手冊（Man page）取得。

13.8.1. 使用 SSH 客戶端工具
要登入一台 SSH 伺服器，可使用 `ssh` 然後指定在伺服器上存在的使用者名稱與 IP 位址或伺服器的主機名稱。若這是第一次連線到指定的伺服器，會提示該使用者伺服器的指紋做第一次檢驗：

```bash
# ssh user@example.com
The authenticity of host 'example.com (10.0.0.1)' can't be established.
Are you sure you want to continue connecting (yes/no)? yes
Permanently added 'example.com' (ECDSA) to the list of known hosts.
Password for user@example.com: user_password
```

SSH 會在客戶端連線時利用金鑰指紋系統來驗證伺服器的真偽，當使用者在第一次連線時輸入 yes 接受了這個金鑰指紋，便會將該金鑰的副本儲存到使用者家目錄的 `.ssh/known_hosts`，未來嘗試登入時便會以這個存好的金鑰來驗證，若伺服器的金鑰與儲存的金鑰不同將會顯示警告訊息。若出現這個警告時，使用者應在繼續連線之前檢查金鑰變動的原因為何。

最近版本的 OpenSSH 預設只會接受 SSHv2 的連線。客戶端預設會盡可能使用版本 2 的通訊協定，若伺服器不支援版本 2 的通訊協定便會向下相容版本 1 的協定。要強制 `ssh` 只能使用指定的通訊協定，可使用 `-1` 或 `-2`，其他的選項在 `ssh(1)` 中有說明。

使用 `scp(1)` 可從遠端主機安全地複製一個檔案，以下範例會複製在遠端主機的 `COPYRIGHT` 到本地主機的目錄:

```bash
# scp user@example.com:/COPYRIGHT COPYRIGHT
Password for user@example.com: *******
COPYRIGHT            100% |
****************************|  4735
00:00
```

由於這個主機的指紋已驗證過，在提示使用者輸入密碼之前伺服器的金鑰已自動檢查。
傳給scp的參數與傳給cp的參數相似。第一個參數是要複製的檔案，第二個參數是目的地，由於檔案是透過網路取得，檔案參數需要使用user@host:<path_to_remote_file>格式。注意，scp要遞迴複製目錄是使用-r，如同cp使用-R。

要開啟可互動的連線來複製檔案可使用sftp，請參考sftp(1)來取得在sftp連線時可用的指令清單。

13.8.1.1. 以金鑰為基礎的認證

除使用密碼之外，客戶端可以設定成使用金鑰來連線到遠端的主機。要產生RSA認証金鑰可使用ssh-keygen。要產生成對的公鑰與私鑰，可指定金鑰的類型並依提示操作。建議使用容易記住但較難猜出的密碼來保護這個金鑰。

% ssh-keygen -t rsa
 Generating public/private rsa key pair.
Enter file in which to save the key (~/home/user/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
① Enter same passphrase again:
② Your identification has been saved in /home/user/.ssh/id_rsa.
Your public key has been saved in /home/user/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:54Xm9Uvtv6H4NOo6yjP/YCfODryvUU7yWHzMqeXwhq8 user@host.example.com
The key's randomart image is:
+---[RSA 2048]----+
| |
| |
| |
| . o.. |
| .S*+*o |
| . O=Oo . . |
| = Oo= oo..|
| .oB.* +.oo.|
| =OE**.o..=|
+----[SHA256]-----+

① 在此輸入密碼，密碼不可含空白或符號。

② 再輸入一次密碼驗證。

私鑰會儲存於~/.ssh/id_rsa而公鑰會儲存於~/.ssh/id_rsa.pub。公鑰必須複製到遠端主機的~/.ssh/authorized_keys來讓以金鑰為基礎的認証可以運作。

若使用了密碼，在每此連線到伺服器時都會提示使用者輸入密碼。要將SSH金鑰載入到記憶體並讓每次連線時不必再輸入密碼，可使用ssh-agent(1)與ssh-add(1)。

不同版本OpenSSH的選項與檔案會不同，要避免發生問題請參考ssh-keygen(1)。

若使用了密碼，在每次連線到伺服器時都會提示使用者輸入密碼。要將SSH金鑰載入到記憶體並讓每次連線時不必再輸入密碼，可使用ssh-agent(1)與ssh-add(1)。

若使用了密碼，在每次連線到伺服器時都會提示使用者輸入密碼。要將SSH金鑰載入到記憶體並讓每次連線時不必再輸入密碼，可使用ssh-agent(1)與ssh-add(1)。
認證可用

ssh-agent

只要將私鑰載入，ssh-agent可用在執行其他應用程式，如Shell或視窗管理程式。

要在Shell使用ssh-agent，使用Shell做為參數來啟動ssh-agent。

執行ssh-add來加入識別碼，然後輸入私鑰的密碼。使用者將可使用ssh連線到任何有安裝對應公鑰的主機，例如:

```
% ssh-agent csh
% ssh-add
Enter passphrase for key '/usr/home/user/.ssh/id_rsa':
①
Identity added: /usr/home/user/.ssh/id_rsa (/usr/home/user/.ssh/id_rsa)
%
```

①輸入金鑰的密碼。

要在Xorg使用ssh-agent可在~/.xinitrc加入一個設定項目，這可讓ssh-agent對所有在Xorg中執行的程式提供服務。

```
exec ssh-agent startxfce4
```

這會在每次啟動Xorg時，反過來先執行ssh-agent再由執行XFCE，但Xorg被重新啟動，要讓所有變更生效需執行ssh-add來載入所有的SSH金鑰。

13.8.1.2. SSH通道

OpenSSH可以建立一個通道（Tunnel）來封裝其他通訊協定到一個加密的連線。

以下指令會告訴ssh建立一個供telnet使用的通道:

```
% ssh -2 -N -f -L 5023:localhost:23 user@foo.example.com
%
```

這個例子使用了以下選項:

- **-2** 強制ssh使用版本2的通訊協定連線到伺服器。
- **-N** 代表不需下指令，只建立通道。若省略這個選項ssh會初始化一個正常的連線。
- **-f** 強制ssh在背景執行。
- **-L** 代表這是一個本地通道，使用localport:remotehost:remoteport格式。

`user@foo.example.com`在指定的遠端SSH伺服器要使用的登入名稱。

SSH通道會建立一個傾聽localhost指定localport的Socket，然後會透過SSH連線轉送任何在localport接收的連線。以這個例子來說在客戶端的Port 5023會被轉送到遠端主機的Port 23，因為Port 23是由telnet使用，所以這會透過SSH通道建立一個加密的telnet連線。

這個方法可用來包裝許多不安全的TCP通訊協定，例如SMTP, POP3以及FTP，如下例所示。
例31. 建立供SMTP使用的安全通道

```bash
% ssh -2 -N -f -L 5025:localhost:25 user@mailserver.example.com
```

user@mailserver.example.com 的密码: *****

```bash
% telnet localhost 5025
```

尝试 127.0.0.1...

已连接到 localhost。

转义字符是 ‘\^]’。

220 mailserver.example.com ESMTP

这可配合ssh-keygen与另一个使用者帐号来建立一个更无缝的SSH通路环境，可使用金钥来代替手动输入密码，然后该通路便可以另一个使用者执行。

例32. 安全存取POP3伺服器

在这个例子中有一个SSH伺服器会接受来自外部的连线，在同个网段下有一个邮件伺服器执行POP3伺服器。要使用较安全的方式检查有没有新邮件可建立一个SSH连线到SSH伺服器然后透过通路连线到邮件伺服器:

```bash
% ssh -2 -N -f -L 2110:mail.example.com:110 user@ssh-server.example.com
```

user@ssh-server.example.com 的密码: ****

一旦通路启动并执行后，指定邮件客户端将POP3请求传送到localhost的Port 2110，这个连线将会被安全的透过通道转送到mail.example.com。

例33. 跳过防火墙

有些防火墙会同时过滤传入与传出的连线。例如，防火墙很可能会限制来自远程主机只能存取Port 22与80来只让SSH与网页浏览连线，这会使得Port使用22或80以外的服务无法存取。

这问题的解决方法是建立一个SSH连线到在防火墙防护之外主机然后使用该连线的通路连线到想要使用的服务:

```bash
% ssh -2 -N -f -L 8888:music.example.com:8000 user@unfirewalled-system.example.org
```

user@unfirewalled-system.example.org 的密码: ******

在这个例子中，串流Ogg Vorbis客户端现在可以指向localhost Port 8888，连线将会被转送至music.example.com於Port 8000，成功地跳过防火墙。

13.8.2. 开启SSH伺服器

除了提供内建的SSH客户端工具外，还可以设定FreeBSD系统为一个SSH伺服器，以接受来自其他SSH客户端的连线。

要查看sshd是否在运作，可使用service(8)指令:
若服务 sshd 未执行，请加入下行到 /etc/rc.conf。

```
sshd_enable="YES"
```

这会让下次系统开机关动 OpenSSH 的 Daemon 程式 sshd。若要立即启动:

```
# service sshd start
```

在 FreeBSD 系统第一次启动 sshd 时便自动产生系统的主机金钥且会显示在 Console 上, 这个金钥可供使用者在第一次连线到伺服器时验证用。

请参考 sshd(8) 可取得在启动 sshd 时可用选项及更多有关认证、登入程序与各种设定档的资讯。

现在, sshd 应可供所有在系统上有使用者名称及密码的使用者使用。

13.8.3. SSH 伺服器安全性

在 FreeBSD 广泛使用 sshd 做为远程管理基础设施的同时, 所有暴露在公众网路上的系统也会时常受到暴力攻击 (Brute force attack) 与路过的攻击 (Drive by attack)。在本节会介绍一些可用来避免这些攻击的参数。

使用在 OpenSSH 伺服器设定档的 AllowUsers 关键字限制可以登入到 SSH 伺服器的使用者及来源是一个不错的方式。例如要只允许来自 192.168.1.32 的 root 登入, 可加入下行到 /etc/ssh/sshd_config:

```
AllowUsers root@192.168.1.32
```

要允许来自任何地方的 admin 登入, 可只列出使用者名称, 不指定 IP 位址:

```
AllowUsers admin
```

有多位使用者也应列在同一行, 例如:

```
AllowUsers root@192.168.1.32 admin
```

在对 /etc/ssh/sshd_config 做变更后, 执行以下指令告诉 sshd 重新载入设定档:

```
# service sshd reload
```

在使用了这个关键字时, 列出每一需要登入此主机的使用者很重要, 任何未在该行指定期的使用者将无法登入。同时, 在 OpenSSH 伺服器设定档使用的关键字是区分大小写的, 若关键字未正确的拼写 (含其大小写), 则将会被忽略, 永远要记得测试对这个档案所做更改来确保伺服器有如预期的方式运作。请参考 sshd_config(5) 来检查拼写及可用的关键字。
此外，使用者可能被强制要透过公钥与私钥使用双重认证（Two factor authentication）。当需要时，使用者可以透过使用`ssh-keygen(1)`产生一堆金钥然后将公钥传送给管理者，这个金钥档会如以上在客户端章节所述被放在`authorized_keys`。要强制使用者只能使用这个金钥，可能需要设定以下选项:

```
AuthenticationMethods publickey
```

请不要将`/etc/ssh/sshd_config`以及`/etc/ssh/ssh_config`搞混（注意在第一节档名有多出个d），第一個檔案用來設定伺服器，而第二個檔案用來設定客戶端。请参考`ssh_config(5)`来取得可用的客户端设定清单。

13.9.1. 开启ACL支援

ACLs are enabled by the mount-time administrative flag, `acls`, which may be added to `/etc/fstab`. The mount-time flag can also be automatically set in a persistent manner using `tunefs(8)` to modify a superblock ACLs flag in the file system header. In general, it is preferred to use the superblock flag for several reasons:

• The superblock flag cannot be changed by a remount using `mount -u` as it requires a complete `umount` and fresh `mount`. This means that ACLs cannot be enabled on the root file system after boot. It also means that ACL support on a file system cannot be changed while the system is in use.

• Setting the superblock flag causes the file system to always be mounted with ACLs enabled, even if there is not an `fstab` entry or if the devices re-order. This prevents accidental mounting of the file system without ACL support.

It is desirable to discourage accidental mounting without ACLs enabled because nasty things can happen if ACLs are enabled, then disabled, then re-enabled without flushing the extended attributes. In general, once ACLs are enabled on a file system, they should not be disabled, as the resulting file protections may not be compatible with those intended by the users of the system, and re-enabling ACLs may re-attach the previous ACLs to files that have since had their permissions changed, resulting in unpredictable behavior.

File systems with ACLs enabled will show a plus (`+`) sign in their permission settings:
In this example, `directory1`, `directory2`, and `directory3` are all taking advantage of ACLs, whereas `public_html` is not.

13.9.2. 使用 ACL
File system ACLs can be viewed using `getfacl`. For instance, to view the ACL settings on `test`:

```
% getfacl
#file:test
#owner:1001
#group:1001
user::rw-
group::r--
other::r--
```

To change the ACL settings on this file, use `setfacl`. To remove all of the currently defined ACLs from a file or file system, include `-k`. However, the preferred method is to use `-b` as it leaves the basic fields required for ACLs to work.

```
% setfacl
-k
```

To modify the default ACL entries, use `-m`:

```
% setfacl
-m
u:trhodes:rwx,group:web:r--,o::---
```

In this example, there were no pre-defined entries, as they were removed by the previous command. This command restores the default options and assigns the options listed. If a user or group is added which does not exist on the system, an `Invalid argument` error will be displayed.

Refer to `getfacl(1)` and `setfacl(1)` for more information about the options available for these commands.

13.10. 監視 第三 方 安全 問題
In recent years, the security world has made many improvements to how vulnerability assessment is handled. The threat of system intrusion increases as third party utilities are installed and configured for virtually any operating system available today.

Vulnerability assessment is a key factor in security. While FreeBSD releases advisories for the base system, doing so for every third party utility is beyond the FreeBSD Project's capability. There is a way to mitigate third party vulnerabilities and warn administrators of known security issues. A FreeBSD add on utility known as `pkg` includes options explicitly for this purpose.
pkg polls a database for security issues. The database is updated and maintained by the FreeBSD Security Team and ports developers. Please refer to instructions for installing pkg.

Installation provides `periodic(8)` configuration files for maintaining the pkg audit database, and provides a programmatic method of keeping it updated. This functionality is enabled if `daily_status_security_pkgaudit_enable` is set to `YES` in `periodic.conf(5)`. Ensure that daily security run emails, which are sent to root's email account, are being read.

After installation, and to audit third party utilities as part of the Ports Collection at any time, an administrator may choose to update the database and view known vulnerabilities of installed packages by invoking:

```
# pkg audit -F
```

pkg displays messages any published vulnerabilities in installed packages:

```
Affected package: cups-base-1.1.22.0_1
Type of problem: cups-base -- HPGL buffer overflow vulnerability.
Reference: <https://www.FreeBSD.org/ports/portaudit/40a3bca2-6809-11d9-a9e7-0001020eed82.html>
1 problem(s) in your installed packages found.
```

You are advised to update or deinstall the affected package(s) immediately. By pointing a web browser to the displayed URL, an administrator may obtain more information about the vulnerability. This will include the versions affected, by FreeBSD port version, along with other web sites which may contain security advisories.

pkg is a powerful utility and is extremely useful when coupled with `ports-mgmt/portmaster`.

Like many producers of quality operating systems, the FreeBSD Project has a security team which is responsible for determining the End-of-Life (EoL) date for each FreeBSD release and to provide security updates for supported releases which have not yet reached their EoL. More information about the FreeBSD security team and the supported releases is available on the FreeBSD security page.

One task of the security team is to respond to reported security vulnerabilities in the FreeBSD operating system. Once a vulnerability is confirmed, the security team verifies the steps necessary to fix the vulnerability and updates the source code with the fix. It then publishes the details as a "Security Advisory". Security advisories are published on the FreeBSD website and mailed to the `freebsd-security-notifications`, `freebsd-security`, and `freebsd-announce` mailing lists.

This section describes the format of a FreeBSD security advisory.

Here is an example of a FreeBSD security advisory:

```
============================================================================
```
FreeBSD-SA-14:04.bind Security Advisory
The FreeBSD Project

Topic: BIND remote denial of service vulnerability
Category: contrib
Module: bind
Announced: 2014-01-14
Credits: ISC
Affects: FreeBSD 8.x and FreeBSD 9.x
 2014-01-14 19:38:37 UTC (stable/8, 8.4-STABLE)
 2014-01-14 19:42:28 UTC (releng/8.4, 8.4-RELEASE-p7)
CVE Name: CVE-2014-0591

For general information regarding FreeBSD Security Advisories,
including descriptions of the fields above, security branches, and the
following sections, please visit <URL:http://security.FreeBSD.org/>.

I. Background
BIND 9 is an implementation of the Domain Name System (DNS) protocols.
The named(8) daemon is an Internet Domain Name Server.

II. Problem Description
Because of a defect in handling queries for NSEC3-signed zones, BIND can
crash with an "INSIST" failure in name.c when processing queries possessing
certain properties. This issue only affects authoritative nameservers with
at least one NSEC3-signed zone. Recursive-only servers are not at risk.

III. Impact
An attacker who can send a specially crafted query could cause named(8)
IV. Workaround
No workaround is available, but systems not running authoritative DNS service with at least one NSEC3-signed zone using named(8) are not vulnerable.

V. Solution
Perform one of the following:
1) Upgrade your vulnerable system to a supported FreeBSD stable or release / security branch (releng) dated after the correction date.
2) To update your vulnerable system via a source code patch:
The following patches have been verified to apply to the applicable FreeBSD release branches.
 a) Download the relevant patch from the location below, and verify the detached PGP signature using your PGP utility.

 [FreeBSD 8.3, 8.4, 9.1, 9.2-RELEASE and 8.4-STABLE]
 # fetch http://security.FreeBSD.org/patches/SA-14:04/bind-release.patch
 # gpg --verify bind-release.patch.asc

 [FreeBSD 9.2-STABLE]
 # gpg --verify bind-stable-9.patch.asc

 b) Execute the following commands as root:

 # cd /usr/src
 # patch < /path/to/patch

 Recompile the operating system using buildworld and installworld as described in <URL:https://www.FreeBSD.org/handbook/makeworld.html>.

 Restart the applicable daemons, or reboot the system.
3) To update your vulnerable system via a binary patch:

Systems running a RELEASE version of FreeBSD on the i386 or amd64 platforms can be updated via the freebsd-update(8) utility:

```
# freebsd-update fetch
# freebsd-update install
```

VI. Correction details

The following list contains the correction revision numbers for each affected branch.

<table>
<thead>
<tr>
<th>Branch/path</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>stable/8/</td>
<td>r260646</td>
</tr>
<tr>
<td>releng/8.3/</td>
<td>r260647</td>
</tr>
<tr>
<td>releng/8.4/</td>
<td>r260647</td>
</tr>
<tr>
<td>stable/9/</td>
<td>r260646</td>
</tr>
<tr>
<td>releng/9.1/</td>
<td>r260647</td>
</tr>
<tr>
<td>releng/9.2/</td>
<td>r260647</td>
</tr>
</tbody>
</table>

To see which files were modified by a particular revision, run the following command, replacing NNNNNN with the revision number, on a machine with Subversion installed:

```
# svn diff -cNNNNN --summarize svn://svn.freebsd.org/base
```

Or visit the following URL, replacing NNNNNN with the revision number:

```
<URL:https://svnweb.freebsd.org/base?view=revision&revision=NNNNNN>
```

VII. References

```
<URL:https://kb.isc.org/article/AA-01078>
<URL:http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0591>
```

The latest revision of this advisory is available at

```
<URL:http://security.FreeBSD.org/advisories/FreeBSD-SA-14:04.bind.asc>
```

-----BEGIN PGP SIGNATURE-----
266
Every security advisory uses the following format:

• Each security advisory is signed by the PGP key of the Security Officer. The public key for the Security Officer can be verified at OpenPGP.

• The name of the security advisory always begins with FreeBSD-SA- (for FreeBSD Security Advisory), followed by the year in two digit format (14:), followed by the advisory number for that year (04.), followed by the name of the affected application or subsystem (bind). The advisory shown here is the fourth advisory for 2014 and it affects BIND.

• The Topic field summarizes the vulnerability.

• The Category refers to the affected part of the system which may be one of core, contrib, or ports. The core category means that the vulnerability affects a core component of the FreeBSD operating system. The contrib category means that the vulnerability affects software included with FreeBSD, such as BIND. The ports category indicates that the vulnerability affects software available through the Ports Collection.

• The Module field refers to the component location. In this example, the bind module is affected; therefore, this vulnerability affects an application installed with the operating system.

• The Announced field reflects the date the security advisory was published. This means that the security team has verified that the problem exists and that a patch has been committed to the FreeBSD source code repository.

• The Credits field gives credit to the individual or organization who noticed the vulnerability and reported it.

• The Affects field explains which releases of FreeBSD are affected by this vulnerability.

• The Corrected field indicates the date, time, time offset, and releases that were corrected. The section in parentheses shows each branch for which the fix has been merged, and the version number of the corresponding release from that branch. The release identifier itself includes the version number and, if appropriate, the patch level. The patch level is the letter p followed by a number, indicating the sequence number of the patch, allowing users to track which patches have already been applied to the system.

• The CVE Name field lists the advisory number, if one exists, in the public cve.mitre.org security vulnerabilities database.

• The Background field provides a description of the affected module.

• The Problem Description field explains the vulnerability. This can include information about the flawed code and how the utility could be maliciously used.
The Impact field describes what type of impact the problem could have on a system.

The Workaround field indicates if a workaround is available to system administrators who cannot immediately patch the system.

The Solution field provides the instructions for patching the affected system. This is a step by step tested and verified method for getting a system patched and working securely.

The Correction Details field displays each affected Subversion branch with the revision number that contains the corrected code.

The References field offers sources of additional information regarding the vulnerability.

13.12. Program Tracking

Process accounting is a security method in which an administrator may keep track of system resources used and their allocation among users, provide for system monitoring, and minimally track a user's commands.

Process accounting has both positive and negative points. One of the positives is that an intrusion may be narrowed down to the point of entry. A negative is the amount of logs generated by process accounting, and the disk space they may require. This section walks an administrator through the basics of process accounting.

If more fine-grained accounting is needed, refer to 安全事件稽查.

13.12.1. 开启并使用程序追踪

Before using process accounting, it must be enabled using the following commands:

```
# sysrc accounting_enable=yes
# service accounting start
```

The accounting information is stored in files located in /var/account, which is automatically created, if necessary, the first time the accounting service starts. These files contain sensitive information, including all the commands issued by all users. Write access to the files is limited to root, and read access is limited to root and members of the wheel group. To also prevent members of wheel from reading the files, change the mode of the /var/account directory to allow access only by root.

Once enabled, accounting will begin to track information such as CPU statistics and executed commands. All accounting logs are in a non-human readable format which can be viewed using sa.

If issued without any options, sa prints information relating to the number of per-user calls, the total elapsed time in minutes, total CPU and user time in minutes, and the average number of I/O operations. Refer to sa(8) for the list of available options which control the output.

To display the commands issued by users, use lastcomm. For example, this command prints out all usage of ls by trhodes on the ttyp1 terminal:

```
# lastcomm ls trhodes ttyp1
```

Many other useful options exist and are explained in lastcomm(1), acct(5), and sa(8).

13.13. 限制资源

FreeBSD provides several methods for an administrator to limit the amount of system resources an individual may use. Disk quotas limit the amount of disk space available to users. Quotas are discussed in 磁碟配額.
Limits to other resources, such as CPU and memory, can be set using either a flat file or a command to configure a resource limits database. The traditional method defines login classes by editing `/etc/login.conf`. While this method is still supported, any changes require a multi-step process of editing this file, rebuilding the resource database, making necessary changes to `/etc/master.passwd`, and rebuilding the password database. This can become time consuming, depending upon the number of users to configure.

`rctl` can be used to provide a more fine-grained method for controlling resource limits. This command supports more than user limits as it can also be used to set resource constraints on processes and jails.

This section demonstrates both methods for controlling resources, beginning with the traditional method.

13.13.1. Setting Login Classes

In the traditional method, login classes and the resource limits to apply to a login class are defined in `/etc/login.conf`. Each user account can be assigned to a login class, where `default` is the default login class. Each login class has a set of login capabilities associated with it. A login capability is a `name=value` pair, where `name` is a well-known identifier and `value` is an arbitrary string which is processed accordingly depending on the `name`.

Whenever `/etc/login.conf` is edited, the `/etc/login.conf.db` must be updated by executing the following command:

```
# cap_mkdb /etc/login.conf
```

Resource limits differ from the default login capabilities in two ways. First, for every limit, there is a soft and hard limit. A soft limit may be adjusted by the user or application, but may not be set higher than the hard limit. The hard limit may be lowered by the user, but can only be raised by the superuser. Second, most resource limits apply per process to a specific user.

Resources

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cputime</td>
<td>The maximum amount of CPU time a user's process may consume. Offending processes will be killed by the kernel. This is a limit on CPU time consumed, not the percentage of the CPU as displayed in some of the fields generated by <code>top</code> and <code>ps</code>.</td>
</tr>
<tr>
<td>filesize</td>
<td>The maximum size of a file the user may own. Unlike disk quotas, this limit is enforced on individual files, not the set of all files a user owns.</td>
</tr>
<tr>
<td>coredumpsize</td>
<td>The limit on the size of a core file generated by a program is subordinate to other limits on disk usage, such as <code>filesize</code> or disk quotas. This limit is often used as a less severe method of controlling disk space consumption. Since users do not generate core files and often do not delete them, this setting may save them from running out of disk space should a large program crash.</td>
</tr>
</tbody>
</table>
The maximum number of foreground and background processes a user can run. This limit may not be larger than the system limit specified by `kern.maxproc`. Setting this limit too small may hinder a user's productivity as some tasks, such as compiling a large program, start lots of processes.

The maximum amount of memory a process may request to be locked into main memory using `mlock(2)`. Some system-critical programs, such as `amd(8)`, lock into main memory so that if the system begins to swap, they do not contribute to disk thrashing.

The maximum amount of memory a process may consume at any given time. It includes both core memory and swap usage. This is not a catch-all limit for restricting memory consumption, but is a good start.

The maximum number of files a process may have open. In FreeBSD, files are used to represent sockets and IPC channels, so be careful not to set this too low. The system-wide limit for this is defined by `kern.maxfiles`.

The limit on the amount of network memory a user may consume. This can be generally used to limit network communications.

The maximum size of a process stack. This alone is not sufficient to limit the amount of memory a program may use, so it should be used in conjunction with other limits.

There are a few other things to remember when setting resource limits:

• Processes started at system startup by `/etc/rc` are assigned to the daemon login class.

• Although the default `/etc/login.conf` is a good source of reasonable values for most limits, they may not be appropriate for every system. Setting a limit too high may open the system up to abuse, while setting it too low may put a strain on productivity.

• Xorg takes a lot of resources and encourages users to run more programs simultaneously.

• Many limits apply to individual processes, not the user as a whole. For example, setting `openfiles` to 50 means that each process the user runs may open up to 50 files. The total amount of files a user may open is the value of `openfiles` multiplied by the value of `maxproc`. This also applies to memory consumption.

For further information on resource limits and login classes and capabilities in general, refer to `cap_mkdb(1)`, `getrlimit(2)`, and `login.conf(5)`.
Once the system has rebooted into the new kernel, `rctl` may be used to set rules for the system. Rule syntax is controlled through the use of a subject, subject-id, resource, and action, as seen in this example rule:

```
user:trhodes:maxproc:deny=10/user
```

In this rule, the subject is `user`, the subject-id is `trhodes`, the resource, `maxproc`, is the maximum number of processes, and the action is `deny`, which blocks any new processes from being created. This means that the user, `trhodes`, will be constrained to no greater than 10 processes. Other possible actions include logging to the console, passing a notification to `devd(8)`, or sending a `sigterm` to the process.

Some care must be taken when adding rules. Since this user is constrained to 10 processes, this example will prevent the user from performing other tasks after logging in and executing a `screen` session. Once a resource limit has been hit, an error will be printed, as in this example:

```
% man
/usr/bin/man: Cannot fork: Resource temporarily unavailable
```

As another example, a jail can be prevented from exceeding a memory limit. This rule could be written as:

```
# rctl -a jail:httpd:memoryuse:deny=2G/jail
```

Rules will persist across reboots if they have been added to `/etc/rctl.conf`. The format is a rule, without the preceding command. For example, the previous rule could be added as:

```
# Block jail from using more than 2G memory:
jail:httpd:memoryuse:deny=2G/jail
```

To remove a rule, use `rctl` to remove it from the list:

```
# rctl -r user:trhodes:maxproc:deny=10/user
```

A method for removing all rules is documented in `rctl(8)`. However, if removing all rules for a single user is required, this command may be issued:

```
# rctl -r user:trhodes
```

Many other resources exist which can be used to exert additional control over various subjects. See `rctl(8)` to learn about them.

使用 `Sudo` 分享管理权限

系统管理者通常会要能授予额外的权限给其他使用者，让这些使用者可以执行需权限的工作。要让团队成员可以存取 FreeBSD 系统来完成其特定的工作对所有管理者都会带来挑战，这些团队成员通常只需要比一般使用者多出一些存取...
權便可作業，但他們總是會告訴管理者若沒有超級使用者的存取權便無法完成其工作。幸好，有工具可以管理這類的需求，這樣便不需提供這麼大的權限給一般使用者。

到目前為止，安全性已經告訴了如何允許已授權的使用者存取及嘗試防止未經授權的存取，現有另一個問題，是由已授權的使用者擁有權限存取系統資源造成的。在很多的情況，使用者會需要存取應用程式的權限或是管理者團隊需要維護系統，以往會使用標準的使用者與群組、檔案權限、甚至於 su(1) 指令來管理存取權，但當應用程式需要更多的存取權，更多的使用者需要使用系統資源時，便需要更好的解決方案，目前最常用來解決此問題的應用程式便是 Sudo。

Sudo 讓管理者可以對系統指令的存取設下更嚴格的限制並提供進階的記錄功能。如同其他工具，它可自 Port 套件集取得，在其中的 security/sudo，或使用 pkg(8) 工具取得，若要使用 pkg(8) 工具可:

pkg install sudo

安裝完成之後，可用安裝的 visudo 以文字編輯器開啟設定檔，強烈建議使用 visudo 來編輯設定檔，由於它有內建的語法檢查程式可在檔案儲存之前檢驗是否有多。設定檔由個小節所組成，透過這些小節可做常廣泛的設定，在以下的範例中，網站應用程式維護人員 user1 需要啓動、停止與重新啟動名稱為 webservice 的網站應用程式。要授權此使用者執行這些工作權限，可加入此行到 /usr/local/etc/sudoers 的最後:

user1 ALL=(ALL) /usr/sbin/service webservice *

現在使用者可使用此指令來啓動 webservice:

% sudo /usr/sbin/service webservice start

雖然這項設定可以讓一位使用者存取 webservice 服務，但在大部份組織中會有一整個網站小組負責管理該服務，因此也可以一行來授予整個群組存取權，以下步驟會建立一個網站群組、加入使用者到這個群組，然後讓該群組中的所有成員能夠管理服務:

pw groupadd -g 6001 -n webteam

同樣使用 pw(8) 指令來加入該使用者到 webteam 群組:

pw groupmod -m user1 -n webteam

最後，在 /usr/local/etc/sudoers 中的這行設定可以讓 webteam 群組的所有成員能夠管理 webservice:

%webteam ALL=(ALL) /usr/sbin/service webservice *

與 su(1) 不同的是 Sudo 只需要一般使用者的密碼，這有一個使用者不需要共用密碼的優點，在大多數安全稽查都會發現共用密碼的問題且這種狀況只有壞處可言。

使用 Sudo 允許使用者執行應用程式只需要輸入使用者自己的密碼，這更安全且提供比 su(1) 更佳的控制權，因為 su(1) 只要輸入 root 密碼之後該使用者或便可取得所有的 root 權限。
在這個情境下使用者可以不用輸入密碼，Sudo提供了NOPASSWD變數來供這個情境使用，可將該設定加入到上述的設定將可允許所有webteam群組的成員不需要輸入密碼便可管理該服務:

```
%webteam   ALL=(ALL)       NOPASSWD: /usr/sbin/service webservice *
```

記錄輸出採用Sudo的另一個優點是能開啟連線階段的記錄。使用內建記錄機制與內含的sudoreplay指令，所有透過Sudo初始化的指令會被記錄下來供往後檢驗用。要開啟這個功能要加入預設記錄目錄的項目，在以下範例中使用了使用者變數來做目錄名稱，也還有許多年其他記錄檔名稱慣例，可參考sudoreplay的操作手冊來取得進一步資訊。

```
Defaults iolog_dir=/var/log/sudo-io/%{user}
```

這個目錄會在記錄功能設定之後自動建立，最好讓系統以預設的權限來建立目錄比較保險，除此之外，這個設定項目也會記錄使用sudoreplay指令的管理者，要更改設定請閱讀並取消在sudoers中記錄選項的註解。

一旦這個設定加入至sudoers檔案之後，所有的使用者設定項目便可加上記錄存取動作的項目，在webteam項目加入額外設定之後的範例如下:

```
%webteam ALL=(ALL) NOPASSWD: LOG_INPUT: LOG_OUTPUT: /usr/sbin/service webservice *
```

從此之後，所有webteam修改webservice應用程式狀態的成員將會被記錄下來。要列出先前與目前連線階段的記錄可:

```
# sudoreplay -l
```

在輸出結果中要重播指定連線階段的記錄可搜尋TSID=項目，然後傳送給sudoreplay且不加其他選項便可以一般速度重播連線階段，例如下:

```
# sudoreplay user1/00/00/02
```

雖然所有連線階段都會被記錄，但任何人皆可移除連線階段，使得沒人知道它們做了什麼事，所以非常值得在入侵偵測系統(IPS)或類似的軟體加入每日檢查，以便在有人為修改時通知其他人員。

sudoreplay的擴充空間非常大，請參考說明文件來取得更多資訊。
術語：

使用的以下列出本章关易互助为协助 FreeBSD 其他部分的相系, 与理部份, 以解 FreeBSD 容关系统有关相关术语 14.2. Jail

将及系统管理者阶的使用者来二者来说。是强工具大的对进行将 Jail 术语及本章指令的概述提供管理 FreeBSD Jail 执行操作。之外的系统己的 Jail 及有自己自使用者的 Jail: 个是要的素环境存层级虚拟化是一种作系统 Jail 业算可取方式, 多参的细型, 可使用过虚拟化存这个调校微扩展取案系统、使用者来透网 Jail 及档更控制子系统来数模享机主被及系统程序所共取的方。其仅限存做在一部份行的程序以制案系统可网档源进展了的概念。在传许 Jail 统统用多方式 chroot 让 chroot 方案。逃以不的确保想是环境这个方理再的方已经服被法离全安复杂的推移工、进许性适合时多可作, 不需要, 只阶功许许弹有多间工限能的或制多用在简单性者的务被滲但让整攻执行的服环境击 chroot 并不会透源案或资立以外的 chroot 的程序不能的在环境所透档环境 chroot 建取该程序与系统其他部份分一系列程序的更改上隔, 的一个安造。在将概念之可以创环境根目录, 会建在立及功以便定性稳 FreeBSD 4.X 能、率强化它效的安。、全性设定全性之一的维 FreeBSD 强化系统安是以为的方式。这些就及装、护通常可以项让系统管理者能。这些更强化困轻松来许系统安够由工工具开发作, 工具于系统管理是一难的。
指程序在“chroot”中執行的環境。包含的資源如：一部份可見的檔案系統、可用的使用者及群組 ID、網路介面及其他 IPC 機制等。

jail(8)(指令)允許在 Jail 環境下執行程序的系統管理工具。

主機(系統、程序、使用者等)Jail 環境的控制系統。主機系統可以存取所有可用的硬體資源,並能控制 Jail 環境內外的程序。主機系統與 Jail 最大的差別在於:在主機系統中的超級使用者程序並不像在 Jail 環境那樣受到限制。

托管(主機、程序、使用者等)存取資源受到 FreeBSD Jail 禁制的托管程序、使用者或其他實體。

14.3. 建立和控制 Jail 部份管理者將 Jail 分成兩種類型:“完整的”Jail,它像一個真正的 FreeBSD 系統以及“服務的”Jail,專門用於某個應用程式或服務,可能使用管理權限執行。但這些只是概念上的區分,建立 Jail 的程序並不受這個概念的影響。當要建立一個“完整的”Jail,Userland 有兩個來源選項:使用预先編譯的 Binary (如安裝媒體上提供的 Binary)或從原始碼編譯。要從安裝媒體安裝 Userland,需要先建立根目錄供 Jail 使用。這個動作可以透過設定 DESTDIR 來到適當的位置來完成。

```
# sh
# export DESTDIR=/here/is/the/jail
```

當使用安裝 ISO 時,可依照 mdconfig(8) 中的說明掛載安裝媒體:

```
# mount -t cd9660 /dev/`mdconfig -f cdimage.iso` /mnt
# cd /mnt/usr/freebsd-dist/
```

或者自鏡像站下載 Tarball 壓縮檔:

```
# sh
# export DESTRELEASE=12.0-RELEASE
# export DESTARCH=`uname -m`
# export SOURCEURL=http://ftp.freebsd.org/pub/FreeBSD/releases/$DESTARCH/$DESTRELEASE/
# for set in base ports; do fetch $SOURCEURL/$set.txz ; done
```

從安裝媒體上的 Tarball 中取出 Binary 並放到宣告的位置,至少需要取出 Base set 的部份,若需要也可完整安裝。

只安裝基礎系統(Base system):

```
# tar -xf base.txz -C $DESTDIR
```
安裝全部不含核心:

for set in base ports; do tar -xf $set.txz -C $DESTDIR; done

依 jail(8) 操作手冊說明的程序建立 Jail:

①
setenv D /here/is/the/jail
mkdir -p $D
②
cd /usr/src
make buildworld
③
make installworld DESTDIR=$D
④
make distribution DESTDIR=$D
⑤
mount -t devfs devfs $D/dev

① 選擇 Jail 的位置是建立 Jail 最好起點，這是在 Jail 主機上儲存 Jail 的實體位置。較好的選擇是/usr/jail/jailname，其中 jailname 是用來辨識 Jail 的主機名稱。通常在 /usr/ 會有足夠的空間供 Jail 檔案系統使用，對 “完整的” Jail 來說，便是複製 FreeBSD 基礎系統預設安裝的每一個檔案。

② 若您已經使用 make world 或 make buildworld 重新編譯您的 Userland，您可以跳過這個步驟並安裝您已存放在的 Userland 到新的 Jail。

③ 這個指令將產生死態目錄及必要的 Binary、程式庫、操作手冊與相關檔案。

④ make 的 distribution 目標會安裝所有需要的設定檔。簡單來說，它會安裝所有 /usr/src/etc/ 中可安裝的檔案到 Jail 環境的 /etc 目錄：$D/etc/。

⑤ 在 Jail 中掛載 devfs(8) 檔案系統並非必要動作。從另一個角度看，任何或大部份的應用程式會依該程式的目的會需要存取至少一個裝置，在 Jail 中控制存取的裝置非常要，不恰當的設定可能會讓攻擊者可以在 Jail 中做不軌的事。

devfs(8) 的控制是透過 Ruleset，在 devfs(8) 及 devfs.conf(5) 操作手冊中有詳細說明。

Jail 安裝完成之後，便可使用 jail(8) 工具來啟動。

jail(8) 工具需要四個必要參數，在概說有說明。其他參數也可能需要指定，例如要使用特定使用者的身份來執行要 Jail 的程序。

command 參數依 Jail 的類型所需而定，對一個虛擬系統來說，/etc/rc 是不錯的選擇，因為該檔案可以模擬實際 FreeBSD 的啟動順序。對於服務型的 Jail 而言，則要看在 Jail 中要執行的服務或應用程式來決定。

Jail 通常會需要隨著開機執行，使用 FreeBSD rc 機制可讓以簡單的達成這件事。
在 `rc.conf` 中設定開機時啟動 Jail:

```
jail_enable="YES"   # Set to NO to disable starting of any jails
```

預設要啟動的 Jail 可在 `jail.conf(5)` 設定，會把 Jail 當作是一個完全虛擬的系統，然後執行 Jail 中的 `/etc/rc` Script。

針對服務型的 Jail 則需透過設定 `exec.start` 選項來適當更改 Jail 的預設啟動指令。

要取得完整可用選項的清單，請參考 `jail.conf(5)` 操作手冊。

若 Jail 項目已經在 `jail.conf` 中設定好，可以手動用 `service(8)` 來啟動或停止某個 Jail 項目:

```
# service jail start www
# service jail stop www
```

Jail 可以使用 `jexec(8)` 來關機。先使用 `jls(8)` 來識別 Jail 的 JID，然後使用 `jexec(8)` 在該 Jail 中執行關機 Script。

```
# jls
JID  IP Address      Hostname                      Path
3  192.168.0.10    www                           /usr/jail/www
# jexec 3 /etc/rc.shutdown
```

更多有關 Jail 的資訊可在 `jail(8)` 操作手冊取得。

14.4. 調校與管理

還有多個選項可以對所有 Jail 做設定，以及各種可讓 Jail 與主機 FreeBSD 系統結合的方法來提供更高層級的應用程式使用。本節將介紹:

- Some of the options available for tuning the behavior and security restrictions implemented by a jail installation.
- Some of the high-level applications for jail management, which are available through the FreeBSD Ports Collection, and can be used to implement overall jail-based solutions.

14.4.1. 在 FreeBSD 中調校 Jail 的系統工具

細調一個 Jail 的配置主要是通過設定 `sysctl(8)` 變量。有一個特別的子樹為組織所有相關選項的基礎：`FreeBSD` 核心選項的 `security.jail.*` 層級。以下是主要的 Jail 相關 `sysctls` 名稱，附上其預設值。名稱應該可以自說明，但更多關於他們的資訊，請參閱 `jail(8)` 和 `sysctl(8)` 手冊頁。

- `security.jail.set_hostname_allowed`: 1
- `security.jail.socket_unixiproute_only`: 1
- `security.jail.sysvipc_allowed`: 0
- `security.jail.enforce_statfs`: 2
- `security.jail.allow_raw_sockets`: 0
- `security.jail.chflags_allowed`: 0
These variables can be used by the system administrator of the host system to add or remove some of the limitations imposed by default on the root user. Note that there are some limitations which cannot be removed. The root user is not allowed to mount or unmount file systems from within a jail(8). The root inside a jail may not load or unload devfs(8) rulesets, set firewall rules, or do many other administrative tasks which require modifications of in-kernel data, such as setting the securelevel of the kernel.

The base system of FreeBSD contains a basic set of tools for viewing information about the active jails, and attaching to a jail to run administrative commands. The jls(8) and jexec(8) commands are part of the base FreeBSD system, and can be used to perform the following simple tasks:

- Print a list of active jails and their corresponding jail identifier (JID), IP address, hostname and path.
- Attach to a running jail, from its host system, and run a command inside the jail or perform administrative tasks inside the jail itself. This is especially useful when the root user wants to cleanly shut down a jail. The jexec(8) utility can also be used to start a shell in a jail to do administration in it; for example:

```
# jexec 1 tcsh
```

14.4.2. 在 FreeBSD Port套件中的高層級管理工具

Among the many third-party utilities for jail administration, one of the most complete and useful is sysutils/ezjail. It is a set of scripts that contribute to jail(8) management. Please refer to the handbook section on ezjail for more information.

14.4.3. 持續Jail的修補與更新

Jails should be kept up to date from the host operating system as attempting to patch userland from within the jail may likely fail as the default behavior in FreeBSD is to disallow the use of chflags(1) in a jail which prevents the replacement of some files. It is possible to change this behavior but it is recommended to use freebsd-update(8) to maintain jails instead. Use -b to specify the path of the jail to be updated.

```
# freebsd-update -b /here/is/the/jail fetch
# freebsd-update -b /here/is/the/jail install
```

14.5. 更新多個Jail

The management of multiple jails can become problematic because every jail has to be rebuilt from scratch whenever it is upgraded. This can be time consuming and tedious if a lot of jails are created and manually updated.

This section demonstrates one method to resolve this issue by safely sharing as much as is possible between jails using read-only mount_nullfs(8) mounts, so that updating is simpler. This makes it more attractive to put single services, such as HTTP, DNS, and SMTP, into individual jails. Additionally, it provides a simple way to add, remove, and upgrade jails.

Simpler solutions exist, such as ezjail, which provides an easier method of administering FreeBSD jails but is less versatile than this setup. ezjail is covered in more detail in 使用ezjail管理Jail.

The goals of the setup described in this section are:
Create a simple and easy to understand jail structure that does not require running a full installworld on each and every jail.

- Make it easy to add new jails or remove existing ones.
- Make it easy to update or upgrade existing jails.
- Make it possible to run a customized FreeBSD branch.
- Be paranoid about security, reducing as much as possible the possibility of compromise.
- Save space and inodes, as much as possible.

This design relies on a single, read-only master template which is mounted into each jail and one read-write device per jail. A device can be a separate physical disc, a partition, or a vnode backed memory device. This example uses read-write nullfs mounts.

The file system layout is as follows:

- The jails are based under the `/home` partition.
- Each jail will be mounted under the `/home/j` directory.
- The template for each jail and the read-only partition for all of the jails is `/home/j/mroot`.
- A blank directory will be created for each jail under the `/home/j` directory.
- Each jail will have a `/s` directory that will be linked to the read-write portion of the system.
- Each jail will have its own read-write system that is based upon `/home/j/skel`.
- The read-write portion of each jail will be created in `/home/js`.

14.5.1. 建立範本

This section describes the steps needed to create the master template.

It is recommended to first update the host FreeBSD system to the latest -RELEASE branch using the instructions in [原始碼更新FreeBSD](#). Additionally, this template uses the `sysutils/cpdup` package or portsnap will be used to download the FreeBSD Ports Collection.

1. First, create a directory structure for the read-only file system which will contain the FreeBSD binaries for the jails. Then, change directory to the FreeBSD source tree and install the read-only file system to the jail template:

   ```bash
   # mkdir /home/j /home/j/mroot
   # cd /usr/src
   # make installworld DESTDIR=/home/j/mroot
   ```

2. Next, prepare a FreeBSD Ports Collection for the jails as well as a FreeBSD source tree, which is required for mergemaster:

   ```bash
   # cd /home/j/mroot
   # mkdir usr/ports
   # portsnap -p /home/j/mroot/usr/ports fetch extract
   # cpdup /usr/src /home/j/mroot/usr/src
   ```

3. Create a skeleton for the read-write portion of the system:

   ```bash
   # mkdir /home/j/skel /home/j/skel/home /home/j/skel/usr-X11R6
   ```
4. Use mergemaster to install missing configuration files. Then, remove the extra directories that mergemaster creates:

```
# mergemaster -t /home/j/skel/var/tmp/temproot -D /home/j/skel -i
```

```
# cd /home/j/skel
# rm -R bin boot lib libexec mnt proc rescue sbin sys usr dev
```

5. Now, symlink the read-write file system to the read-only file system. Ensure that the symlinks are created in the correct locations as the creation of directories in the wrong locations will cause the installation to fail:

```
# cd /home/j/mroot
# mkdir s
# ln -s s/etc etc
# ln -s s/home home
# ln -s s/root root
# ln -s ../s/usr-local usr/local
# ln -s ../s/usr-X11R6 usr/X11R6
# ln -s ../../s/distfiles usr/ports/distfiles
# ln -s s/tmp tmp
# ln -s s/var var
```

6. As a last step, create a generic `/home/j/skel/etc/make.conf` containing this line:

```
WRKDIRPREFIX?=  /s/portbuild
```

This makes it possible to compile FreeBSD ports inside each jail. Remember that the ports directory is part of the read-only system. The custom path for `WRKDIRPREFIX` allows builds to be done in the read-write portion of every jail.
To prevent fsck from checking nullfs mounts during boot and dump from backing up the read-only nullfs mounts of the jails, the last two columns are both set to 0.

2. Configure the jails in `/etc/rc.conf`:

   ```
   jail_enable="YES"
   jail_set_hostname_allow="NO"
   jail_list="ns mail www"
   jail_ns_hostname="ns.example.org"
   jail_ns_ip="192.168.3.17"
   jail_ns_rootdir="/usr/home/j/ns"
   jail_ns_devfs_enable="YES"
   jail_mail_hostname="mail.example.org"
   jail_mail_ip="192.168.3.18"
   jail_mail_rootdir="/usr/home/j/mail"
   jail_mail_devfs_enable="YES"
   ```

 The `jail name rootdir` variable is set to `/usr/home` instead of `/home` because the physical path of `/home` on a default FreeBSD installation is `/usr/home`. The `jail name rootdir` variable must not be set to a path which includes a symbolic link, otherwise the jails will refuse to start.

3. Create the required mount points for the read-only file system of each jail:

   ```
   # mkdir /home/j/ns /home/j/mail /home/j/www
   ```

4. Install the read-write template into each jail using `sysutils/cpdup`:

   ```
   # mkdir /home/js
   # cpdup /home/j/skel /home/js/ns
   # cpdup /home/j/skel /home/js/mail
   # cpdup /home/j/skel /home/js/www
   ```

5. In this phase, the jails are built and prepared to run. First, mount the required file systems.
for each jail, and then start them:

```
# mount -a
# service jail start
```

The jails should be running now. To check if they have started correctly, use `jls`.

```
# jls
JID  IP Address      Hostname                      Path
3    192.168.3.17    ns.example.org                /home/j/ns
2    192.168.3.18    mail.example.org              /home/j/mail
1    62.123.43.14    www.example.org               /home/j/www
```

At this point, it should be possible to log onto each jail, add new users, or configure daemons. The JID column indicates the jail identification number of each running jail. Use the following command to perform administrative tasks in the jail whose JID is 3:

```
# jexec 3 tcsh
```

The design of this setup provides an easy way to upgrade existing jails while minimizing their downtime. Also, it provides a way to roll back to the older version should a problem occur.

1. The first step is to upgrade the host system. Then, create a new temporary read-only template in `/home/j/mroot2`.

```
# mkdir /home/j/mroot2
# cd /usr/src
# make installworld DESTDIR=/home/j/mroot2
# cd /home/j/mroot2
# cpdup /usr/src usr/src
```

The `installworld` creates a few unnecessary directories, which should be removed:

```
# chflags -R 0 var
# rm -R etc var root usr/local tmp
```

2. Recreate the read-write symlinks for the master file system:

```
# ln -s s/etc etc
# ln -s s/root root
```

282
3. Next, stop the jails:
service jail stop

4. Unmount the original file systems as the read-write systems are attached to the read-only system (/s):
umount /home/j/ns/s
umount /home/j/ns
umount /home/j/mail/s
umount /home/j/mail
umount /home/j/www/s
umount /home/j/www

5. Move the old read-only file system and replace it with the new one. This will serve as a backup and archive of the old read-only file system should something go wrong. The naming convention used here corresponds to when a new read-only file system has been created. Move the original FreeBSD Ports Collection over to the new file system to save some space and inodes:
cd /home/j
mv mroot mroot.200601
mv mroot2 mroot
mv mroot.200601/usr/ports mroot/usr

6. At this point the new read-only template is ready, so the only remaining task is to remount the file systems and start the jails:
mount -a
service jail start

Use jls to check if the jails started correctly. Run mergemaster in each jail to update the configuration files.

14.6. 使用ezjail管理Jail

Creating and managing multiple jails can quickly become tedious and error-prone. Dirk Engling's ezjail automates and greatly simplifies many jail tasks. A basejail is created as a template. Additional jails use mount_nullfs(8) to share many of the basejail directories without using additional disk space. Each additional jail takes only a few megabytes of disk space before...
Applications are installed. Upgrading the copy of the userland in the basejail automatically upgrades all of the other jails. Additional benefits and features are described in detail on the ezjail web site, https://erdgeist.org/software/ezjail.

14.6.1. Installing ezjail consists of adding a loopback interface for use in jails, installing the port or package, and enabling the service.

1. To keep jail loopback traffic off the host's loopback network interface `lo0`, a second loopback interface is created by adding an entry to `/etc/rc.conf`:

   ```
   cloned_interfaces="lo1"
   ```

 The second loopback interface `lo1` will be created when the system starts. It can also be created manually without a restart:

   ```
   # service netif cloneup
   ```

 Created clone interfaces: lo1.

 Jails can be allowed to use aliases of this secondary loopback interface without interfering with the host.

 Inside a jail, access to the loopback address `127.0.0.1` is redirected to the first IP address assigned to the jail. To make the jail loopback correspond with the new `lo1` interface, that interface must be specified first in the list of interfaces and IP addresses given when creating a new jail.

 Give each jail a unique loopback address in the `127.0.0.0/8` netblock.

2. Install `sysutils/ezjail`:

   ```
   # cd /usr/ports/sysutils/ezjail
   # make install clean
   ```

3. Enable ezjail by adding this line to `/etc/rc.conf`:

   ```
   ezjail_enable="YES"
   ```

4. The service will automatically start on system boot. It can be started immediately for the current session:

   ```
   # service ezjail start
   ```
With ezjail installed, the basejail directory structure can be created and populated. This step is only needed once on the jail host computer.

In both of these examples, `-p` causes the ports tree to be retrieved with `portsnap(8)` into the basejail. That single copy of the ports directory will be shared by all the jails. Using a separate copy of the ports directory for jails isolates them from the host. The ezjailFAQ explains in more detail: http://erdgeist.org/arts/software/ezjail/#FAQ.

1. To Populate the Jail with FreeBSD-RELEASE

For a basejail based on the FreeBSD RELEASE matching that of the host computer, use `install`. For example, on a host computer running FreeBSD 10-STABLE, the latest RELEASE version of FreeBSD -10 will be installed in the jail:

```
# ezjail-admin install -p
```

2. To Populate the Jail with `installworld`

The basejail can be installed from binaries created by `buildworld` on the host with `ezjail-admin update`. In this example, FreeBSD 10-STABLE has been built from source. The jail directories are created. Then `installworld` is executed, installing the host's `/usr/obj` into the basejail.

```
# ezjail-admin update -i -p
```

The host's `/usr/src` is used by default. A different source directory on the host can be specified with `-s` and a path, or set with `ezjail_sourcetree` in `/usr/local/etc/ezjail.conf`.

The basejail's ports tree is shared by other jails. However, downloaded distfiles are stored in the jail that downloaded them. By default, these files are stored in `/var/ports/distfiles` within each jail. `/var/ports` inside each jail is also used as a work directory when building ports.

The FTP protocol is used by default to download packages for the installation of the basejail. Firewall or proxy configurations can prevent or interfere with FTP transfers. The HTTP protocol works differently and avoids these problems. It can be chosen by specifying a full URL for a particular download mirror in `/usr/local/etc/ezjail.conf`:

```
```

See FTP stations for a list of sites.

14.6.3. 建立並啟動新的Jail

New jails are created with `ezjail-admin create`. In these examples, the `lo1` loopback interface is used as described above.

Procedure: Create and Start a New Jail
1. Create the jail, specifying a name and the loopback and network interfaces to use, with their IP addresses. In this example, the jail is named **dnsjail**.

   ```
   # ezjail-admin create dnsjail 'lo1|127.0.1.1,em0|192.168.1.50'
   ```

 Most network services run in jails without problems. A few network services, most notably `ping(8)`, use raw network sockets. In jails, raw network sockets are disabled by default for security. Services that require them will not work.

 Occasionally, a jail genuinely needs raw sockets. For example, network monitoring applications often use `ping(8)` to check the availability of other computers. When raw network sockets are actually needed in a jail, they can be enabled by editing the ezjail configuration file for the individual jail, `/usr/local/etc/ezjail/jailname`. Modify the parameters entry:

   ```
   export jail_jailname_parameters="allow.raw_sockets=1"
   ```

 Do not enable raw network sockets unless services in the jail actually require them.

2. Start the jail:

   ```
   # ezjail-admin start dnsjail
   ```

3. Use a console on the jail:

   ```
   # ezjail-admin console dnsjail
   ```

 The jail is operating and additional configuration can be completed. Typical settings added at this point include:

 1. Set the root Password

 Connect to the jail and set the root user's password:

      ```
      # ezjail-admin console dnsjail
      # passwd
      ```

 Changing local password for root

 New Password:

 Retype New Password:

 2. Time Zone Configuration

 The jail's time zone can be set with `tzsetup(8)`. To avoid spurious error messages, the `adjkerntz(8)` entry in `/etc/crontab` can be commented or removed. This job attempts to update the computer's hardware clock with time zone changes, but jails are not allowed to access that hardware.
3. DNS Servers
Enter domain name server lines in /etc/resolv.conf so DNS works in the jail.

4. Edit /etc/hosts
Change the address and add the jail name to the localhost entries in /etc/hosts.

5. Configure /etc/rc.conf
Enter configuration settings in /etc/rc.conf. This is much like configuring a full computer. The host name and IP address are not set here. Those values are already provided by the jail configuration.

With the jail configured, the applications for which the jail was created can be installed.

Some ports must be built with special options to be used in a jail. For example, both of the network monitoring plugin packages
net-mgmt/nagios-plugins and net-mgmt/monitoring-plugins have a JAIL option which must be enabled for them to work correctly inside a jail.

14.6.4. 更新 Jail
14.6.4.1. 更新作業系统
Because the basejail's copy of the userland is shared by the other jails, updating the basejail automatically updates all of the other jails. Either source or binary updates can be used.

To build the world from source on the host, then install it in the basejail, use:
```
# ezjail-admin update -b
```

If the world has already been compiled on the host, install it in the basejail with:
```
# ezjail-admin update -i
```

Binary updates use `freebsd-update(8)`. These updates have the same limitations as if `freebsd-update(8)` were being run directly. The most important one is that only -RELEASE versions of FreeBSD are available with this method.

Update the basejail to the latest patched release of the version of FreeBSD on the host. For example, updating from RELEASE-p1 to RELEASE-p2.
```
# ezjail-admin update -u
```

To upgrade the basejail to a new version, first upgrade the host system as described in 执行主要及次要版号升级. Once the host has been upgraded and rebooted, the basejail can then be upgraded.
`freebsd-update(8)` has no way of determining which version is currently installed in the basejail, so the original version must be specified. Use `file(1)` to determine the original version in the basejail:
```
# file /usr/jails/basejail/bin/sh
/usr/jails/basejail/bin/sh: ELF 64-bit LSB executable, x86-64, version 1 (FreeBSD), 287
```
Now use this information to perform the upgrade from 9.3-RELEASE to the current version of the host system:

```
# ezjail-admin update -U -s 9.3-RELEASE
```

After updating the basejail, `mergemaster(8)` must be run to update each jail's configuration files. How to use `mergemaster(8)` depends on the purpose and trustworthiness of a jail. If a jail's services or users are not trusted, then `mergemaster(8)` should only be run from within that jail:

```
例 34. 在不信任的Jail做mergemaster(8)
```

Delete the link from the jail's /usr/src into the basejail and create a new /usr/src in the jail as a mountpoint. Mount the host computer's /usr/src read-only on the jail's new /usr/src mountpoint:

```
# rm /usr/jails/jailname/usr/src
# mkdir /usr/jails/jailname/usr/src
# mount -t nullfs -o ro /usr/src /usr/jails/jailname/usr/src
```

Get a console in the jail:

```
# ezjail-admin console jailname
```

Inside the jail, run `mergemaster`. Then exit the jail console:

```
# cd /usr/src
# mergemaster -U
# exit
```

Finally, unmount the jail's /usr/src:

```
# umount /usr/jails/jailname/usr/src
```

```
例 35. 在信任的Jail做mergemaster(8)
```

If the users and services in a jail are trusted, `mergemaster(8)` can be run from the host:

```
# mergemaster -U -D /usr/jails/jailname
```

```
14.6.4.2. 更新Port
```

The ports tree in the basejail is shared by the other jails. Updating that copy of the ports tree gives...
The base jail ports tree is updated with `portsnap(8)`:

```bash
# ezjail-admin update -P
```

14.6.5.1.

Control Jail

Jails can be manually stopped and restarted with `stop` and `start`:

```bash
# ezjail-admin stop sambajail
```

Stopping jails: sambajail.

By default, jails are started automatically when the host computer starts. Autostarting can be disabled with `config`:

```bash
# ezjail-admin config -r norun seldomjail
```

This takes effect the next time the host computer is started. A jail that is already running will not be stopped.

Enabling autostart is very similar:

```bash
# ezjail-admin config -r run oftenjail
```

14.6.5.2.

Save and Restore Jail

Use `archive` to create a `.tar.gz` archive of a jail. The file name is composed from the name of the jail and the current date. Archive files are written to the archive directory, `/usr/jails/ezjail_archives`. A different archive directory can be chosen by setting `ezjail_archivedir` in the configuration file.

The archive file can be copied elsewhere as a backup, or an existing jail can be restored from it with `restore`. A new jail can be created from the archive, providing a convenient way to clone existing jails.

Stop and archive a jail named `wwwserver`:

```bash
# ezjail-admin stop wwwserver
# ezjail-admin archive wwwserver
# ls /usr/jails/ezjail-archives/
```

wwwserver-201407271153.13.tar.gz

Create a new jail named `wwwserver-clone` from the archive created in the previous step. Use the `em1` interface and assign a new IP address to avoid conflict with the original:
Putting the BINDDNS server in a jail improves security by isolating it. This example creates a simple caching-only name server.

- The jail will be called `dns1`.
- The jail will use IP address `192.168.1.240` on the host's `re0` interface.
- The upstream ISP's DNS servers are at `10.0.0.62` and `10.0.0.61`.
- The basejail has already been created and a ports tree installed as shown in the initial setup.

Example 36: In a Jail execute BIND

1. Create a cloned loopback interface by adding a line to `/etc/rc.conf`:
   ```
   cloned_interfaces="lo1"
   ```
2. Immediately create the new loopback interface:
   ```
   # service netif cloneup
   ```
 Created clone interfaces: lo1.
3. Create the jail:
   ```
   # ezjail-admin create dns1 'lo1|127.0.2.1,re0|192.168.1.240'
   ```
4. Start the jail, connect to a console running on it, and perform some basic configuration:
   ```
   # ezjail-admin start dns1
   # ezjail-admin console dns1
   # passwd
   ```
 Changing local password for root
 New Password:
 Retype New Password:
   ```
   # tzsetup
   # sed -i .bak -e '/adjkerntz/ s/^/#/' /etc/crontab
   # sed -i .bak -e 's/127.0.0.1/127.0.2.1/g; s/localhost.my.domain/dns1.my.domain dns1/' /etc/hosts
   ```
5. Temporarily set the upstream DNS servers in `/etc/resolv.conf` so ports can be downloaded:
   ```
   nameserver 10.0.0.62
   ```
Still using the jail console, install dns/bind99.

```
# make -C /usr/ports/dns/bind99 install clean
```

Configure the name server by editing `/usr/local/etc/namedb/named.conf`.

Create an Access Control List (ACL) of addresses and networks that are permitted to send DNS queries to this name server. This section is added just before the `options` section already in the file:

```
// or cause huge amounts of useless Internet traffic.
acl "trusted" {
  192.168.1.0/24;
  localhost;
  localnets;
};
```

Use the jail IP address in the `listen-on` setting to accept DNS queries from other computers on the network:

```
listen-on   { 192.168.1.240;);
```

A simple caching-only DNS name server is created by changing the `forwarders` section. The original file contains:

```
/*
forwarders {
  127.0.0.1;
};
*/
```

Uncomment the section by removing the `/` and `/` lines. Enter the IP addresses of the upstream DNS servers. Immediately after the `forwarders` section, add references to the `trusted` ACL defined earlier:

```
forwarders {
  10.0.0.62;
  10.0.0.61;
};
```
Enable the service in /etc/rc.conf:
```
named_enable="YES"
```
Start and test the name server:
```
# service named start
wrote key file /usr/local/etc/namedb/rndc.key
Starting named.
# /usr/local/bin/dig @192.168.1.240 freebsd.org
```
A response that includes `;; Got answer` shows that the new DNS server is working. A long delay followed by a response including `;; connection timed out; no servers could be reached` shows a problem. Check the configuration settings and make sure any local firewalls allow the new DNS access to the upstream DNS servers.

The new DNS server can use itself for local name resolution, just like other local computers. Set the address of the DNS server in the client computer's /etc/resolv.conf:
```
nameserver 192.168.1.240
```
A local DHCP server can be configured to provide this address for a local DNS server, providing automatic configuration on DHCP clients.
Chapter 15. 強制存取控制 (MAC)

15.1. 概述
FreeBSD supports security extensions based on the POSIX™ 1e draft. These security mechanisms include file system Access Control Lists (存取控制清单) and Mandatory Access Control (MAC). MAC allows access control modules to be loaded in order to implement security policies. Some modules provide protections for a narrow subset of the system, hardening a particular service. Others provide comprehensive labeled security across all subjects and objects. The mandatory part of the definition indicates that enforcement of controls is performed by administrators and the operating system. This is in contrast to the default security mechanism of Discretionary Access Control (DAC) where enforcement is left to the discretion of users.

This chapter focuses on the MAC framework and the set of pluggable security policy modules FreeBSD provides for enabling various security mechanisms.

讀完這章，您將了解:
• The terminology associated with the MAC framework.
• The capabilities of MAC security policy modules as well as the difference between a labeled and non-labeled policy.
• The considerations to take into account before configuring a system to use the MAC framework.
• Which MAC security policy modules are included in FreeBSD and how to configure them.
• How to implement a more secure environment using the MAC framework.
• How to test the MAC configuration to ensure the framework has been properly implemented.

在開始閱讀這章之前，您需要了解:
• UNIX™及FreeBSD基礎 (FreeBSD基礎).
• Have some familiarity with security and how it pertains to FreeBSD (安

安全性).

 Improper MAC configuration may cause loss of system access, aggravation of users, or inability to access the features provided by Xorg. More importantly, MAC should not be relied upon to completely secure a system. The MAC framework only augments an existing security policy. Without sound security practices and regular security checks, the system will never be completely secure.

The examples contained within this chapter are for demonstration purposes and the example settings should not be implemented on a production system.

Implementing any security policy takes a good deal of understanding, proper design, and thorough testing.

While this chapter covers a broad range of security issues relating to the MAC framework, the development of new MAC security policy modules will not be covered. A number of security policy modules included with the MAC framework have specific characteristics which are provided for both testing and new module development. Refer to mac_test(4), mac_stub(4) and mac_none(4) for more information on these security policy modules and the various mechanisms they provide.

15.2. 鍵詞
The following key terms are used when referring to the MAC framework:
• compartment: a set of programs and data to be partitioned or separated, where users are given explicit access to specific component of a system. A compartment represents a grouping, such as a work group, department, project, or topic. Compartments make it possible to implement a need-to-know-basis security policy.
• **integrity**: the level of trust which can be placed on data. As the integrity of the data is elevated, so does the ability to trust that data.

• **level**: the increased or decreased setting of a security attribute. As the level increases, its security is considered to elevate as well.

• **label**: a security attribute which can be applied to files, directories, or other items in the system. It could be considered a confidentiality stamp. When a label is placed on a file, it describes the security properties of that file and will only permit access by files, users, and resources with a similar security setting. The meaning and interpretation of label values depends on the policy configuration. Some policies treat a label as representing the integrity or secrecy of an object while other policies might use labels to hold rules for access.

• **multilabel**: this property is a file system option which can be set in single-user mode using `tunefs(8)`, during boot using `fstab(5)`, or during the creation of a new file system. This option permits an administrator to apply different MAC labels on different objects. This option only applies to security policy modules which support labeling.

• **single label**: a policy where the entire file system uses one label to enforce access control over the flow of data. Whenever multilabel is not set, all files will conform to the same label setting.

• **object**: an entity through which information flows under the direction of a subject. This includes directories, files, fields, screens, keyboards, memory, magnetic storage, printers or any other data storage or moving device. An object is a data container or a system resource. Access to an object effectively means access to its data.

• **subject**: any active entity that causes information to flow between objects such as a user, user process, or system process. On FreeBSD, this is almost always a thread acting in a process on behalf of a user.

• **policy**: a collection of rules which defines how objectives are to be achieved. A policy usually documents how certain items are to be handled. This chapter considers a policy to be a collection of rules which controls the flow of data and information and defines who has access to that data and information.

• **high-watermark**: this type of policy permits the raising of security levels for the purpose of accessing higher level information. In most cases, the original level is restored after the process is complete. Currently, the FreeBSD MAC framework does not include this type of policy.

• **low-watermark**: this type of policy permits lowering security levels for the purpose of accessing information which is less secure. In most cases, the original security level of the user is restored after the process is complete. The only security policy module in FreeBSD to use this is `mac_lomac(4)`.

• **sensitivity**: usually used when discussing Multilevel Security (MLS). A sensitivity level describes how important or secret the data should be. As the sensitivity level increases, so does the importance of the secrecy, or confidentiality, of the data.
A single label policy is somewhat similar to DAC as root configures the policies so that users are placed in the appropriate categories and access levels. A notable difference is that many policy modules can also restrict root. Basic control over objects will then be released to the group, but root may revoke or modify the settings at any time.

When appropriate, a multi label policy can be set on a UFS file system by passing multilabel to tunefs(8). A multi label policy permits each subject or object to have its own independent MAC label. The decision to use a multi label or single label policy is only required for policies which implement the labeling feature, such as biba, lomac, and mls. Some policies, such as seeotheruids, portacl and partition, do not use labels at all.

Using a multi label policy on a partition and establishing a multi label security model can increase administrative overhead as everything in that file system has a label. This includes directories, files, and even device nodes.

The following command will set multilabel on the specified UFS file system. This may only be done in single-user mode and is not a requirement for the swap file system:

```
# tunefs -l enable /
```
For currently running processes, such as sendmail, `getpmac` is usually used instead. This command takes a process ID (PID) in place of a command name. If users attempt to manipulate a file not in their access, subject to the rules of the loaded policy modules, the `Operation not permitted` error will be displayed.

15.3.2. 預先定義的標籤

A few FreeBSD policy modules which support the labeling feature offer three predefined labels: `low`, `equal`, and `high`, where:

- `low` is considered the lowest label setting an object or subject may have. Setting this on objects or subjects blocks their access to objects or subjects marked high.
- `equal` sets the subject or object to be disabled or unaffected and should only be placed on objects considered to be exempt from the policy.
- `high` grants an object or subject the highest setting available in the Biba and MLS policy modules.

Such policy modules include `mac_biba(4)`, `mac_mls(4)` and `mac_lomac(4)`. Each of the predefined labels establishes a different information flow directive. Refer to the manual page of the module to determine the traits of the generic label configurations.

15.3.3. 數值標籤

The Biba and MLS policy modules support a numeric label which may be set to indicate the precise level of hierarchical control. This numeric level is used to partition or sort information into different groups of classification, only permitting access to that group or a higher group level. For example:

```
biba/10:2+3+6(5:2+3-20:2+3+4+5+6)
```

may be interpreted as "Biba Policy Label/Grade 10: Compartments 2, 3 and 6: (grade 5 …

In this example, the first grade would be considered the effective grade with effective compartments, the second grade is the low grade, and the last one is the high grade. In most configurations, such fine-grained settings are not needed as they are considered to be advanced configurations.

System objects only have a current grade and compartment. System subjects reflect the range of available rights in the system, and network interfaces, where they are used for access control. The grade and compartments in a subject and object pair are used to construct a relationship known as dominance, in which a subject dominates an object, the object dominates the subject, neither dominates the other, or both dominate each other. The "both dominate" case occurs when the two labels are equal. Due to the information flow nature of Biba, a user has rights to a set of compartments that might correspond to projects, but objects also have a set of compartments. Users may have to subset their rights using `su` or `setpmac` in order to access objects in a compartment from which they are not restricted.

15.3.4. 使用者標籤

Users are required to have labels so that their files and processes properly interact with the security policy defined on the system. This is configured in `/etc/login.conf` using login classes. Every policy module that uses labels will implement the user class setting.
To set the user class default label which will be enforced by MAC, add a label entry. An example label entry containing every policy module is displayed below. Note that in a real configuration, the administrator would never enable every policy module. It is recommended that the rest of this chapter be reviewed before any configuration is implemented.

```
default:
:copyright=/etc/COPYRIGHT:
:welcome=/etc/motd:
:setenv=MAIL=/var/mail/$,BLOCKSIZE=K:
:path=~/bin:/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin:
:manpath=/usr/shared/man /usr/local/man:
:nologin=/usr/sbin/nologin:
:cputime=1h30m:
:datasize=8M:
:vmemoryuse=100M:
:stacksize=2M:
:memorylocked=4M:
:memoryuse=8M:
:filesize=8M:
:coredumpsize=8M:
:openfiles=24:
:maxproc=32:
:priority=0:
:requirehome:
:passwordtime=91d:
:umask=022:
:ignoretime@:
:label=partition/13,mls/5,biba/10(5-15),lomac/10[
```

While users cannot modify the default value, they may change their label after they login, subject to the constraints of the policy. The example above tells the Biba policy that a process’s minimum integrity is 5, its maximum is 15, and the default effective label is 10. The process will run at 10 until it chooses to change label, perhaps due to the user using setpmac, which will be constrained by Biba to the configured range.

After any change to login.conf, the login class capability database must be rebuilt using cap_mkdb.

Many sites have a large number of users requiring several different user classes. In-depth planning is required as this can become difficult to manage.

15.3.5. 網路介面標籤

Labels may be set on network interfaces to help control the flow of data across the network. Policies using network interface labels function in the same way that policies function with respect to objects. Users at high settings in Biba, for example, will not be permitted to access network interfaces with a label of low.

When setting the MAC label on network interfaces, maclabel may be passed to ifconfig:
This example will set the MAC label of \textit{biba/equal} on the \textit{bge0} interface. When using a setting similar to \textit{biba/high(low-high)}, the entire label should be quoted to prevent an error from being returned.

Each policy module which supports labeling has a tunable which may be used to disable the MAC label on network interfaces. Setting the label to \textit{equal} will have a similar effect. Review the output of \texttt{sysctl}, the policy manual pages, and the information in the rest of this chapter for more information on those tunables.

15.4. 計劃安全架構

Before implementing any MAC policies, a planning phase is recommended. During the planning stages, an administrator should consider the implementation requirements and goals, such as:

\begin{itemize}
\item How to classify information and resources available on the target systems.
\item Which information or resources to restrict access to along with the type of restrictions that should be applied.
\item Which MAC modules will be required to achieve this goal.
\end{itemize}

A trial run of the trusted system and its configuration should occur before a MAC implementation is used on production systems. Since different environments have different needs and requirements, establishing a complete security profile will decrease the need of changes once the system goes live.

Consider how the MAC framework augments the security of the system as a whole. The various security policy modules provided by the MAC framework could be used to protect the network and file systems or to block users from accessing certain ports and sockets. Perhaps the best use of the policy modules is to load several security policy modules at a time in order to provide a MLS environment. This approach differs from a hardening policy, which typically hardens elements of a system which are used only for specific purposes. The downside to MLS is increased administrative overhead. The overhead is minimal when compared to the lasting effect of a framework which provides the ability to pick and choose which policies are required for a specific configuration and which keeps performance overhead down. The reduction of support for unneeded policies can increase the overall performance of the system as well as offer flexibility of choice. A good implementation would consider the overall security requirements and effectively implement the various security policy modules offered by the framework.

A system utilizing MAC guarantees that a user will not be permitted to change security attributes at will. All user utilities, programs, and scripts must work within the constraints of the access rules provided by the selected security policy modules and control of the MAC access rules is in the hands of the system administrator.

It is the duty of the system administrator to carefully select the correct security policy modules. For an environment that needs to limit access control over the network, the \texttt{mac_portacl(4)}, \texttt{mac_ifoff(4)}, and \texttt{mac_biba(4)} policy modules make good starting points. For an environment where strict confidentiality of file system objects is required, consider the \texttt{mac_bsdextended(4)} and \texttt{mac_mls(4)} policy modules.

Policy decisions could be made based on network configuration. If only certain users should be permitted access to \texttt{ssh(1)}, the \texttt{mac_portacl(4)} policy module is a good choice. In the case of file systems, access to objects might be considered confidential to some users, but not to others. As an example, a large development team might be broken off into smaller projects where developers in project A might not be permitted to access objects written by developers in project B. Yet both projects might need to access objects created by developers in project C. Using the different security policy modules provided by the MAC framework, users could be divided into these groups.
and then given access to the appropriate objects. Each security policy module has a unique way of dealing with the overall security of a system. Module selection should be based on a well thought out security policy which may require revision and reimplementation. Understanding the different security policy modules offered by the MAC framework will help administrators choose the best policies for their situations.

The rest of this chapter covers the available modules, describes their use and configuration, and in some cases, provides insight on applicable situations.

Implementing MAC is much like implementing a firewall since care must be taken to prevent being completely locked out of the system. The ability to revert back to a previous configuration should be considered and the implementation of MAC over a remote connection should be done with extreme caution.

15.5.可用的MAC管理政策

The default FreeBSD kernel includes options MAC. This means that every module included with the MAC framework can be loaded with kldload as a run-time kernel module. After testing the module, add the module name to /boot/loader.conf so that it will load during boot. Each module also provides a kernel option for those administrators who choose to compile their own custom kernel.

FreeBSD includes a group of policies that will cover most security requirements. Each policy is summarized below. The last three policies support integer settings in place of the three default labels.

15.5.1. MAC See Other UIDs

Module name: mac_seeotheruids.ko

Kernel configuration line: options MAC_SEEOTHERUIDS

Boot option: mac_seeotheruids_load="YES"

The mac_seeotheruids(4) module extends the security.bsd.see_other_uids and security.bsd.see_other_gids sysctl tunables. This option does not require any labels to be set before configuration and can operate transparently with other modules.

After loading the module, the following sysctl tunables may be used to control its features:
- security.mac.seeotheruids.enabled enables the module and implements the default settings which deny users the ability to view processes and sockets owned by other users.
- security.mac.seeotheruids.specificgid_enabled allows specified groups to be exempt from this policy. To exempt specific groups, use the security.mac.seeotheruids.specificgid=XXX sysctl tunable, replacing XXX with the numeric group ID to be exempted.
- security.mac.seeotheruids.primarygroup_enabled is used to exempt specific primary groups from this policy. When using this tunable, security.mac.seeotheruids.specificgid_enabled may not be set.

15.5.2. MAC BSD Extended

Module name: mac_bsdextended.ko

Kernel configuration line: options MAC_BSDEXTENDED

Boot option: mac_bsdextended_load="YES"

The mac_bsdextended(4) module enforces a file system firewall. It provides an extension to the standard file system permissions model, permitting an administrator to create a firewall-like system.
ruleset to protect files, utilities, and directories in the file system hierarchy. When access to a file system object is attempted, the list of rules is iterated until either a matching rule is located or the end is reached. This behavior may be changed using security.mac.bsdextended.firstmatch_enabled. Similar to other firewall modules in FreeBSD, a file containing the access control rules can be created and read by the system at boot time using an rc.conf(5) variable.

The rule list may be entered using ugidfw(8) which has a syntax similar to ipfw(8). More tools can be written by using the functions in the libugidfw(3) library.

After the mac_bsdextended(4) module has been loaded, the following command may be used to list the current rule configuration:

```
# ugidfw list
0 slots, 0 rules
```

By default, no rules are defined and everything is completely accessible. To create a rule which blocks all access by users but leaves root unaffected:

```
# ugidfw add subject not uid root new object not uid root mode n
```

While this rule is simple to implement, it is a very bad idea as it blocks all users from issuing any commands. A more realistic example blocks user1 all access, including directory listings, to user2's home directory:

```
# ugidfw set 2 subject uid user1 object uid user2 mode n
# ugidfw set 3 subject uid user1 object gid user2 mode n
```

Instead of user1, not uid user2 could be used in order to enforce the same access restrictions for all users. However, the root user is unaffected by these rules.

Extreme caution should be taken when working with this module as incorrect use could block access to certain parts of the file system.

15.5.3. MAC Interface Silencing

Module name: mac_ifoff.ko

Kernel configuration line: options MAC_IFOFF

Boot option: mac_ifoff_load="YES"

The mac_ifoff(4) module is used to disable network interfaces on the fly and to keep network interfaces from being brought up during system boot. It does not use labels and does not depend on any other MAC modules.

Most of this module's control is performed through these sysctl tunables:

- security.mac.ifoff.lo_enabled enables or disables all traffic on the loopback, lo(4), interface.
- security.mac.ifoff.bpfrecv_enabled enables or disables all traffic on the Berkeley Packet Filter interface, bpf(4).
- security.mac.ifoff.other_enabled enables or disables traffic on all other interfaces.

One of the most common uses of mac_ifoff(4) is network monitoring in an environment where...
network traffic should not be permitted during the boot sequence. Another use would be to write a script which uses an application such as security/aide to automatically block network traffic if it finds new or altered files in protected directories.

15.5.4. MAC Port Access Control

Module name: mac_portacl.ko

Kernel configuration line: MAC_PORTACL

Boot option: mac_portacl_load="YES"

The mac_portacl(4) module is used to limit binding to local TCP and UDP ports, making it possible to allow non-root users to bind to specified privileged ports below 1024. Once loaded, this module enables the MAC policy on all sockets. The following tunables are available:

- **security.mac.portacl.enabled**: enables or disables the policy completely.
- **security.mac.portacl.port_high**: sets the highest port number that mac_portacl(4) protects.
- **security.mac.portacl.suser_exempt**: when set to a non-zero value, exempts the root user from this policy.
- **security.mac.portacl.rules**: specifies the policy as a text string of the form rule[,rule,…] with as many rules as needed, and where each rule is of the form idtype:id:protocol:port. The idtype is either uid or gid. The protocol parameter can be tcp or udp. The port parameter is the port number to allow the specified user or group to bind to. Only numeric values can be used for the user ID, group ID, and port parameters.

By default, ports below 1024 can only be used by privileged processes which run as root. For mac_portacl(4) to allow non-privileged processes to bind to ports below 1024, set the following tunables as follows:

```
# sysctl security.mac.portacl.port_high=1023
# sysctl net.inet.ip.portrange.reservedlow=0
# sysctl net.inet.ip.portrange.reservedhigh=0
```

To prevent the root user from being affected by this policy, set security.mac.portacl.suser_exempt to a non-zero value.

```
# sysctl security.mac.portacl.suser_exempt=1
```

To allow the www user with UID 80 to bind to port 80 without ever needing root privilege:

```
# sysctl security.mac.portacl.rules=uid:80:tcp:80
```

This next example permits the user with the UID of 1001 to bind to TCP ports 110 (POP3) and 995 (POP3s):

```
```
15.5.5. MAC Partition

Module name: mac_partition.ko

Kernel configuration line: options MAC_PARTITION

Boot option: mac_partition_load="YES"

The `mac_partition(4)` policy drops processes into specific "partitions" based on their MAC label. Most configuration for this policy is done using `setpmac(8)`. One `sysctl` tunable is available for this policy:

- `security.mac.partition.enabled` enables the enforcement of MAC process partitions.

When this policy is enabled, users will only be permitted to see their processes, and any others within their partition, but will not be permitted to work with utilities outside the scope of this partition. For instance, a user in the `insecure` class will not be permitted to access `top` as well as many other commands that must spawn a process.

This example adds `top` to the label set on users in the `insecure` class. All processes spawned by users in the `insecure` class will stay in the `partition/13` label.

```
# setpmac partition/13 top
```

This command displays the partition label and the process list:

```
# ps Zax
```

This command displays another user's process partition label and that user's currently running processes:

```
# ps -ZU trhodes
```

Users can see processes in root's label unless the `mac_seeotheruids(4)` policy is loaded.

15.5.6. MAC Multi-Level Security

Module name: mac_mls.ko

Kernel configuration line: options MAC_MLS

Boot option: mac_mls_load="YES"

The `mac_mls(4)` policy controls access between subjects and objects in the system by enforcing a strict information flow policy. In MLS environments, a "clearance" level is set in the label of each subject or object, along with compartments. Since these clearance levels can reach numbers greater than several thousand, it would be a daunting task to thoroughly configure every subject or object. To ease this administrative overhead, three labels are included in this policy: `mls/low`, `mls/equal`, and `mls/high`, where:

- Anything labeled with `mls/low` will have a low clearance level and not be permitted to access information of a higher level. This label also prevents objects of a higher clearance level from writing or passing information to a lower level.
MLS provides:

- A hierarchical security level with a set of non-hierarchical categories.
- Fixed rules of no read up, no write down. This means that a subject can have read access to objects on its own level or below, but not above. Similarly, a subject can have write access to objects on its own level or above, but not beneath.
- Secrecy, or the prevention of inappropriate disclosure of data.
- A basis for the design of systems that concurrently handle data at multiple sensitivity levels without leaking information between secret and confidential.

The following sysctl tunables are available:

- `security.mac.mls.enabled` is used to enable or disable the MLS policy.
- `security.mac.mls.ptys_equal` labels all `pty(4)` devices as `mls/equal` during creation.
- `security.mac.mls.revocation_enabled` revokes access to objects after their label changes to a label of a lower grade.
- `security.mac.mls.max_compartments` sets the maximum number of compartment levels allowed on a system.

To manipulate MLS labels, use `setfmac(8)`. To assign a label to an object:

```sh
# setfmac mls/5 test
```

To get the MLS label for the file `test`:

```sh
# getfmac test
```

Another approach is to create a master policy file in `/etc/` which specifies the MLS policy information and to feed that file to `setfmac`.

When using the MLS policy module, an administrator plans to control the flow of sensitive information. The default block read up block write down sets everything to a low state. Everything is accessible and an administrator slowly augments the confidentiality of the information.

Beyond the three basic label options, an administrator may group users and groups as required to block the information flow between them. It might be easier to look at the information in clearance levels using descriptive words, such as classifications of Confidential, Secret, and Top Secret. Some administrators instead create different groups based on project levels. Regardless of the classification method, a well thought out plan must exist before implementing a restrictive policy.

Some example situations for the MLS policy module include an e-commerce web server, a file server holding critical company information, and financial institution environments.

15.5.7. MAC Biba 模組

Module name: mac_biba.ko

Kernel configuration line:

```sh
options MAC_BIBA
```

Boot option:

```sh
mac_biba_load="YES"
```
The mac_biba(4) module loads the MAC Biba policy. This policy is similar to the MLS policy with the exception that the rules for information flow are slightly reversed. This is to prevent the downward flow of sensitive information whereas the MLS policy prevents the upward flow of sensitive information.

In Biba environments, an "integrity" label is set on each subject or object. These labels are made up of hierarchical grades and non-hierarchical components. As a grade ascends, so does its integrity. Supported labels are biba/low, biba/equal, and biba/high, where:

- biba/low is considered the lowest integrity an object or subject may have. Setting this on objects or subjects blocks their write access to objects or subjects marked as biba/high, but will not prevent read access.
- biba/equal should only be placed on objects considered to be exempt from the policy.
- biba/high permits writing to objects set at a lower label, but does not permit reading that object. It is recommended that this label be placed on objects that affect the integrity of the entire system.

Biba provides:

- Hierarchical integrity levels with a set of non-hierarchical integrity categories.
- Fixed rules are no write up, no read down, the opposite of MLS. A subject can have write access to objects on its own level or below, but not above. Similarly, a subject can have read access to objects on its own level or above, but not below.
- Integrity by preventing inappropriate modification of data.
- Integrity levels instead of MLS sensitivity levels.

The following tunables can be used to manipulate the Biba policy:

- security.mac.biba.enabled is used to enable or disable enforcement of the Biba policy on the target machine.
- security.mac.biba.ptys_equal is used to disable the Biba policy on pty(4) devices.
- security.mac.biba.revocation_enabled forces the revocation of access to objects if the label is changed to dominate the subject.

To access the Biba policy setting on system objects, use setfmac and getfmac:

```
# setfmac biba/low test
# getfmac test
```

Integrity, which is different from sensitivity, is used to guarantee that information is not manipulated by untrusted parties. This includes information passed between subjects and objects. It ensures that users will only be able to modify or access information they have been given explicit access to. The mac_biba(4) security policy module permits an administrator to configure which files and programs a user may see and invoke while assuring that the programs and files are trusted by the system for that user.

During the initial planning phase, an administrator must be prepared to partition users into grades, levels, and areas. The system will default to a high label once this policy module is enabled, and it is up to the administrator to configure the different grades and levels for users. Instead of using clearance levels, a good planning method could include topics. For instance, only allow developers modification access to the source code repository, source code compiler, and other development utilities. Other users would be grouped into other categories such as testers, designers, or end users and would only be permitted read access.
A lower integrity subject is unable to write to a higher integrity subject and a higher integrity subject cannot list or read a lower integrity object. Setting a label at the lowest possible grade could make it inaccessible to subjects. Some prospective environments for this security policy module would include a constrained web server, a development and test machine, and a source code repository. A less useful implementation would be a personal workstation, a machine used as a router, or a network firewall.

15.5.8. MAC Low-watermark

Module name: mac_lomac.ko

Kernel configuration line: options MAC_LOMAC

Boot option: mac_lomac_load="YES"

Unlike the MAC Biba policy, the mac_lomac(4) policy permits access to lower integrity objects only after decreasing the integrity level to not disrupt any integrity rules.

The Low-watermark integrity policy works almost identically to Biba, with the exception of using floating labels to support subject demotion via an auxiliary grade compartment. This secondary compartment takes the form \[auxgrade\]. When assigning a policy with an auxiliary grade, use the syntax lomac/10[2], where 2 is the auxiliary grade.

This policy relies on the ubiquitous labeling of all system objects with integrity labels, permitting subjects to read from low integrity objects and then downgrading the label on the subject to prevent future writes to high integrity objects using \[auxgrade\]. The policy may provide greater compatibility and require less initial configuration than Biba.

Like the Biba and MLS policies, setfmac and setpmac are used to place labels on system objects:

```
# setfmac /usr/home/trhodes lomac/high[low]
# getfmac /usr/home/trhodes lomac/high[low]
```

The auxiliary grade low is a feature provided only by the MACLOMAC policy.

15.6. User Lock Down

This example considers a relatively small storage system with fewer than fifty users. Users will have login capabilities and are permitted to store data and access resources.

For this scenario, the mac_bsdextended(4) and mac_seeotheruids(4) policy modules could co-exist and block access to system objects while hiding user processes.

Begin by adding the following line to /boot/loader.conf:

```
mac_seeotheruids_load="YES"
```

The mac_bsdextended(4) security policy module may be activated by adding this line to /etc/rc.conf:

```
ugidfw_enable="YES"
```

Default rules stored in /etc/rc.bsdextended will be loaded at system initialization. However, the default entries may need modification. Since this machine is expected only to service users, everything may be left commented out except the last two lines in order to force the loading of user

```
owned system objects by default. Add the required users to this machine and reboot. For testing purposes, try logging in as a different user across two consoles. Run `ps aux` to see if processes of other users are visible. Verify that running `ls(1)` on another user's home directory fails.

Do not try to test with the root user unless the specific sysctl's have been modified to block superuser access.

When a new user is added, their `mac_bsdextended(4)` rule will not be in the ruleset list. To update the ruleset quickly, unload the security policy module and reload it again using `kldunload(8)` and `kldload(8)`.

This section demonstrates the steps that are needed to implement the Nagios network monitoring system in a MAC environment. This is meant as an example which still requires the administrator to test that the implemented policy meets the security requirements of the network before using in a production environment.

This example requires multilabel to be set on each file system. It also assumes that `net-mgmt/nagios-plugins`, `net-mgmt/nagios`, and `www/apache22` are all installed, configured, and working correctly before attempting the integration into the MAC framework.

15.7.1. 建立不安全的使用者类别

Begin the procedure by adding the following user class to `/etc/login.conf`:

```
insecure:
:copyright=/etc/COPYRIGHT:
:welcome=/etc/motd:
:setenv=MAIL=/var/mail/$,BLOCKSIZE=K:
:path=~/bin:/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin:
:manpath=/usr/shared/man /usr/local/man:
:nologin=/usr/sbin/nologin:
cputime=1h30m:
datasize=8M:
:vmemoryuse=100M:
:stacksize=2M:
:memorylocked=4M:
:memoryuse=8M:
:filesize=8M:
coredumpsize=8M:
:openfiles=24:
:maxproc=32:
priority=0:
:requirehome:
:passwordtime=91d:
:umask=022:
:ignoretime@:
```
Then, add the following line to the default user class section:

```
cap_mkdb /etc/login.conf
```

15.7.2. 設定

Set the root user to the default class using:

```
pw usermod root -L default
```

All user accounts that are not root will now require a login class. The login class is required, otherwise users will be refused access to common commands. The following `sh` script should do the trick:

```
for x in `awk -F: '($3 >= 1001) && ($3 != 65534) { print $1 }' /etc/passwd`;
do
pw usermod $x -L default;
done
```

Next, drop the nagios and www accounts into the insecure class:

```
pw usermod nagios -L insecure
pw usermod www -L insecure
```

15.7.3. 建立關聯檔 (Context File)

A contexts file should now be created as `/etc/policy.contexts`:

```
This is the default BIBA policy for this system.
System:
/var/run(/.*)? biba/equal
/dev/(/.*)? biba/equal
/var biba/equal
/var/spool(/.*)? biba/equal
/var/log(/.*)? biba/equal
```

307
This policy enforces security by setting restrictions on the flow of information. In this specific configuration, users, including root, should never be allowed to access Nagios. Configuration files and processes that are a part of Nagios will be completely self contained or jailed. This file will be read after running `setfsmac` on every file system. This example sets the policy on the root file system:

```
setfsmac -ef /etc/policy.contexts /
```

Next, add these edits to the main section of `/etc/mac.conf`:

```
default_labels file ?biba
default_labels ifnet ?biba
default_labels process ?biba
default_labels socket ?biba
```

15.7.4. 載入程式設定

To finish the configuration, add the following lines to `/boot/loader.conf`:

```
mac_biba_load="YES"
mac_seeotheruids_load="YES"
security.mac.biba.trust_all_interfaces=1
```

And the following line to the network card configuration stored in `/etc/rc.conf`. If the primary network configuration is done via DHCP, this may need to be configured manually after every system boot:

```
maclabel biba/equal
```
First, ensure that the web server and Nagios will not be started on system initialization and reboot. Ensure that root cannot access any of the files in the Nagios configuration directory. If root can list the contents of /var/spool/nagios, something is wrong. Instead, a "permission denied" error should be returned.

If all seems well, Nagios, Apache, and Sendmail can now be started:

```
cd /etc/mail && make stop &&
setpmac biba/equal make start
&& setpmac biba/10
```

Double check to ensure that everything is working properly. If not, check the log files for error messages. If needed, use `sysctl(8)` to disable the `mac_biba(4)` security policy module and try starting everything again as usual.

The root user can still change the security enforcement and edit its configuration files. The following command will permit the degradation of the security policy to a lower grade for a newly spawned shell:

```
setpmac biba/10 csh
```

To block this from happening, force the user into a range using `login.conf(5)`. If `setpmac(8)` attempts to run a command outside of the compartment's range, an error will be returned and the command will not be executed. In this case, set root to biba/high(high-high).

15.8. MAC 架構難排解

This section discusses common configuration errors and how to resolve them.

The multilabel flag does not stay enabled on the root (/) partition.

The following steps may resolve this transient error:

a. Edit `/etc/fstab` and set the root partition to `ro` for read-only.

b. Reboot into single user mode.

c. Run `tunefs -l enable` on `/`.

d. Reboot the system.

e. Run `mount -urw /` and change the `ro` back to `rw` in `/etc/fstab` and reboot the system again.

f. Double-check the output from `mount` to ensure that `multilabel` has been properly set on the root file system.

After establishing a secure environment with MAC, Xorg no longer starts. This could be caused by the MAC partition policy or by a mislabeling in one of the MAC labeling policies. To debug, try the following:

a. Check the error message. If the user is in the insecure class, the partition policy may be the culprit. Try setting the user's class back to the default class and rebuild the database with `cap_mkdb`. If this does not alleviate the problem, go to step two.
b. Double-check that the label policies are set correctly for the user, Xorg, and the /dev entries.

c. If neither of these resolve the problem, send the error message and a description of the environment to the FreeBSD general questions mailing list.

The _secure_path: unable to stat .login_conf error appears. This error can appear when a user attempts to switch from the root user to another user in the system. This message usually occurs when the user has a higher label setting than that of the user they are attempting to become. For instance, if joe has a default label of biba/low and root has a label of biba/high, root cannot view joe's home directory. This will happen whether or not root has used su to become joe as the Biba integrity model will not permit root to view objects set at a lower integrity level.

The system no longer recognizes root. When this occurs, whoami returns 0 and su returns who are you?. This can happen if a labeling policy has been disabled by sysctl(8) or the policy module was unloaded. If the policy is disabled, the login capabilities database needs to be reconfigured.

Double check /etc/login.conf to ensure that all label options have been removed and rebuild the database with cap_mkdb.

This may also happen if a policy restricts access to master.passwd. This is usually caused by an administrator altering the file under a label which conflicts with the general policy being used by the system. In these cases, the user information would be read by the system and access would be blocked as the file has inherited the new label. Disable the policy using sysctl(8) and everything should return to normal.
The FreeBSD operating system includes support for security event auditing. Event auditing supports reliable, fine-grained, and configurable logging of a variety of security-relevant system events, including logins, configuration changes, and file and network access. These log records can be invaluable for live system monitoring, intrusion detection, and postmortem analysis. FreeBSD implements Sun™'s published Basic Security Module (BSM) Application Programming Interface (API) and file format, and is interoperable with the Solaris™ and Mac OS™ X audit implementations. This chapter focuses on the installation and configuration of event auditing. It explains audit policies and provides an example audit configuration.

在開始閱讀這章之前，您需要:
• 了 解 UNIX™ 及 FreeBSD 基礎（FreeBSD 基礎）。
• Be familiar with the basics of kernel configuration/compilation（設定 FreeBSD 核心）。
• Have some familiarity with security and how it pertains to FreeBSD（安全性）。

The audit facility has some known limitations. Not all security-relevant system events are auditable and some login mechanisms, such as Xorg-based display managers and third-party daemons, do not properly configure auditing for user login sessions.

The security event auditing facility is able to generate very detailed logs of system activity. On a busy system, trail file data can be very large when configured for high detail, exceeding gigabytes a week in some configurations. Administrators should take into account the disk space requirements associated with high volume audit configurations. For example, it may be desirable to dedicate a file system to /var/audit so that other file systems are not affected if the audit file system becomes full.

16.2. 鍵 要
The following terms are related to security event auditing:
• event: an auditable event is any event that can be logged using the audit subsystem. Examples of security-relevant events include the creation of a file, the building of a network connection, or a user logging in. Events are either "attributable", meaning that they can be traced to an authenticated user, or "non-attributable". Examples of non-attributable events are any events that occur before authentication in the login process, such as bad password attempts.
• class: a named set of related events which are used in selection expressions. Commonly used classes of events include "file creation" (fc), "exec" (ex), and "login_logout" (lo).
• record: an audit log entry describing a security event. Records contain a record event type, information on the subject (user) performing the action, date and time information, information on any objects or arguments, and a success or failure condition.
• trail: a log file consisting of a series of audit records describing security events. Trails are in roughly chronological order with respect to the time events completed. Only authorized processes are allowed to commit records to the audit trail.
16.3. 稽査設定

User space support for event auditing is installed as part of the base FreeBSD operating system. Kernel support is available in the GENERIC kernel by default, and auditd(8) can be enabled by adding the following line to /etc/rc.conf:

```
auditd_enable="YES"
```

Then, start the audit daemon:

```
service auditd start
```

Users who prefer to compile a custom kernel must include the following line in their custom kernel configuration file:

```
options AUDIT
```

16.3.1. 事前検査設定

Selection expressions are used in a number of places in the audit configuration to determine which events should be audited. Expressions contain a list of event classes to match. Selection expressions are evaluated from left to right, and two expressions are combined by appending one onto the other.

預設稽査事務類別

Table 12. 預設稽査事務類別

<table>
<thead>
<tr>
<th>項目</th>
<th>說明</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>all</td>
</tr>
<tr>
<td>aa</td>
<td>authentication and authorization</td>
</tr>
<tr>
<td>ad</td>
<td>administrative</td>
</tr>
<tr>
<td>ap</td>
<td>application</td>
</tr>
<tr>
<td>cl</td>
<td>file close</td>
</tr>
</tbody>
</table>

Audit calls to the close system call.
<table>
<thead>
<tr>
<th>Category</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ex</td>
<td>Audit program execution.</td>
<td>Audit of command line arguments and environmental variables via audit_control(5) using the argv and envv parameters to the policy setting.</td>
</tr>
<tr>
<td>fa</td>
<td>File attribute access</td>
<td>Audit the access of object attributes such as stat(1) and pathconf(2).</td>
</tr>
<tr>
<td>fc</td>
<td>File create</td>
<td>Audit events where a file is created as a result.</td>
</tr>
<tr>
<td>fd</td>
<td>File delete</td>
<td>Audit events where file deletion occurs.</td>
</tr>
<tr>
<td>fm</td>
<td>File attribute modify</td>
<td>Audit events where file attribute modification occurs, such as by chown(8), chflags(1), and flock(2).</td>
</tr>
<tr>
<td>fr</td>
<td>File read</td>
<td>Audit events in which data is read or files are opened for reading.</td>
</tr>
<tr>
<td>fw</td>
<td>File write</td>
<td>Audit events in which data is written or files are written or modified.</td>
</tr>
<tr>
<td>io</td>
<td>I/O control</td>
<td>Audit use of the ioctl system call.</td>
</tr>
<tr>
<td>ip</td>
<td>Inter-Process Communication</td>
<td>Audit various forms of Inter-Process Communication, including POSIX pipes and System V IPC operations.</td>
</tr>
<tr>
<td>lo</td>
<td>Login/logout</td>
<td>Audit login(1) and logout(1) events.</td>
</tr>
<tr>
<td>na</td>
<td>Non-attributable</td>
<td>Audit non-attributable events.</td>
</tr>
<tr>
<td>no</td>
<td>Invalid class</td>
<td>Match no audit events.</td>
</tr>
<tr>
<td>nt</td>
<td>Networking</td>
<td>Audit events related to network actions such as connect(2) and accept(2).</td>
</tr>
<tr>
<td>ot</td>
<td>Other</td>
<td>Audit miscellaneous events.</td>
</tr>
<tr>
<td>pc</td>
<td>Process</td>
<td>Audit process operations such as exec(3) and exit(3).</td>
</tr>
</tbody>
</table>

These audit event classes may be customized by modifying the audit_class and audit_event configuration files. Each audit event class may be combined with a prefix indicating whether successful/failed operations are matched, and whether the entry is adding or removing matching for the class and type.
Audit neither successful nor failed events in this class.

Do not audit successful events in this class.

Do not audit failed events in this class.

If no prefix is present, both successful and failed instances of the event will be audited.

The following example selection string selects both successful and failed login/logout events, but only successful execution events:

lo,+ex

16.3.2.

The following configuration files for security event auditing are found in /etc/security:

• audit_class: contains the definitions of the audit classes.
• audit_control: controls aspects of the audit subsystem, such as default audit classes, minimum disk space to leave on the audit log volume, and maximum audit trail size.
• audit_event: textual names and descriptions of system audit events and a list of which classes each event is in.
• audit_user: user-specific audit requirements to be combined with the global defaults at login.
• audit_warn: a customizable shell script used by auditd(8) to generate warning messages in exceptional situations, such as when space for audit records is running low or when the audit trail file has been rotated.

Audit configuration files should be edited and maintained carefully, as errors in configuration may result in improper logging of events.

In most cases, administrators will only need to modify audit_control and audit_user. The first file controls system-wide audit properties and policies and the second file may be used to fine-tune auditing by user.

16.3.2.1. The audit_control File

A number of defaults for the audit subsystem are specified in audit_control:

- dir:/var/audit
- dist:off
- flags:lo,aa
- minfree:5
- naflags:lo,aa
- policy:cnt,argv
- filesz:2M
- expire-after:10M

The dir entry is used to set one or more directories where audit logs will be stored. If more than one directory entry appears, they will be used in order as they fill. It is common to configure audit so that audit logs are stored on a dedicated file system, in order to prevent interference between the
Audit subsystem and other subsystems if the file system fills. If the dist field is set to on or yes, hard links will be created to all trail files in /var/audit/dist.

The flags field sets the system-wide default preselection mask for attributable events. In the example above, successful and failed login/logout events as well as authentication and authorization are audited for all users.

The minfree entry defines the minimum percentage of free space for the file system where the audit trail is stored.

The naflags entry specifies audit classes to be audited for non-attributed events, such as the login/logout process and authentication and authorization.

The policy entry specifies a comma-separated list of policy flags controlling various aspects of audit behavior. The cnt indicates that the system should continue running despite an auditing failure (this flag is highly recommended). The other flag, argv, causes command line arguments to the execve(2) system call to be audited as part of command execution.

The filesz entry specifies the maximum size for an audit trail before automatically terminating and rotating the trail file. A value of 0 disables automatic log rotation. If the requested file size is below the minimum of 512k, it will be ignored and a log message will be generated.

The expire-after field specifies when audit log files will expire and be removed.

16.3.2.2. The audit_user File

The administrator can specify further audit requirements for specific users in audit_user. Each line configures auditing for a user via two fields: the alwaysaudit field specifies a set of events that should always be audited for the user, and the neveraudit field specifies a set of events that should never be audited for the user.

The following example entries audit login/logout events and successful command execution for root and file creation and successful command execution for www. If used with the default audit_control, the lo entry for root is redundant, and login/logout events will also be audited for www.

root:lo,+ex:no
www:fc,+ex:no

16.4. View audit trails

Since audit trails are stored in the BSM binary format, several built-in tools are available to modify or convert these trails to text. To convert trail files to a simple text format, use praudit. To reduce the audit trail file for analysis, archiving, or printing purposes, use auditreduce. This utility supports a variety of selection parameters, including event type, event class, user, date or time of the event, and the file path or object acted on.

For example, to dump the entire contents of a specified audit log in plain text:

```
praudit /var/audit/AUDITFILE
```

Where AUDITFILE is the audit log to dump.

Audit trails consist of a series of audit records made up of tokens, which praudit prints sequentially, one per line. Each token is of a specific type, such as header (an audit record header) or path (a file path from a name lookup). The following is an example of an execve event:
This audit represents a successful `execve` call, in which the command `finger doug` has been run. The `exec arg` token contains the processed command line presented by the shell to the kernel. The `path` token holds the path to the executable as looked up by the kernel. The `attribute` token describes the binary and includes the file mode. The `subject` token stores the audit user ID, effective user ID and group ID, real user ID and group ID, process ID, session ID, port ID, and login address. Notice that the audit user ID and real user ID differ as the user `robert` switched to the `root` account before running this command, but it is audited using the original authenticated user. The `return` token indicates the successful execution and the `trailer` concludes the record.

XML output format is also supported and can be selected by including `-x`. Since audit logs may be very large, a subset of records can be selected using `auditreduce`. This example selects all audit records produced for the user `trhodes` stored in `AUDITFILE`:

```
auditreduce -u trhodes /var/audit/AUDITFILE | praudit
```

Members of the `audit` group have permission to read audit trails in `/var/audit`. By default, this group is empty, so only the `root` user can read audit trails. Users may be added to the `audit` group in order to delegate audit review rights. As the ability to track audit log contents provides significant insight into the behavior of users and processes, it is recommended that the delegation of audit review rights be performed with caution.

16.4.1. 使用 Audit Pipes

Audit pipes are cloning pseudo-devices which allow applications to tap the live audit record stream. This is primarily of interest to authors of intrusion detection and system monitoring applications. However, the audit pipe device is a convenient way for the administrator to allow live monitoring without running into problems with audit trail file ownership or log rotation interrupting the event stream. To track the live audit event stream:

```
praudit /dev/auditpipe
```

By default, audit pipe device nodes are accessible only to the `root` user. To make them accessible to the members of the `audit` group, add a `devfs` rule to `/etc/devfs.rules`:

```
add path 'auditpipe*' mode 0440 group audit
```

See `devfs.rules(5)` for more information on configuring the devfs file system.

It is easy to produce audit event feedback cycles, in which the viewing of each audit event results in the generation of more audit events. For example, if all network I/O is audited, and `praudit` is run from an SSH session, a continuous stream of audit events will be generated at a high rate, as each event being printed...
will generate another event. For this reason, it is advisable to run praudit on an audit pipe device from sessions without fine-grained I/O auditing.

16.4.2. 翻轉與壓縮

Audit trails are written to by the kernel and managed by the audit daemon, auditd(8). Administrators should not attempt to use newsyslog.conf(5) or other tools to directly rotate audit logs. Instead, audit should be used to shut down auditing, reconfigure the audit system, and perform log rotation. The following command causes the audit daemon to create a new audit log and signal the kernel to switch to using the new log. The old log will be terminated and renamed, at which point it may then be manipulated by the administrator:

```
audit -n
```

If auditd(8) is not currently running, this command will fail and an error message will be produced. Adding the following line to /etc/crontab will schedule this rotation every twelve hours:

```
0 */12 * * * root /usr/sbin/audit -n
```

The change will take effect once /etc/crontab is saved.

Automatic rotation of the audit trail file based on file size is possible using filesz in audit_control as described in The audit_control File.

As audit trail files can become very large, it is often desirable to compress or otherwise archive trails once they have been closed by the audit daemon. The audit_warn script can be used to perform customized operations for a variety of audit-related events, including the clean termination of audit trails when they are rotated. For example, the following may be added to /etc/security/audit_warn to compress audit trails on close:

```
if ["$1" = closefile]; then
 gzip -9 $2
fi
```

Other archiving activities might include copying trail files to a centralized server, deleting old trail files, or reducing the audit trail to remove unneeded records. This script will be run only when audit trail files are cleanly terminated, so will not be run on trails left unterminated following an improper shutdown.

317
Chapter 17.
儲存設備

17.1. 概述
本章涵蓋如何在 FreeBSD 下使用磁碟及儲存媒體，這包含 SCSI 及 IDE 磁碟、CD 及 DVD 媒體、記憶體磁碟及 USB 儲存装置。

讀完這章，您將了解:
• 如何在 FreeBSD 系統加入額外的硬碟。
• 如何在 FreeBSD 擴增磁碟分割區的大小。
• 如何設定 FreeBSD 使用 USB 儲存装置。
• 如何在 FreeBSD 系統使用 CD 及 DVD 媒體。
• 如何使用在 FreeBSD 下可用的備份程式。
• 如何設定記憶體磁碟。
• 什么是檔案系統快照（Snapshot）以及如何有效使用。
• 如何使用配額（Quota）來限制磁碟空間使用量。
• 如何加密磁碟及交換空間來防範攻擊者。
• 如何設定高可用性（Highly available）的儲存網路。

在開始閱讀這章之前，您需要:
• 了 解 如 何 設 定 並 安 裝 新 的 FreeBSD 核 心。

17.2. 加入磁碟
本節將說明如何加入新的 SATA 磁碟到目前只有一個磁碟的機器上。

首先要關閉電腦並依照電腦、控制器及磁碟製造商的操作指南將磁碟安裝到電腦。

重新啟動系統並登入 root。

查看/var/run/dmesg.boot來確認已經找到新的磁碟。在本例中，會以 ada1 代表新加入的 SATA 磁碟。

在本例中，會在新的磁碟上建立一大型分割區，使用 GPT 分割表格式而非較舊與通用性較差的 MBR 結構。

若新加入的磁碟不是空白的，可以使用 gpart delete 來移除舊的分割區資料。請參考 gpart(8) 來取得詳細資料。

建立完分割表格式後接著加入一個分割區，要在新的磁碟增進效能可使用較大的硬體區塊大小（Block size），此分割區會對齊1 MB 的邊界:

```
gpart create -s GPT ada1
gpart add -t freebsd-ufs -a 1M ada1
```

依據使用情況，也可以使用較小的分割區。請參考 gpart(8) 來取得建立較小分割區的選項。

磁碟分割區資訊可以使用 gpart show 檢視:

```
% gpart show ada1
=>
34 1465146988 ada1 GPT (699G)
34 2014 - free - (1.0M)
```

318
在新磁碟的新分割區上建立檔案系統:

```
newfs -U /dev/ada1p1
```

建立一個空的目錄做來做為掛載點(mountpoint),一個在原有磁碟的檔案系統上可用來掛載新磁碟的位子:

```
mkdir /newdisk
```

最後，將磁碟項目加入到 `/etc/fstab`, 讓啟動時會自動掛載新的磁碟:

```
/dev/ada1p1 /newdisk ufs rw 2 2
```

新的磁碟也可手動掛載,無須重新啟動系統:

```
mount /newdisk
```

17.3. 重設大小與擴增磁碟

磁碟的容量可以增加且不需要更動任何已存放在的資料。這時常會用在虛擬機器,當虛擬磁碟太小且需要增加時。有時磁碟映像檔會被寫入到USB隨身碟,但卻沒有使用全部的容量。此節我們將說明如何重設大小或擴增磁碟內容來使用增加的容量。

要取得要重設大小的磁碟的代號可以查看 `/var/run/dmesg.boot`。在本例中,在系統上只有一個SATA磁碟,該磁碟會以 `ada0` 表示。

列出在磁碟上的分割區來查看目前的設定:

```
gpart show ada0
```

若磁碟已使用GPT分割表格式做格式化,可能會顯示為"已損壞 (corrupted)"因為GPT備份分割區已不存在於磁碟結尾。使用 `gpart` 來修正備份分割區:

```
gpart recover ada0
```

現在在磁碟上的額外空間已經可以被新的分割區使用,或者可以拿來擴充既有的分割區:
分隔區只能在連續的未使用空間上重設大小。在這個例子中，磁碟上最後的分隔區為交換(Swap)分隔區，而第二個分隔區才是需要重設大小的分隔區。由於交換分隔區中只會有暫存的資料，所以此時可以安全的卸載、刪除，然後在重設第二個分隔區大小之後再重建最後一個分隔區。

停用交換分隔區:
```
swapoff /dev/ada0p3
```

# gpart show ada0
```
34 102399933 ada0 GPT
(48G)
34 128 1 freebsd-boot
(64k)
162 79691648 2 freebsd-ufs
(38G)
79691810 22708157 - free -
(10G)
```

在掛載的檔案系統上修改分隔區表可能會造成資料遺失。最好的方式是在未掛載檔案系統的場合(使用Live CD-ROM或USB裝置)執行以下步驟。雖然如此，若仍要這樣做的话，在關閉GEOM安全性功能之後可以在掛載的檔案系統上修改分隔區表:
```
sysctl kern.geom.debugflags=16
```

重設分隔區大小並保留要用來重建交換分隔區的空間，要重設大小的分隔區可以用-i參數指定，而要重設的大小可用-s參數指定，若要對齊分隔區可以使用-a。這個動作只會修改分隔區大小，分隔區中的檔案系統需在另一個步驟擴增。
```
gpart resize -i 2 -s 47G -a 4k ada0
```

```
ad0p2 resized
gpart show ada0
```
```
34 102399933 ada0 GPT
(48G)
34 128 1 freebsd-boot
(64k)
162 98566144 2 freebsd-ufs
(47G)
98566306 3833661 - free -
(1.8G)
```

重建交換分隔區並且啟動，若不使用-s指定大小則會使用所有剩餘的空間:
gpart add -t freebsd-swap -a 4k ada0
ada0p3 added
gpart show ada0

Device is mounted read-write; resizing will result in temporary write suspension for /.

It's strongly recommended to make a backup before growing the file system.
OK to grow file system on /dev/ada0p2, mounted on /, from 38GB to 47GB? [Yes/No] Yes

If the file system uses ZFS, resizing needs to be done online using the -e option:

zpool online -e zroot /dev/ada0p2

Now the partition and file system have been resized to use the new capacity.

17.4. USB Storage

Many external storage devices, such as hard drives, USB flash drives, and CD/DVD burners, use Universal Serial Bus (USB).

FreeBSD supports USB 1.x, 2.0, and 3.0 devices.

Some drives may not be compatible with USB 3.0, such as Haswell (Lynx point) chipsets. If FreeBSD fails with error 19 message, please close the xHCI/USB3 in system BIOS.

Support for USB storage devices is built into GENERIC kernel, but for custom kernel, make sure the following settings are included in the kernel configuration:

device scbus    # SCSI bus (required for ATA/SCSI)
device da   # Direct Access (disks)
device pass # Passthrough device (direct ATA/SCSI access)
device uhci # provides USB 1.x support
device ohci # provides USB 1.x support
device ehci # provides USB 2.0 support
device xhci # provides USB 3.0 support
device usb  # USB Bus (required)
FreeBSD 使用 umass(4) 驅動程式透過 SCSI 子系統來存取 USB 儲存裝置，因此任何在系統的 USB 裝置都會以 SCSI 裝置呈現在系統，若 USB 裝置是 CD 或 DVD 烧錄機，請不要在自訂核心設定檔中引用 device atapicam。

本節後續的部份將示範如何檢查 FreeBSD 能夠辦識 USB 儲存裝置及如何設定該裝置。

17.4.1. 裝置設定要測試 USB 設定，請先插入 USB 裝置，然後使用 dmesg 來確認系統訊息緩衝區中有出現該磁碟機，該訊息如下:

```
umass0: <STECH Simple Drive, class 0/0, rev 2.00/1.04, addr 3> on usbus0
umass0: SCSI over Bulk-Only;
quirks=0x0100
umass0:4:0:-1: Attached to scbus4
da0 at umass-sim0 bus 0 scbus4 target 0 lun 0
da0: <STECH Simple Drive 1.04> Fixed Direct Access SCSI-4 device
da0: Serial Number WD-WXE508CAN263
da0: 40.000MB/s transfers
da0: 152627MB (312581808 512 byte sectors: 255H 63S/T 19457C)
da0: quirks=0x2<NO_6_BYTE>
```

不同的裝置會有不同的廠牌、裝置節點（da0）、速度與大小。

當 USB 裝置可以做為 SCSI 檢視時，便可使用 camcontrol 來列出連接到系統的 USB 儲存裝置:

```
camcontrol devlist
<STECH Simple Drive 1.04> at scbus4 target 0 lun 0 (pass3,da0)
```

或者，可以使用 usbconfig 來列出裝置，請參考 usbconfig(8)來取得更多有關此指令的資訊。

```
usbconfig
ugen0.3: <Simple Drive STECH> at usbus0, cfg=0 md=HOST spd=HIGH (480Mbps) pwr=ON (2mA)
```

若該裝置尚未被格式化，請參考加入磁碟中有關於如何在 USB 磁碟格式化與建立分割區的說明。若磁碟中有檔案系統，可由 root 依據掛載與卸載檔案系統中的說明掛載磁碟。

要允許未被信任的使用者掛載任意媒體，可開啓 vfs.usermount，詳細說明如下。從安全性的角度來看這並不是安全的，大多的檔案系統並不會防範惡意裝置。

要讓裝置可讓一般使用者掛載，其中一個解決方案便是使用 pw(8)讓所有裝置的使用者成為 operator 群組。接著，將下列幾行加入 /etc/devfs.rules 來確保 operator 能夠讀取與寫入裝置:

```
[localrules=5]
```
若系統也同時安裝了內建SCSI磁碟，请更改第二行如下:

```
add path 'da[3-9]*' mode 0660 group operator
```

這會從operator群組中排除前三個SCSI磁碟 (da0到da2)，接著取代3為內部SCSI磁碟的編號。請參考devfs.rules(5)來取得更多有關此檔案的資訊。

接著，在 `/etc/rc.conf` 開啟規則:

```
devfs_system_ruleset="localrules"
```

然後，加入以下行到 `/etc/sysctl.conf` 指示系統允許正常使用者掛載檔案系統:

```
vfs.usermount=1
```

這樣只會在下次重新開機時生效，可使用 `sysctl` 來立即設定這個變數:

```
sysctl vfs.usermount=1
```

最後一個步驟是建立要掛載檔案系統的目錄，要掛載檔案系統的使用者需要擁有這個目錄。其中一個辦法是讓 root 建立由該使用者擁有的子目錄 `/mnt/username`。在下面的例子，將 username 換為該使用者的登入名稱並將 usergroup 換為該使用者的主要群組:

```
mkdir /mnt/username
chown username:usergroup /mnt/username
```

假如已經插入USB隨身碟，且已出現 `/dev/da0s1` 裝置。若裝置使用 FAT格式的檔案系統，則使用者可使用以下指令掛載該檔案系統:

```
% mount -t msdosfs -o -m =644,-M =755 /dev/da0s1 /mnt/username
```

在裝置可以被拔除前，必須先卸載:

```
% umount /mnt/username
```

裝置移除之後，系統訊息緩衝區會顯示如下的訊息:

```
umass0: at uhub3, port 2, addr 3 (disconnected)
da0 at umass-sim0 bus 0 scbus4 target 0 lun 0
```

`da0: <STECH Simple Drive 1.04> s/n WD-WXE508CAN263          detached`
17.4.2. 自動掛載可移除的媒體可以取消注解在/etc/auto_master中的下行來自動掛載USB裝置:

/media

然後加入這些行到/etc/devd.conf:

```
notify 100 {
match "system" "GEOM";
match "subsystem" "DEV";
action "/usr/sbin/automount -c";
}
```

若autofs(5)以及devd(8)已經在執行,則需重新載入設定:

```
service automount restart
service devd restart
```

要設定讓autofs(5)在開機時啟動可以加入此行到/etc/rc.conf:

```
autofs_enable="YES"
```

autofs(5)需要啟動devd(8),預設已經啟動。立刻即啟動服務:

```
service automount start
service automountd start
service autounmountd start
service devd start
```

可以被自動掛載的檔案系統會在/media/中以目錄呈現,會以檔案系統的標籤來命名目錄,若標籤遺失,則會以裝置節點命名。

檔案系統會在第一次存取時自動掛載,並在一段時間未使用後自動卸載。自動掛載的磁碟也可以手動卸載:

```
automount -fu
```

這個機制一般會用在記憶卡與USB隨身碟,也可用在任何Block裝置,包含光碟機或iSCSILUN。
Compact Disc (CD) media provide a number of features that differentiate them from conventional disks. They are designed so that they can be read continuously without delays to move the head between tracks. While CD media do have tracks, these refer to a section of data to be read continuously, and not a physical property of the disk. The ISO 9660 file system was designed to deal with these differences.

The FreeBSD Ports Collection provides several utilities for burning and duplicating audio and data CDs. This chapter demonstrates the use of several command line utilities. For CD burning software with a graphical utility, consider installing the `sysutils/xcdroast` or `sysutils/k3b` packages or ports.

17.5.1. Supported Devices

The GENERIC kernel provides support for SCSI, USB, and ATAPICD readers and burners. If a custom kernel is used, the options that need to be present in the kernel configuration file vary by the type of device.

For a SCSI burner, make sure these options are present:

```
device scbus # SCSI bus (required for ATA/SCSI)
device da # Direct Access (disks)
device pass # Passthrough device (direct ATA/SCSI access)
device cd # needed for CD and DVD burners
```

For a USB burner, make sure these options are present:

```
device scbus # SCSI bus (required for ATA/SCSI)
device da # Direct Access (disks)
device pass # Passthrough device (direct ATA/SCSI access)
device cd # needed for CD and DVD burners
device uhci # provides USB 1.x support
device ohci # provides USB 1.x support
device ehci # provides USB 2.0 support
device xhci # provides USB 3.0 support
device usb # USB Bus (required)
device umass # Disks/Mass storage - Requires scbus and da
```

For an ATAPI burner, make sure these options are present:

```
device ata # Legacy ATA/SATA controllers
device scbus # SCSI bus (required for ATA/SCSI)
device pass # Passthrough device (direct ATA/SCSI access)
device cd # needed for CD and DVD burners
```

On FreeBSD versions prior to 10.x, this line is also needed in the kernel configuration file if the burner is an ATAPI device:

```
325
```
Alternately, this driver can be loaded at boot time by adding the following line to /boot/loader.conf:

```
atapicam_load="YES"
```

This will require a reboot of the system as this driver can only be loaded at boot time.

To verify that FreeBSD recognizes the device, run `dmesg` and look for an entry for the device. On systems prior to 10.x, the device name in the first line of the output will be `acd0` instead of `cd0`.

```
% dmesg | grep cd
cd0 at ahcich1 bus 0 scbus1 target 0 lun 0
cd0: <HL-DT-ST DVDRAM GU70N LT20> Removable CD-ROM SCSI-0 device
cd0: Serial Number M3OD3S34152
cd0: 150.000MB/s transfers (SATA 1.x, UDMA6, ATAPI 12bytes, PIO 8192bytes)
cd0: Attempt to query device size failed: NOT READY, Medium not present - tray closed
```

17.5.2. 燒錄 CD
In FreeBSD, `cdrecord` can be used to burn CDs. This command is installed with the `sysutils/cdrtools` package or port.

While `cdrecord` has many options, basic usage is simple. Specify the name of the ISO file to burn and, if the system has multiple burner devices, specify the name of the device to use:

```
cdrecord dev=device imagefile.iso
```

To determine the device name of the burner, use `-scanbus` which might produce results like this:

```
cdrecord -scanbus
ProDVD-ProBD-Clone 3.00 (amd64-unknown-freebsd10.0)
Copyright (C) 1995-2010 Jörg Schilling
Using libscg version 'schily-0.9'
scsibus0: 0,0,0 0
 'SEAGATE ' 'ST39236LW ' '0004'
 Disk 0,1,0 1
 'SEAGATE ' 'ST39173W ' '5958'
 Disk 0,2,0 2
 * 0,3,0 3
 'iomega ' 'jaz 1GB ' 'J.86'
 Removable Disk 0,4,0 4
 'NEC ' 'CD-ROM DRIVE:466' '1.26'
 Removable CD-ROM 0,5,0 5
 * 0,6,0 6
 * 0,7,0 7
```

326
Locate the entry for the CD burner and use the three numbers separated by commas as the value for dev. In this case, the Yamaha burner device is 1,5,0, so the appropriate input to specify that device is dev=1,5,0. Refer to the manual page for cdrecord for other ways to specify this value and for information on writing audio tracks and controlling the write speed.

Alternately, run the following command to get the device address of the burner:

```
camcontrol devlist
```

Use the numeric values for scbus, target, and lun. For this example, 1,0,0 is the device name to use.

17.5.3. 写入資料到一個 ISO 檔

In order to produce a data CD, the data files that are going to make up the tracks on the CD must be prepared before they can be burned to the CD. In FreeBSD, sysutils/cdrtools installs mkisofs, which can be used to produce an ISO 9660 file system that is an image of a directory tree within a UNIX™ file system. The simplest usage is to specify the name of the ISO file to create and the path to the files to place into the ISO 9660 file system:

```
mkisofs -o imagefile.iso /path/to/tree
```

This command maps the file names in the specified path to names that fit the limitations of the standard ISO 9660 file system, and will exclude files that do not meet the standard for ISO file systems.

A number of options are available to overcome the restrictions imposed by the standard. In particular, -R enables the Rock Ridge extensions common to UNIX™ systems and -J enables Joliet extensions used by Microsoft™ systems.

For CDs that are going to be used only on FreeBSD systems, -U can be used to disable all filename restrictions. When used with -R, it produces a file system image that is identical to the specified FreeBSD tree, even if it violates the ISO 9660 standard.

The last option of general use is -b. This is used to specify the location of a boot image for use in producing an "El Torito" bootable CD. This option takes an argument which is the path to a boot image from the top of the tree being written to the CD. By default, mkisofs creates an ISO image in "floppy disk emulation" mode, and thus expects the boot image to be exactly 1200, 1440 or 2880 KB in size. Some boot loaders, like the one used by the FreeBSD distribution media, do not use emulation mode. In this case, -no-emul-boot should be used. So, if /tmp/myboot holds a bootable FreeBSD system with the boot image in /tmp/myboot/boot/cdboot, this command would produce /tmp/bootable.iso:
The resulting ISO image can be mounted as a memory disk with:

```
mdconfig -a -t vnode -f /tmp/bootable.iso -u 0
mount -t cd9660 /dev/md0 /mnt
```

One can then verify that `/mnt` and `/tmp/myboot` are identical.

There are many other options available for `mkisofs` to fine-tune its behavior. Refer to `mkisofs(8)` for details.

It is possible to copy a data CD to an image file that is functionally equivalent to the image file created with `mkisofs`. To do so, use `dd` with the device name as the input file and the name of the ISO to create as the output file:

```
dd if=/dev/cd0 of=file.iso bs=2048
```

The resulting image file can be burned to CD as described in 燒錄 CD.

Once an ISO has been burned to a CD, it can be mounted by specifying the file system type, the name of the device containing the CD, and an existing mount point:

```
mount -t cd9660 /dev/cd0 /mnt
```

Since `mount` assumes that a file system is of type `ufs`, an Incorrect super block error will occur if `-t cd9660` is not included when mounting a data CD.

While any data CD can be mounted this way, disks with certain ISO 9660 extensions might behave oddly. For example, Joliet disks store all filenames in two-byte Unicode characters. If some non-English characters show up as question marks, specify the local charset with `-C`. For more information, refer to `mount_cd9660(8)`.

In order to do this character conversion with the help of `-C`, the kernel requires the `cd9660_iconv.ko` module to be loaded. This can be done either by adding this line to `loader.conf`:

```
cd9660_iconv_load= YES
```

and then rebooting the machine, or by directly loading the module with `kldload`.

Occasionally, Device not configured will be displayed when trying to mount a data CD. This usually means that the CD drive has not detected a disk in the tray, or that the drive is not visible on the bus. It can take a couple of seconds for a CD drive to detect media, so be patient.

Sometimes, a SCSICD drive may be missed because it did not have enough time to answer the bus reset. To resolve this, a custom kernel can be created which increases the default SCSI delay. Add the following option to the custom kernel configuration file and rebuild the kernel using the instructions in 編譯與安裝自訂核心：

```
328
```
This tells the SCSI bus to pause 15 seconds during boot, to give the CD drive every possible chance to answer the bus reset.

It is possible to burn a file directly to CD, without creating an ISO 9660 file system. This is known as burning a raw data CD and some people do this for backup purposes.

This type of disk can not be mounted as a normal data CD. In order to retrieve the data burned to such a CD, the data must be read from the raw device node. For example, this command will extract a compressed tar file located on the second CD device into the current working directory:

```
tar xzvf /dev/cd1
```

In order to mount a data CD, the data must be written using `mkisofs`.

### 17.5.5. 複製音楽CD

To duplicate an audio CD, extract the audio data from the CD to a series of files, then write these files to a blank CD. **Duplicating an Audio CD** describes how to duplicate and burn an audio CD. If the FreeBSD version is less than 10.0 and the device is ATAPI, the `atapicam` module must be first loaded using the instructions in **支援的裝置**.

#### Procedure: Duplicating an Audio CD

1. The `sysutils/cdrtools` package or port installs `cdda2wav`. This command can be used to extract all of the audio tracks, with each track written to a separate WAV file in the current working directory:

   ```
 % cdda2wav -vall -B -Owav
   ```

   A device name does not need to be specified if there is only one CD device on the system. Refer to the `cdda2wav` manual page for instructions on how to specify a device and to learn more about the other options available for this command.

2. Use `cdrecord` to write the .wav files:

   ```
 % cdrecord -v dev=2,0 -dao -useinfo * .wav
   ```

   Make sure that `2,0` is set appropriately, as described in **燒錄CD**.

### 17.6. 建立與使用DVD媒體

Compared to the CD, the DVD is the next generation of optical media storage technology. The DVD can hold more data than any CD and is the standard for video publishing.

Five physical recordable formats can be defined for a recordable DVD:
• DVD-R: This was the first DVD recordable format available. The DVD-R standard is defined by the DVD Forum. This format is write once.

• DVD-RW: This is the rewritable version of the DVD-R standard. A DVD-RW can be rewritten about 1000 times.

• DVD-RAM: This is a rewritable format which can be seen as a removable hard drive. However, this media is not compatible with most DVD-ROM drives and DVD-Video players as only a few DVD writers support the DVD-RAM format. Refer to DVD-RAM for more information on DVD-RAM use.

• DVD+RW: This is a rewritable format defined by the DVD+RW Alliance. A DVD+RW can be rewritten about 1000 times.

• DVD+R: This format is the write once variation of the DVD+RW format.

A single layer recordable DVD can hold up to 4,700,000,000 bytes which is actually 4.38 GB or 4485 MB as 1 kilobyte is 1024 bytes.

A distinction must be made between the physical media and the application. For example, a DVD-Video is a specific file layout that can be written on any recordable DVD physical media such as DVD-R, DVD+R, or DVD-RW. Before choosing the type of media, ensure that both the burner and the DVD-Video player are compatible with the media under consideration.

To perform DVD recording, use growisofs(1). This command is part of the sysutils/dvd+rw-tools utilities which support all DVD media types. These tools use the SCSI subsystem to access the devices, therefore ATAPI/CAM support must be loaded or statically compiled into the kernel. This support is not needed if the burner uses the USB interface. Refer to USB storage for more details on USB device configuration.

DMA access must also be enabled for ATAPI devices, by adding the following line to /boot/loader.conf:

```
hw.ata.atapi_dma="1"
```

Before attempting to use dvd+rw-tools, consult the Hardware Compatibility Notes.

For a graphical user interface, consider using sysutils/k3b which provides a user friendly interface to growisofs(1) and many other burning tools.

Since growisofs(1) is a front-end to mkisofs, it will invoke mkisofs(8) to create the file system layout and perform the write on the DVD. This means that an image of the data does not need to be created before the burning process.

To burn to a DVD+R or a DVD-R the data in /path/to/data, use the following command:

```
growisofs -dvd-compat -Z /dev/cd0 -J -R /path/to/data
```

In this example, -J -R is passed to mkisofs(8) to create an ISO 9660 file system with Joliet and Rock Ridge extensions. Refer to mkisofs(8) for more details.

For the initial session recording, -Z is used for both single and multiple sessions. Replace /dev/cd0, with the name of the DVD device. Using -dvd-compat indicates that the disk will be closed and that
the recording will be unappendable. This should also provide better media compatibility with DVD-ROM drives.

To burn a pre-mastered image, such as `imagefile.iso`, use:

```bash
growisofs -dvd-compat -Z /dev/cd0=imagefile.iso
```

The write speed should be detected and automatically set according to the media and the drive being used. To force the write speed, use `-speed=`. Refer to `growisofs(1)` for example usage.

In order to support working files larger than 4.38GB, an UDF/ISO-9660 hybrid file system must be created by passing `-udf -iso-level 3` to `mkisofs(8)` and all related programs, such as `growisofs(1)`. This is required only when creating an ISO image file or when writing files directly to a disk. Since a disk created this way must be mounted as an UDF file system with `mount_udf(8)`, it will be usable only on an UDF aware operating system. Otherwise it will look as if it contains corrupted files.

To create this type of ISO file:

```bash
% mkisofs
```

To burn files directly to a disk:

```bash
growisofs -dvd-compat -udf -iso-level 3 -Z /dev/cd0 -J -R /path/to/data
```

When an ISO image already contains large files, no additional options are required for `growisofs(1)` to burn that image on a disk.

Be sure to use an up-to-date version of `sysutils/cdrtools`, which contains `mkisofs(8)`, as an older version may not contain large files support. If the latest version does not work, install `sysutils/cdrtools-devel` and read its `mkisofs(8)`.

17.6.3. 烧录 DVD-Video

A DVD-Video is a specific file layout based on the ISO 9660 and micro-UDF (M-UDF) specifications. Since DVD-Video presents a specific data structure hierarchy, a particular program such as `multimedia/dvdauthor` is needed to author the DVD.

If an image of the DVD-Video file system already exists, it can be burned in the same way as any other image. If `dvdauthor` was used to make the DVD and the result is in `/path/to/video`, the following command should be used to burn the DVD-Video:

```bash
growisofs -Z /dev/cd0 -dvd-video /path/to/video
```

 `-dvd-video` is passed to `mkisofs(8)` to instruct it to create a DVD-Video file system layout. This option implies the `-dvd-compat` `growisofs(1)` option.

17.6.4. 使用 DVD+RW

Unlike CD-RW, a virgin DVD+RW needs to be formatted before first use. It is recommended to let `growisofs(1)` take care of this automatically whenever appropriate. However, it is possible to use `dvd+rw-format` to format the DVD+RW:
Only perform this operation once and keep in mind that only virgin DVD+RW medias need to be formatted. Once formatted, the DVD+RW can be burned as usual.

To burn a totally new file system and not just append some data onto a DVD+RW, the media does not need to be blanked first. Instead, write over the previous recording like this:

```
growisofs -Z /dev/cd0 -J -R /path/to/newdata
```

The DVD+RW format supports appending data to a previous recording. This operation consists of merging a new session to the existing one as it is not considered to be multi-session writing. `growisofs(1)` will grow the ISO 9660 file system present on the media.

For example, to append data to a DVD+RW, use the following:

```
growisofs -M /dev/cd0 -J -R /path/to/nextdata
```

The same `mkisofs(8)` options used to burn the initial session should be used during next writes.

Use `-dvd-compat` for better media compatibility with DVD-ROM drives. When using DVD+RW, this option will not prevent the addition of data.

To blank the media, use:

```
growisofs -Z /dev/cd0=/dev/zero
```

17.6.5. 使用DVD-RW

A DVD-RW accepts two disc formats: incremental sequential and restricted overwrite. By default, DVD-RW discs are in sequential format.

A virgin DVD-RW can be directly written without being formatted. However, a non-virgin DVD-RW in sequential format needs to be blanked before writing a new initial session.

To blank a DVD-RW in sequential mode:

```
dvd+rw-format -blank=full /dev/cd0
```

A full blanking using `-blank=full` will take about one hour on a 1x media. A fast blanking can be performed using `-blank`, if the DVD-RW will be recorded in Disk-At-Once (DAO) mode. To burn the DVD-RW in DAO mode, use the command:

```
growisofs -use-the-force-luke=dao -Z /dev/cd0=imagefile.iso
```

Since `growisofs(1)` automatically attempts to detect fast blanked media and engage DAO write, `-use-the-force-luke=dao` should not be required.

One should instead use restricted overwrite mode with any DVD-RW as this format...
To write data on a sequential DVD-RW, use the same instructions as for the other DVD formats:

```
growisofs -Z /dev/cd0 -J -R /path/to/data
```

To append some data to a previous recording, use `-M` with `growisofs(1)`. However, if data is appended on a DVD-RW in incremental sequential mode, a new session will be created on the disc and the result will be a multi-session disc.

A DVD-RW in restricted overwrite format does not need to be blanked before a new initial session. Instead, overwrite the disc with `-Z`. It is also possible to grow an existing ISO 9660 file system written on the disc with `-M`. The result will be a one-session DVD.

To put a DVD-RW in restricted overwrite format, the following command must be used:

```
dvd+rw-format /dev/cd0
```

To change back to sequential format, use:

```
dvd+rw-format -blank=full /dev/cd0
```

### 17.6.6. 多階段燒錄 (Multi-Session)

Few DVD-ROM drives support multi-session DVDs and most of the time only read the first session. DVD+R, DVD-R and DVD-RW in sequential format can accept multiple sessions. The notion of multiple sessions does not exist for the DVD+RW and the DVD-RW restricted overwrite formats.

Using the following command after an initial non-closed session on a DVD+R, DVD-R, or DVD-RW in sequential format, will add a new session to the disc:

```
growisofs -M /dev/cd0 -J -R /path/to/nextdata
```

Using this command with a DVD+RW or a DVD-RW in restricted overwrite mode will append data while merging the new session to the existing one. The result will be a single-session disc. Use this method to add data after an initial write on these types of media.

Since some space on the media is used between each session to mark the end and start of sessions, one should add sessions with a large amount of data to optimize media space. The number of sessions is limited to 154 for a DVD+R, about 2000 for a DVD-R, and 127 for a DVD+R Double Layer.

### 17.6.7. 取得更多資訊

To obtain more information about a DVD, use `dvd+rw-mediainfo` while the disc in the specified drive.

More information about `dvd+rw-tools` can be found in `growisofs(1)`, on the `dvd+rw-tools` web site, and in the `cdwrite` mailing list archives.

When creating a problem report related to the use of `dvd+rw-tools`, always include the output of `dvd+rw-mediainfo`.
17.6.8. 使用 DVD-RAM

DVD-RAM writers can use either a SCSI or ATAPI interface. For ATAPI devices, DMA access has to be enabled by adding the following line to `/boot/loader.conf`:

```
hw.ata.atapi_dma="1"
```

A DVD-RAM can be seen as a removable hard drive. Like any other hard drive, the DVD-RAM must be formatted before it can be used. In this example, the whole disk space will be formatted with a standard UFS2 file system:

```
dd if=/dev/zero of=/dev/acd0 bs=2k count=1
bsdlabel -Bw acd0
newfs /dev/acd0
```

The DVD device, `acd0`, must be changed according to the configuration.

Once the DVD-RAM has been formatted, it can be mounted as a normal hard drive:

```
mount /dev/acd0 /mnt
```

Once mounted, the DVD-RAM will be both readable and writeable.

17.7. 建立與使用軟碟

This section explains how to format a 3.5 inch floppy disk in FreeBSD.

**Procedure: Steps to Format a Floppy**

A floppy disk needs to be low-level formatted before it can be used. This is usually done by the vendor, but formatting is a good way to check media integrity. To low-level format the floppy disk on FreeBSD, use `fdformat(1)`. When using this utility, make note of any error messages, as these can help determine if the disk is good or bad.

1. To format the floppy, insert a new 3.5 inch floppy disk into the first floppy drive and issue:

   ```
 # /usr/sbin/fdformat -f 1440 /dev/fd0
   ```

2. After low-level formatting the disk, create a disk label as it is needed by the system to determine the size of the disk and its geometry. The supported geometry values are listed in `/etc/disktab`.

   To write the disk label, use `bsdlabel(8)`

   ```
 # /sbin/bsdlabel -B -w /dev/fd0 fd1440
   ```

3. The floppy is now ready to be high-level formatted with a file system. The floppy's file system can be either UFS or FAT, where FAT is generally a better choice for floppies.

   To format the floppy with FAT, issue:
例

在使用37.份連案到SSH線傳檔。機指定備的主送改線上連以在全較SSH的可安使用並不足夠。全性安腦這使用案系統到一備份兩份一個磁帶機另工具備一個系統,檔網可以連結電工具備。

虽然可以使用磁帶今指令軌這個預的體或高,可用的密度磁帶非,這並必須另修改媒值。列外在型的設其他設會題數問仍有一些份到一個存的參假9設備在,預當使用以行。讓還原利到一個空順有可以執間的較多可用還原資料時,非備。資料份塊直案與的,而檔區案與目錄構檔原始會目錄份備成接份部份檔個案系統,且檔多個案系統的,必須樹一次案系統或整目錄法備只無要低,因此不像其他的層級份還備立來檔層級連結作,這個磁碟區案、案系統目錄兩建層檔運可在的工具份。這比塊由抽還原個與的層級檔備份一個要

FreeBSD與管理系統。上建份的本章節會介紹一些可以用來在工具備助份。此外,在動備對檔或輯快照份各檔的前手ZFS別目錄輔除案。做編刪備混排技術整份,並使用週動做儲存於每小合備的完通常會份每系統例建一個時程立自異地如,使用各種,有的一些可用來有所不同,取度所需的程案於。機與可接受的類依情況要資料的決程會排備間型還原檔重停、份的性時及及是要的。劃份計備必磁碟本,全機文件、含文件,包毀壞恢復損壞從備夠故障地毀壞為或完份了要能器執行隨機除、意外

17.8.1.備基礎概念

install and use

The disk is now ready for use. To use the floppy, mount it with

•

•

•

•

or shut down. To mount it, enter the following command:

# /sbin/dump -0uan -f - /usr | gzip -2 | ssh -c blowfish

dump

# /sbin/newfs_msdos /dev/fd0

restore
例38. 在 `ssh` 使用 `dump` 透過 `RSH` 設定，以便透過 `SSH` 連線寫入備份到遠端系統的磁帶機:

```bash
env RSH=/usr/bin/ssh /sbin/dump -0uan -f
```

例39. 使用 `tar(1)` 備份目前目錄，這個工具最早可以追溯自 `AT&T UNIX™` 版本6時，因此預設會做一個遞迴備份到一個磁帶機，可以使用參數來指定備份檔案的名稱。

例40. 使用 `tar` 還原目前目錄到一個暫時的目錄或指定備份檔案中的檔案做還原。

例41. 使用 `ls` 與 `cpio` 來製作目前目錄的遞迴備份到一個名稱為 `/tmp/mybackup.cpio` 的備份檔案。

```
ls -R | cpio -ovF /tmp/mybackup.cpio
```

有一個備份工具嘗試整合 `tar` 與 `cpio` 所提供的功能，便是 `pax(1)`。經歷數年，各種版本的 `tar` 與 `cpio` 变的有一些無法相容。POSIX™開發出 `pax`, 嘗試讀取與寫入各種版本的 `cpio` and `tar` 格式並加入自己新的格式。以先前的例子改使用 `pax` 會是：

```
```
例

42.

使用

pax

備

份

目前

目錄

# pax -wf /tmp/mybackup.pax .

17.8.3.

使用資料

磁帶備

份

隨著磁帶

的

技術

持續

發

展

, 當

今

的

備

份系統

將異地

備

份與本

地

可

移

除

媒

體

做

了

結合

。FreeBSD

支援

任

何

使用

SCSI

的

磁帶機

, 如

LTO

或

DAT

, 並有

限

制

的

支援

SATA

與

USB

磁帶機

。

SCSI

磁帶機

在

FreeBSD

會使用

sa(4)

驅

動

程式以

及

/dev/sa0

,

/dev/nsa0

與

/dev/esa0

裝

置

, 實體裝

置

名稱

為

/dev/sa0

, 當使用

/dev/nsa0

時,

備

份程式在

寫入檔

案之後不

會

倒

帶

, 這可

允

許寫入

超

過

一個

檔

案到

磁帶

, 而使用

/dev/esa0

時,

當

關

閉

裝

置

後

便

會

退

出

磁帶

。

在

FreeBSD

中會使用

mt

來

做磁帶機

的

控制

操作,

例

如在

磁帶

中搜尋

檔

案或

寫入磁帶控制

記

號

到

磁帶

。

例

如, 要

保

留

磁帶上

的前

三

個

檔

案, 可在

寫入

新

檔

案前

跳過

這些

檔

案

:

# mt -f /dev/nsa0 fsf 3

這個

工具

尚

支援許

多操作, 請參

考

mt(1)

了

解詳

情

。

要使用

tar

寫入單

一

檔

案到

磁帶

, 可指定磁帶

裝

置

的

名稱

以

及

要

備

份的

檔

案

:

# tar cvf /dev/sa0 file

要從

磁帶

的

tar

封

存档還原檔

案到

目前

的

目錄

可

:

# tar xvf /dev/sa0

要備

份一個

UFS

檔

案系統可使用
dump。以下

例

子會

備

份

/usr

並在完成時不

做

倒

帶:

# dump -0aL -b64 -f /dev/nsa0 /usr

要以

互

動

的方式從

磁帶

的

dump

檔

案

還原

到

目前

目錄:

# restore -i -f /dev/nsa0

17.8.4.

第

三

方

備

份

工具

FreeBSD Port

套

件集提供了

多第

三

方

工具

可用

於排

程

建

備

份, 簡化磁帶備

份並

讓備

份

更簡單

方

便

。許

多這

類

的

應

用程

式是以

客戶端

/

伺服器

為

基礎, 用来自

動化單

一系統或網

路上

所有電

腦

的

備

份。

較

熱

門

的

工具

包

含

Amanda, Bacula, rsync

以

及

duplicity

。
緊急

除了正常的備份外、建議將下以步驟做為緊急準備計
劃的一部份。

替以下指令的輸出建立一份可列印的複本:

• `gpart show`
• `more /etc/fstab`
• `dmesg`

在安全的地方保存這份列印結果與安裝媒介的複本，在緊急還原時可能會需要，接著開機進入安裝媒介並選擇Live CD以存取救援Shell (Rescue shell),這個救援模式可以用來檢視目前系統的狀態，若有需要，可重新格式化磁碟然後自備份還原資料。

FreeBSD/i386 11.2-RELEASE的安裝媒介未內含救援Shell,針對該版本,可改自FTP下載Livefs CD映像檔並燒錄。

然後,測試救援Shell下的備份。記錄下整個程序，將這份記錄隨媒體、列印結果、備份檔一併保存，這份記錄可以避免在緊張壓力下做緊急還原時因不慎造成備份的毀壞。

要再安全性一點，則可將最新的備份儲存與實體電腦與磁碟機有一段顯著距離的遠端位置。

記憶體磁碟

In addition to physical disks, FreeBSD also supports the creation and use of memory disks. One possible use for a memory disk is to access the contents of an ISO file system without the overhead of first burning it to a CD or DVD, then mounting the CD/DVD media.

In FreeBSD, the `md(4)` driver is used to provide support for memory disks. The `GENERIC` kernel includes this driver. When using a custom kernel configuration file, ensure it includes this line:

```
device md
```

17.9.1. 接続と解除接続既有的映象檔

To mount an existing file system image, use `mdconfig` to specify the name of the ISO file and a free unit number. Then, refer to that unit number to mount it on an existing mount point. Once mounted, the files in the ISO will appear in the mount point. This example attaches `diskimage.iso` to the memory device `/dev/md0` then mounts that memory device on `/mnt`:

```
mdconfig -f diskimage.iso -u 0
mount -t cd9660 /dev/md0 /mnt
```

注意 `-t cd9660` 被用來mount ISO格式。如果未使用 `-u` 指定unit number, `mdconfig`將自動分配一個未使用的記憶體裝置並輸出該裝置的名稱，如`md4`。參照`mdconfig(8)`以了解此命令及選項的更多詳細信息。

當記憶體磁碟不再使用，其資源應該放回系統。首先，卸載文件系統，然後使用`mdconfig`將磁碟從系統中解除，並放回其資源。要繼續此例子:

```
338
```
To determine if any memory disks are still attached to the system, type `mdconfig -l`.

17.9.2. 建立以檔案或記憶體為基礎的磁碟

FreeBSD also supports memory disks where the storage to use is allocated from either a hard disk or an area of memory. The first method is commonly referred to as a file-backed file system and the second method as a memory-backed file system. Both types can be created using `mdconfig`.

To create a new memory-backed file system, specify a type of `swap` and the size of the memory disk to create. Then, format the memory disk with a file system and mount as usual. This example creates a 5M memory disk on unit 1. That memory disk is then formatted with the UFS file system before it is mounted:

```
mdconfig -a -t swap -s 5m -u 1
newfs -U md1
/dev/md1: 5.0MB (10240 sectors)
block size 16384, fragment size 2048 using 4 cylinder groups
of 1.27MB, 81 blks, 192 inodes.
with soft updates super-block backups (for fsck -b) at:
160, 2752, 5344, 7936
mount /dev/md1 /mnt
df /mnt
```

Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/md1 4718 4 4338 0% /mnt

To create a new file-backed memory disk, first allocate an area of disk to use. This example creates an empty 5MB file named `newimage`:

```
dd if=/dev/zero of=newimage bs=1k count=5k
5120+0 records in 5120+0 records out
```

Next, attach that file to a memory disk, label the memory disk and format it with the UFS file system, mount the memory disk, and verify the size of the file-backed disk:

```
mdconfig -f newimage -u 0
bsdlabel -w md0 auto
newfs -U md0a
/dev/md0a: 5.0MB (10224 sectors)
block size 16384, fragment size 2048 using 4 cylinder groups
of 1.25MB, 80 blks, 192 inodes.
super-block backups (for fsck -b) at:
160, 2720, 5280, 7840
mount /dev/md0a /mnt
```

339
It takes several commands to create a file- or memory-backed file system using `mdconfig`. FreeBSD also comes with `mdmfs` which automatically configures a memory disk, formats it with the UFS file system, and mounts it. For example, after creating `newimage` with `dd`, this one command is equivalent to running the `bsdlabel`, `newfs`, and `mount` commands shown above:

```
mdmfs -F newimage -s 5m md0 /mnt
```

To instead create a new memory-based memory disk with `mdmfs`, use this one command:

```
mdmfs -s 5m md1 /mnt
```

If the unit number is not specified, `mdmfs` will automatically select an unused memory device. For more details about `mdmfs`, refer to `mdmfs(8)`.

17.10. 檔案系統快照

FreeBSD offers a feature in conjunction with Soft Updates: file system snapshots. UFS snapshots allow a user to create images of specified file systems, and treat them as a file. Snapshot files must be created in the file system that the action is performed on, and a user may create no more than 20 snapshots per file system. Active snapshots are recorded in the superblock so they are persistent across unmount and remount operations along with system reboots. When a snapshot is no longer required, it can be removed using `rm(1)`. While snapshots may be removed in any order, all the used space may not be acquired because another snapshot will possibly claim some of the released blocks.

The un-alterable snapshot file flag is set by `mksnap_ffs(8)` after initial creation of a snapshot file. `unlink(1)` makes an exception for snapshot files since it allows them to be removed.

Snapshots are created using `mount(8)`. To place a snapshot of `/var` in the file `/var/snapshot/snap`, use the following command:

```
mount -u -o snapshot /var/snapshot/snap /var
```

Alternatively, use `mksnap_ffs(8)` to create the snapshot:

```
mksnap_ffs /var /var/snapshot/snap
```

One can find snapshot files on a file system, such as `/var`, using `find(1)`:

```
find /var -flags snapshot
```

Once a snapshot has been created, it has several uses:

- Some administrators will use a snapshot file for backup purposes, because the snapshot can be transferred to CDs or tape.
• The file system integrity checker, `fsck(8)`, may be run on the snapshot. Assuming that the file system was clean when it was mounted, this should always provide a clean and unchanging result.

• Running `dump(8)` on the snapshot will produce a dump file that is consistent with the file system and the timestamp of the snapshot. `dump(8)` can also take a snapshot, create a dump image, and then remove the snapshot in one command by using `-L`.

• The snapshot can be mounted as a frozen image of the file system. To mount the snapshot `/var/snapshot/snap` run:

```bash
mdconfig -a -t vnode -o readonly -f /var/snapshot/snap -u 4
mount -r /dev/md4 /mnt
```

The frozen `/var` is now available through `/mnt`. Everything will initially be in the same state it was during the snapshot creation time. The only exception is that any earlier snapshots will appear as zero length files. To unmount the snapshot, use:

```bash
umount /mnt
mdconfig -d -u 4
```

For more information about softupdates and file system snapshots, including technical papers, visit Marshall Kirk McKusick's website at http://www.mckusick.com/.

17.11.磁碟配額

磁碟配額可以用來限制使用者或群組成員能夠在各自檔案系統上使用的磁碟空間或檔案數量。這個可避免一個使用者或群組成員耗盡所有磁碟的可用空間。

本節將說明如何設定UFS檔案系統的磁碟配額。要在ZFS檔案系統上設定配額，请參考資料集、使用者以及群組配額。

17.11.1.開啟磁碟配額

查看FreeBSD核心是否支援磁碟配額:

```bash
% sysctl kern.features.ufs_quota
```

在本例中，數值1代表支援磁碟配額，若為0，則需加入下列設定到自訂核心設定檔然後依照FreeBSD核心的指示重新編譯核心:

```bash
options QUOTA
```

接着，在 `/etc/rc.conf` 開啟磁碟配額:

```bash
quota_enable="YES"
```

正常在開機時，會使用 `quotacheck(8)` 檢查每個檔案系統的配額完整性，這個程式會確保在配額資料庫中的資料正確的反映在檔案系統上的資料。這是一個耗費時間的程序，會明顯的影響系統開機的時間，要跳過這個步驟可以加入此變數到 `/etc/rc.conf`:

```bash
quotacheck -v -F
```
最後，編輯/etc/fstab 來開啟在各個檔案系統上的磁碟配額。

要開啟在檔案系統上對每個使用者的配額要加入 userquota 選項到 /etc/fstab 要開啟配額的檔案系統的項目中。例如:

```
/dev/da1s2g /home ufs rw,userquota 1 2
```

要開啟群組配額，則使用 groupquota。要同時開啟使用者及群組配額，可使用逗號隔開選項:

```
/dev/da1s2g /home ufs rw,userquota,groupquota 1 2
```

預設配額檔案會儲存於檔案系統的根目錄的 quota.user 及 quota.group，請參考 fstab(5)來取得更多資訊，較不建議指定其他位置來儲存配額檔案。

設定完成之後，重新啟動系統，/etc/rc 會自動執行適當的指令對所有在 /etc/fstab 中開啟配磁的檔案系統建立初始的配額檔案。

在一般的操作中，並不需要手動執行 quotacheck(8)、quotaon(8)或是 quotaoff(8)，雖然如此，仍應閱讀這些指令的操作手冊來熟悉這些指令的操作。

```
17.11.2. 設定配額
限制
```

要確認為配額已經開啟，可執行:

```
quota -v
```

每個有開啟配額的檔案系統應該會有一行磁碟用量及目前配額限制的摘要。

現在系統已準備好可以使用 edquota 分配配額限制。

有數個選項可以強制限制使用者或群組對磁碟空間的使用量及可以建立多少檔案。可以用磁碟空間 (block 配額), 檔案數量 (inode 配額) 或同時使用來分配。

每種限制又可進一步細分為兩個類型: 硬性 (Hard) 及軟性 (Soft) 限制。

硬性限制無法被超額使用。一旦使用者超出了硬性限制，該使用者在該檔案系統將無法再使用任何空間。

例如來說，若一個使用者在一個檔案系統上有 500 KB 的硬性限制，且目前已經使用了 490 KB，該使用者只能再使用 10 KB 的空間，若試著使用 11 KB 的空間將會失敗。

軟性限制在有限的時間內可以被超額使用，即為寬限期 (Grace period)，預設為一週。若一個使用者超出限制並超過寬限期，則軟性限制將轉為硬性限制並且將不允許再使用空間。當使用者使用的空間回到低於軟性限制內，寬限期就會被重置。

在下面的例子中，會編輯 test 的配額。當執行 edquota 時，將會使用 EDITOR 指定的編輯器來編輯配額限制。預設的編輯器為 vi。

```
edquota -u test
```

```
Quotas for user test:
/usr: kbytes in use: 65, limits (soft = 50, hard = 75)
inodes in use: 7, limits (soft = 50, hard = 60)
/usr/var: kbytes in use: 0, limits (soft = 50, hard = 75)
```

```
正常的每個開啟配額的檔案系統會有兩行需要設定，一行代表區塊限制(Block limit)而另一行代表節點限制(inode limit)，更改行內的值來修改配額限制。舉例來說，要在/usr提高區塊的軟性限制到500及硬性限制到600，可更改行內的值如下:

```
/usr: kbytes in use: 65, limits (soft = 500, hard = 600)
```

新的配額限制將在離開編輯器後生效。

有時會想針對一羣使用者設定配額限制，這時可以透過指定想要的配額給第一個使用者，若然後使用-p來複製配額到指定範圍的使用者ID (UID)。以下指定將複製配額限制給UID 10,000到19,999的使用者:

```
# edquota -p test 10000-19999
```

要取得更多信息，請參考edquota(8)。

17.11.3. 檢查配額限制與磁碟使用狀況

要檢查各別使用者或群組的配額與磁碟用量可使用quota(1)。使用者僅可查看自己配額以及所屬群組的配額，只有超級使用者可以檢視所有使用者及群組的配額。要取得某個有開啟配額的檔案系統的所有配額及磁碟用量摘要，可使用repquota(8)。

正常情況下，使用者未使用任何磁碟空間的檔案系統並不會顯示在quota的輸出結果中，即使該使用者有在該檔案系統設定配額限制，使用-v可以顯示這些檔案系統。以下是使用使用quota -v查詢某個使用者在兩個檔案系統上的配額限制的範例輸出。

```
Disk quotas for user test (uid 1002):
Filesystem  usage    quota   limit   grace   files   quota   limit   grace
/usr      65*     50      75   5days       7      50      60
/usr/var       0      50      75               0      50      60
```

在這個例子當中，使用者在/usr的軟性限制50 KB已經超出了15 KB並已經過了5天寬限期。星號*代表該使用者目前已超出配額限制。
FreeBSD offers excellent online protections against unauthorized data access. File permissions and Mandatory Access Control (MAC) help prevent unauthorized users from accessing data while the operating system is active and the computer is powered up. However, the permissions enforced by the operating system are irrelevant if an attacker has physical access to a computer and can move the computer's hard drive to another system to copy and analyze the data.

Regardless of how an attacker may have come into possession of a hard drive or powered-down computer, the GEOM-based cryptographic subsystems built into FreeBSD are able to protect the data on the computer's file systems against even highly-motivated attackers with significant resources. Unlike encryption methods that encrypt individual files, the built-in gbde and geli utilities can be used to transparently encrypt entire file systems. No cleartext ever touches the hard drive's platter.

This chapter demonstrates how to create an encrypted file system on FreeBSD. It first demonstrates the process using gbde and then demonstrates the same example using geli.

17.12.1. 使用 gbde 做磁碟加密

The objective of the gbde(4) facility is to provide a formidable challenge for an attacker to gain access to the contents of a cold storage device. However, if the computer is compromised while up and running and the storage device is actively attached, or the attacker has access to a valid passphrase, it offers no protection to the contents of the storage device. Thus, it is important to provide physical security while the system is running and to protect the passphrase used by the encryption mechanism.

This facility provides several barriers to protect the data stored in each disk sector. It encrypts the contents of a disk sector using 128-bit AES in CBC mode. Each sector on the disk is encrypted with a different AES key. For more information on the cryptographic design, including how the sector keys are derived from the user-supplied passphrase, refer to gbde(4).

FreeBSD provides a kernel module for gbde which can be loaded with this command:

```
# kldload geom_bde
```

If using a custom kernel configuration file, ensure it contains this line:

```
options GEOM_BDE
```

The following example demonstrates adding a new hard drive to a system that will hold a single encrypted partition that will be mounted as /private.

Procedure: Encrypting a Partition with gbde

1. Add the New Hard Drive

Install the new drive to the system as explained in 加入磁碟. For the purposes of this example, a new hard drive partition has been added as /dev/ad4s1c and /dev/ad0s1* represents the existing standard FreeBSD partitions.

```
# ls /dev/ad*
/dev/ad0        /dev/ad0s1b     /dev/ad0s1e     /dev/ad4s1
/dev/ad0s1      /dev/ad0s1c     /dev/ad0s1f     /dev/ad4s1c
/dev/ad0s1a     /dev/ad0s1d     /dev/ad4
```

344
2. Create a Directory to Hold gbde Lock Files

```bash
# mkdir /etc/gbde
```

The gbde lock file contains information that gbde requires to access encrypted partitions. Without access to the lock file, gbde will not be able to decrypt the data contained in the encrypted partition without significant manual intervention which is not supported by the software. Each encrypted partition uses a separate lock file.

3. Initialize the gbde Partition

A gbde partition must be initialized before it can be used. This initialization needs to be performed only once. This command will open the default editor, in order to set various configuration options in a template. For use with the UFS file system, set the sector_size to 2048:

```bash
# gbde init /dev/ad4s1c -i -L /etc/gbde/ad4s1c.lock
```

Once the edit is saved, the user will be asked twice to type the passphrase used to secure the data. The passphrase must be the same both times. The ability of gbde to protect data depends entirely on the quality of the passphrase. For tips on how to select a secure passphrase that is easy to remember, see http://world.std.com/~reinhold/diceware.htm.

This initialization creates a lock file for the gbde partition. In this example, it is stored as `/etc/gbde/ad4s1c.lock`. Lock files must end in `.lock` in order to be correctly detected by the `/etc/rc.d/gbde` start up script.

Lock files must be backed up together with the contents of any encrypted partitions. Without the lock file, the legitimate owner will be unable to access the data on the encrypted partition.

4. Attach the Encrypted Partition to the Kernel

```bash
# gbde attach /dev/ad4s1c -l /etc/gbde/ad4s1c.lock
```

This command will prompt to input the passphrase that was selected during the initialization of the encrypted partition. The new encrypted device will appear in `/dev` as `/dev/device_name.bde`:

```bash
# ls /dev/ad*
/dev/ad0        /dev/ad0s1b     /dev/ad0s1e     /dev/ad4s1
/dev/ad0s1      /dev/ad0s1c     /dev/ad0s1f     /dev/ad4s1c
/dev/ad0s1a     /dev/ad0s1d     /dev/ad4        /dev/ad4s1c.bde
```

5. Create a File System on the Encrypted Device

Once the encrypted device has been attached to the kernel, a file system can be created on the device. This example creates a UFS file system with soft updates enabled. Be sure to specify the partition which has a `*.bde` extension:
6. Mount the Encrypted Partition

Create a mount point and mount the encrypted file system:

```bash
# mkdir /private
# mount /dev/ad4s1c.bde /private
```

7. Verify That the Encrypted File System is Available

The encrypted file system should now be visible and available for use:

```bash

df -H

Filesystem        Size   Used  Avail Capacity  Mounted on
/dev/ad0s1a      1037M    72M   883M     8%    /
/devfs            1.0K   1.0K     0B   100%    /dev
/dev/ad0s1f       8.1G    55K   7.5G     0%    /home
/dev/ad0s1e      1037M   1.1M   953M     0%    /tmp
/dev/ad4s1c.bde   150G   4.1K   138G     0%    /private
```

After each boot, any encrypted file systems must be manually re-attached to the kernel, checked for errors, and mounted, before the file systems can be used. To configure these steps, add the following lines to `/etc/rc.conf`:

```bash
gbde_autoattach_all="YES"
gbde_devices="ad4s1c"
gbde_lockdir="/etc/gbde"
```

This requires that the passphrase be entered at the console at boot time. After typing the correct passphrase, the encrypted partition will be mounted automatically. Additional gbde boot options are available and listed in `rc.conf(5)`.

17.12.2. 使用 geli 做磁碟加密

An alternative cryptographic GEOM class is available using `geli`. This control utility adds some features and uses a different scheme for doing cryptographic work. It provides the following features:
Utilizes the crypto(9) framework and automatically uses cryptographic hardware when it is available.

- Supports multiple cryptographic algorithms such as AES, Blowfish, and 3DES.
- Allows the root partition to be encrypted. The passphrase used to access the encrypted root partition will be requested during system boot.
- Allows the use of two independent keys.
- It is fast as it performs simple sector-to-sector encryption.
- Allows backup and restore of master keys. If a user destroys their keys, it is still possible to get access to the data by restoring keys from the backup.
- Allows a disk to attach with a random, one-time key which is useful for swap partitions and temporary file systems.

More features and usage examples can be found in geli(8).

The following example describes how to generate a key file which will be used as part of the master key for the encrypted provider mounted under /private. The key file will provide some random data used to encrypt the master key. The master key will also be protected by a passphrase. The provider's sector size will be 4kB. The example describes how to attach to the geli provider, create a file system on it, mount it, work with it, and finally, how to detach it.

Procedure: Encrypting a Partition with geli

1. Load geli Support
 - Support for geli is available as a loadable kernel module. To configure the system to automatically load the module at boot time, add the following line to /boot/loader.conf:
     ```
     geom_eli_load="YES"
     ```
 - To load the kernel module now:
     ```
     # kldload geom_eli
     ```
 - For a custom kernel, ensure the kernel configuration file contains these lines:
     ```
     options GEOM_ELI
device crypto
     ```

2. Generate the Master Key
 - The following commands generate a master key (/root/da2.key) that is protected with a passphrase. The data source for the key file is /dev/random and the sector size of the provider (/dev/da2.eli) is 4kB as a bigger sector size provides better performance:
     ```
     # dd if=/dev/random of=/root/da2.key bs=64 count=1
     # geli init -s 4096 -K /root/da2.key /dev/da2
     ```
 - Enter new passphrase:
     ```
     Reenter new passphrase:
     ```

3. Attach and Mount
 - Attach to the geli provider:
     ```
     # geli attach
     ```
 - Create a file system on it:
     ```
     # mkfs -t ext4 /dev/da2.eli
     ```
 - Mount it:
     ```
     # mount /dev/da2.eli /mnt
     ```
 - Work with it:
     ```
     # cd /mnt
     ```
 - Detach it:
     ```
     # geli detach
     ```
It is not mandatory to use both a passphrase and a key file as either method of securing the master key can be used in isolation.

If the key file is given as '-', standard input will be used. For example, this command generates three key files:

```
cat keyfile1 keyfile2 keyfile3 | geli init -K - /dev/da2
```

3. Attach the Provider with the Generated Key

To attach the provider, specify the key file, the name of the disk, and the passphrase:

```
# geli attach -k /root/da2.key /dev/da2
Enter passphrase:
```

This creates a new device with a `.eli` extension:

```
# ls /dev/da2*
/dev/da2  /dev/da2.eli
```

4. Create the New File System

Next, format the device with the UFS file system and mount it on an existing mount point:

```
# dd if=/dev/random of=/dev/da2.eli bs=1m
# newfs /dev/da2.eli
# mount /dev/da2.eli /private
```

The encrypted file system should now be available for use:

```
# df -H
Filesystem     Size   Used  Avail Capacity  Mounted on
/dev/ad0s1a    248M    89M   139M    38%    /
/devfs         1.0K   1.0K     0B   100%    /dev
/dev/ad0s1f    7.7G   2.3G   4.9G    32%    /usr
/dev/ad0s1d    989M   1.5M   909M     0%    /tmp
/dev/ad0s1e    3.9G   1.3G   2.3G    35%    /var
/dev/da2.eli   150G   4.1K   138G     0%    /private
```

Once the work on the encrypted partition is done, and the `/private` partition is no longer needed, it is prudent to put the device into cold storage by unmounting and detaching the `geli` encrypted partition from the kernel:

```
# umount /private
# geli detach da2.eli
```
A `arc.d` script is provided to simplify the mounting of `geli`-encrypted devices at boot time. For this example, add these lines to `/etc/rc.conf`:

```
geli_devices="da2"
geli_da2_flags="-k /root/da2.key"
```

This configures `/dev/da2` as a `geli` provider with a master key of `/root/da2.key`. The system will automatically detach the provider from the kernel before the system shuts down. During the startup process, the script will prompt for the passphrase before attaching the provider. Other kernel messages might be shown before and after the password prompt. If the boot process seems to stall, look carefully for the password prompt among the other messages. Once the correct passphrase is entered, the provider is attached. The file system is then mounted, typically by an entry in `/etc/fstab`. Refer to the [mounted and unmounted file system](#) for instructions on how to configure a file system to mount at boot time.

17.13. Swap Space Encryption

Like the encryption of disk partitions, encryption of swap space is used to protect sensitive information. Consider an application that deals with passwords. As long as these passwords stay in physical memory, they are not written to disk and will be cleared after a reboot. However, if FreeBSD starts swapping out memory pages to free space, the passwords may be written to the disk unencrypted. Encrypting swap space can be a solution for this scenario.

This section demonstrates how to configure an encrypted swap partition using `gbde(8)` or `geli(8)` encryption. It assumes that `/dev/ada0s1b` is the swap partition.

17.13.1. Setting an Encrypted Swap Space

Swap partitions are not encrypted by default and should be cleared of any sensitive data before continuing. To overwrite the current swap partition with random garbage, execute the following command:

```
# dd if=/dev/random of=/dev/ada0s1b bs=1m
```

To encrypt the swap partition using `gbde(8)`, add the `.bde` suffix to the swap line in `/etc/fstab`:

```
# Device        Mountpoint  FStype  Options     Dump    Pass#
/dev/ada0s1b.bde    none        swap    sw      0   0
```

To instead encrypt the swap partition using `geli(8)`, use the `.eli` suffix:

```
# Device        Mountpoint  FStype  Options     Dump    Pass#
/dev/ada0s1b.eli    none        swap    sw      0   0
```

By default, `geli(8)` uses the AES algorithm with a key length of 128 bits. Normally the default settings will suffice. If desired, these defaults can be altered in the options field in `/etc/fstab`. The possible flags are:

- `aalgo` Data integrity verification algorithm used to ensure that the encrypted data has not been tampered with. See `geli(8)` for a list of supported algorithms.
Encryption Algorithm

Encryption algorithm used to protect the data. See geli(8) for a list of supported algorithms.

Key Length

The length of the key used for the encryption algorithm. See geli(8) for the key lengths that are supported by each encryption algorithm.

Sector Size

The size of the blocks data is broken into before it is encrypted. Larger sector sizes increase performance at the cost of higher storage overhead. The recommended size is 4096 bytes.

This example configures an encrypted swap partition using the Blowfish algorithm with a key length of 128 bits and a sector size of 4 kilobytes:

```
# Device        Mountpoint  FStype  Options             Dump    Pass#
/dev/ada0s1b.eli    none        swap    sw,ealgo=blowfish,keylen=128,sectorsize=4096    0   0
```

Once the system has rebooted, proper operation of the encrypted swap can be verified using swapinfo.

If gbde(8) is being used:

```
% swapinfo
Device          1K-blocks     Used    Avail Capacity
/dev/ada0s1b.bde   542720        0   542720     0%
```

If geli(8) is being used:

```
% swapinfo
Device          1K-blocks     Used    Avail Capacity
/dev/ada0s1b.eli   542720        0   542720     0%
```

High Availability (HAST)

High availability is one of the main requirements in serious business applications and highly-available storage is a key component in such environments. In FreeBSD, the Highly Available STorage (HAST) framework allows transparent storage of the same data across several physically separated machines connected by a TCP/IP network. HAST can be understood as a network-based RAID1 (mirror), and is similar to the DRBD® storage system used in the GNU/Linux™ platform. In combination with other high-availability features of FreeBSD like CARP, HAST makes it possible to build a highly-available storage cluster that is resistant to hardware failures.

The following are the main features of HAST:

- Can be used to mask I/O errors on local hard drives.
- File system agnostic as it works with any file system supported by FreeBSD.
- Efficient and quick resynchronization as only the blocks that were modified during the downtime of a node are synchronized.
- Can be used in an already deployed environment to add additional redundancy.
Together with CARP, Heartbeat, or other tools, it can be used to build a robust and durable storage system.

After reading this section, you will know:

- What HAST is, how it works, and which features it provides.
- How to set up and use HAST on FreeBSD.
- How to integrate CARP and devd(8) to build a robust storage system.

Before reading this section, you should:

- Understand UNIX™ and FreeBSD (FreeBSD 基本).
- Know how to configure network interfaces and other core FreeBSD subsystems (設定與調校).
- Have a good understanding of FreeBSD networking (網路通訊).

The HAST project was sponsored by The FreeBSD Foundation with support from http://www.omc.net/ and http://www.transip.nl/.

17.14.1. HAST 模式

HAST provides synchronous block-level replication between two physical machines: the primary, also known as the master node, and the secondary, or slave node. These two machines together are referred to as a cluster.

Since HAST works in a primary-secondary configuration, it allows only one of the cluster nodes to be active at any given time. The primary node, also called active, is the one which will handle all the I/O requests to HAST-managed devices. The secondary node is automatically synchronized from the primary node.

The physical components of the HAST system are the local disk on primary node, and the disk on the remote, secondary node.

HAST operates synchronously on a block level, making it transparent to file systems and applications. HAST provides regular GEOM providers in /dev/hast/ for use by other tools or applications. There is no difference between using HAST-provided devices and raw disks or partitions.

Each write, delete, or flush operation is sent to both the local disk and to the remote disk over TCP/IP. Each read operation is served from the local disk, unless the local disk is not up-to-date or an I/O error occurs. In such cases, the read operation is sent to the secondary node.

HAST tries to provide fast failure recovery. For this reason, it is important to reduce synchronization time after a node's outage. To provide fast synchronization, HAST manages an on-disk bitmap of dirty extents and only synchronizes those during a regular synchronization, with an exception of the initial sync.

There are many ways to handle synchronization. HAST implements several replication modes to handle different synchronization methods:

- **memsync**: This mode reports a write operation as completed when the local write operation is finished and when the remote node acknowledges data arrival, but before actually storing the data. The data on the remote node will be stored directly after sending the acknowledgement. This mode is intended to reduce latency, but still provides good reliability. This mode is the default.

- **fullsync**: This mode reports a write operation as completed when both the local write and the remote write complete. This is the safest and the slowest replication mode.

- **async**: This mode reports a write operation as completed when the local write completes. This is the fastest and the most dangerous replication mode. It should only be used when replicating to a distant node where latency is too high for other modes.
The HAST framework consists of several components:

- The `hastd(8)` daemon which provides data synchronization. When this daemon is started, it will automatically load `geom_gate.ko`.
- The userland management utility, `hastctl(8)`.
- The `hast.conf(5)` configuration file. This file must exist before starting `hastd`.

Users who prefer to statically build `GEOM_GATE` support into the kernel should add this line to the custom kernel configuration file, then rebuild the kernel using the instructions in `FreeBSD` core:

```
options GEOM_GATE
```

The following example describes how to configure two nodes in master-slave/primary-secondary operation using HAST to replicate the data between the two. The nodes will be called `hasta`, with an IP address of `172.16.0.1`, and `hastb`, with an IP address of `172.16.0.2`. Both nodes will have a dedicated hard drive `/dev/ad6` of the same size for HAST operation. The HAST pool, sometimes referred to as a resource or the GEOM provider in `/dev/hast/`, will be called `test`.

Configuration of HAST is done using `/etc/hast.conf`. This file should be identical on both nodes. The simplest configuration is:

```
resource test {
  on hasta {
    local /dev/ad6
    remote 172.16.0.2
  }
  on hastb {
    local /dev/ad6
    remote 172.16.0.1
  }
}
```

For more advanced configuration, refer to `hast.conf(5)`.

It is also possible to use host names in the `remote` statements if the hosts are resolvable and defined either in `/etc/hosts` or in the local DNS.

Once the configuration exists on both nodes, the HAST pool can be created. Run these commands on both nodes to place the initial metadata onto the local disk and to start `hastd(8)`:

```
# hastctl create test
# service hastd onestart
```

It is not possible to use GEOM providers with an existing file system or to convert an existing storage to a HAST-managed pool. This procedure needs to store some metadata on the provider and there will not be enough required space available on an existing provider.
A HAST node’s primary or secondary role is selected by an administrator, or software like Heartbeat, using hastctl(8). On the primary node, hasta, issue this command:

```
# hastctl role primary test
```

Run this command on the secondary node, hastb:

```
# hastctl role secondary test
```

Verify the result by running hastctl on each node:

```
# hastctl status test
```

Check the status line in the output. If it says degraded, something is wrong with the configuration file. It should say complete on each node, meaning that the synchronization between the nodes has started. The synchronization completes when hastctl status reports 0 bytes of dirty extents.

The next step is to create a file system on the GEOM provider and mount it. This must be done on the primary node. Creating the file system can take a few minutes, depending on the size of the hard drive. This example creates a UFS file system on /dev/hast/test:

```
# newfs -U /dev/hast/test
# mkdir /hast/test
# mount /dev/hast/test /hast/test
```

Once the HAST framework is configured properly, the final step is to make sure that HAST is started automatically during system boot. Add this line to /etc/rc.conf:

```
hastd_enable="YES"
```

The goal of this example is to build a robust storage system which is resistant to the failure of any given node. If the primary node fails, the secondary node is there to take over seamlessly, check and mount the file system, and continue to work without missing a single bit of data.

To accomplish this task, the Common Address Redundancy Protocol (CARP) is used to provide for automatic failover at the IP layer. CARP allows multiple hosts on the same network segment to share an IP address. Set up CARP on both nodes of the cluster according to the documentation available in 共用位址備援協定 (CARP). In this example, each node will have its own management IP address and a shared IP address of 172.16.0.254. The primary HAST node of the cluster must be the master CARP node.

The HAST pool created in the previous section is now ready to be exported to the other hosts on the network. This can be accomplished by exporting it through NFS or Samba, using the shared IP address 172.16.0.254. The only problem which remains unresolved is an automatic failover should the primary node fail.

In the event of CARP interfaces going up or down, the FreeBSD operating system generates a devd(8) event, making it possible to watch for state changes on the CARP interfaces. A state change on the CARP interface is an indication that one of the nodes failed or came back online. These state change events make it possible to run a script which will automatically handle the HAST failover.
To catch state changes on the CARP interfaces, add this configuration to /etc/devd.conf on each node:

```
notify 30 {
    match "system" "IFNET";
    match "subsystem" "carp0";
    match "type" "LINK_UP";
    action "/usr/local/sbin/carp-hast-switch master";
};
notify 30 {
    match "system" "IFNET";
    match "subsystem" "carp0";
    match "type" "LINK_DOWN";
    action "/usr/local/sbin/carp-hast-switch slave";
};
```

If the systems are running FreeBSD 10 or higher, replace `carp0` with the name of the CARP-configured interface.

Restart `devd(8)` on both nodes to put the new configuration into effect:

```
# service devd restart
```

When the specified interface state changes by going up or down, the system generates a notification, allowing the `devd(8)` subsystem to run the specified automatic failover script, `/usr/local/sbin/carp-hast-switch`. For further clarification about this configuration, refer to `devd.conf(5)`.

Here is an example of an automated failover script:

```
#!/bin/sh
# Original script by Freddie Cash <fjwcash@gmail.com>
# Modified by Michael W. Lucas <mwlucas@BlackHelicopters.org>
# and Viktor Petersson <vpetersson@wireload.net>
# The names of the HAST resources, as listed in /etc/hast.conf
resources="test"
# delay in mounting HAST resource after becoming master
# make your best guess
delay=3
# logging
```

...
case "$1" as master
logger -p $log -t $name "Switching to primary provider for ${resources}.
sleep ${delay}
Wait for any "hastd secondary" processes to stop
for disk in ${resources}; do
 while $(pgrep -lf "hastd: ${disk} \(secondary\)" > /dev/null 2>&1); do
 sleep 1
 done
 # Switch role for each disk
 hastctl role primary ${disk}
 if [$? -ne 0]; then
 logger -p $log -t $name "Unable to change role to primary for resource ${disk}.
 exit 1
 fi
done
Wait for the /dev/hast/* devices to appear
for disk in ${resources}; do
 for I in $(jot 60); do
 [-c "/dev/hast/${disk}"] && break
 done
dsle 0.5
if [! -c "/dev/hast/${disk}"]; then
 logger -p $log -t $name "GEOM provider /dev/hast/${disk} did not appear.
 exit 1
fi
done
logger -p $log -t $name "Role for HAST resources ${resources} switched to primary.
logger -p $log -t $name "Mounting disks.
for disk in ${resources}; do
 mkdir -p /hast/${disk}
"
In a nutshell, the script takes these actions when a node becomes master:

• Promotes the HAST pool to primary on the other node.
• Checks the file system under the HAST pool.
• Mounts the pool.

When a node becomes secondary:

• Unmounts the HAST pool.
• Degrades the HAST pool to secondary.

This is just an example script which serves as a proof of concept. It does not handle all the possible scenarios and can be extended or altered in any way, for example, to start or stop required services.

For this example, a standard UFS file system was used. To reduce the time needed for recovery, a journal-enabled UFS or ZFS file system can be used instead.

More detailed information with additional examples can be found at http://wiki.FreeBSD.org/HAST.
HAST should generally work without issues. However, as with any other software product, there may be times when it does not work as supposed. The sources of the problems may be different, but the rule of thumb is to ensure that the time is synchronized between the nodes of the cluster.

When troubleshooting HAST, the debugging level of `hastd(8)` should be increased by starting `hastd` with `-d`. This argument may be specified multiple times to further increase the debugging level. Consider also using `-F`, which starts `hastd` in the foreground.

17.14.3.1 Split-brain situation recovery

Split-brain occurs when the nodes of the cluster are unable to communicate with each other, and both are configured as primary. This is a dangerous condition because it allows both nodes to make incompatible changes to the data. This problem must be corrected manually by the system administrator.

The administrator must either decide which node has more important changes, or perform the merge manually. Then, let HAST perform full synchronization of the node which has the broken data. To do this, issue these commands on the node which needs to be resynchronized:

```
# hastctl role init test
# hastctl create test
# hastctl role secondary test
```
Chapter 18. GEOM: 模組化磁碟

18.1. 概述

在 FreeBSD 中，GEOM 允許對類別做存取與控制，例如：主開機記錄 (Master Boot Record) 與 BSD 標籤，透過提供者，或在 /dev 中的磁碟裝置。透過支援各種 RAID 的配置，GEOM 透明的提供了對作業系統與作業系統工具的存取。

This chapter covers the use of disks under the GEOM framework in FreeBSD. This includes the major RAID control utilities which use the framework for configuration. This chapter is not a definitive guide to RAID configurations and only GEOM-supported RAID classifications are discussed.

讀完這章，您將了解:
• What type of RAID support is available through GEOM.
• How to use the base utilities to configure, maintain, and manipulate the various RAID levels.
• How to mirror, stripe, encrypt, and remotely connect disk devices through GEOM.
• How to troubleshoot disks attached to the GEOM framework.

在開始閱讀這章之前，您需要:
• Understand how FreeBSD treats disk devices (儲存設備).
• 了解如何設定並安裝新的核心 (設定 FreeBSD 核心)。

18.2. RAID0 - 串連 (Striping)
串連會合併數個磁碟成單一個磁碟區 (Volume)，可以透過使用硬體 RAID 控制器來做到串連。GEOM 磁碟子系統提供了軟體支援的磁碟串連，也就是所謂的 RAID0，而不需要 RAID 磁碟控制器。

在 RAID0 中，資料會被切割成數個資料區塊 (Block) 寫入到磁碟陣列中的每一個磁碟機。如下圖所示，取代以往系統寫入 256k 到一個磁碟的時間，RAID0 可以同時寫入 64k 到磁碟陣列中四個磁碟的每個磁碟，這可提供優異的 I/O 效能，若使用多個磁碟控制器可增加更多的效能。

在 RAID0 串連中的每個磁碟必須要相同大小，因為 I/O 的請求是平行交錯讀取或寫入到多個磁碟的。
The process for creating a software, GEOM-based RAID0 on a FreeBSD system using commodity disks is as follows. Once the stripe is created, refer to `gstripe(8)` for more information on how to control an existing stripe.

Procedure: Creating a Stripe of Unformatted ATA Disks

1. Load the `geom_stripe.ko` module:
   ```bash
   # kldload geom_stripe
   ```

2. Ensure that a suitable mount point exists. If this volume will become a root partition, then temporarily use another mount point such as `/mnt`.

3. Determine the device names for the disks which will be striped, and create the new stripe device. For example, to stripe two unused and unpartitioned ATA disks with device names of `/dev/ad2` and `/dev/ad3`:
   ```bash
   # gstripe label -v st0 /dev/ad2 /dev/ad3
   Metadata value stored on /dev/ad2.
   Metadata value stored on /dev/ad3.
   Done.
   ```

4. Write a standard label, also known as a partition table, on the new volume and install the default bootstrap code:
   ```bash
   # bsdlabel -wB /dev/stripe/st0
   ```

5. This process should create two other devices in `/dev/stripe` in addition to `st0`. Those include `st0a` and `st0c`. At this point, a UFS file system can be created on `st0a` using `newfs`:
   ```bash
   # newfs -U /dev/stripe/st0a
   ```

 Many numbers will glide across the screen, and after a few seconds, the process will be complete. The volume has been created and is ready to be mounted.

6. To manually mount the created disk stripe:
   ```bash
   # mount /dev/stripe/st0a /mnt
   ```

7. To mount this striped file system automatically during the boot process, place the volume information in `/etc/fstab`. In this example, a permanent mount point, named `stripe`, is created:
   ```bash
   # mkdir /stripe
   # echo "/dev/stripe/st0a /stripe ufs rw 2 2" | tee /etc/fstab
   ```
8. The `geom_stripe.ko` module must also be automatically loaded during system initialization, by adding a line to `/boot/loader.conf`:

```
# sysrc -f /boot/loader.conf geom_stripe_load=YES
```

18.3. RAID1 - 鏡像

RAID1 或 鏡像 是一項寫入相同資料到超過一個磁碟機的技術。鏡像通常用來保護資料因磁碟機故障導致的損失，每個在鏡像中的磁碟機會擁有完全相同的資料，當各別磁碟機故障時，鏡像會繼續運作，由還可運作的磁碟機提供資料。電腦會繼續執行，等管理者有時間更換故障的硬碟，而不會被使用者中斷運作。

Two common situations are illustrated in these examples. The first creates a mirror out of two new drives and uses it as a replacement for an existing single drive. The second example creates a mirror on a single new drive, copies the old drive's data to it, then inserts the old drive into the mirror. While this procedure is slightly more complicated, it only requires one new drive.

Traditionally, the two drives in a mirror are identical in model and capacity, but `gmirror(8)` does not require that. Mirrors created with dissimilar drives will have a capacity equal to that of the smallest drive in the mirror. Extra space on larger drives will be unused. Drives inserted into the mirror later must have at least as much capacity as the smallest drive already in the mirror.

18.3.1. Metadata 問題

Many disk systems store metadata at the end of each disk. Old metadata should be erased before reusing the disk for a mirror. Most problems are caused by two particular types of leftover metadata: GPT partition tables and old metadata from a previous mirror.

GPT metadata can be erased with `gpart(8)`. This example erases both primary and backup GPT partition tables from disk `ada8`:

```
# gpart destroy -F ada8
```

A disk can be removed from an active mirror and the metadata erased in one step using `gmirror(8)`. Here, the example disk `ada8` is removed from the active mirror `gm4`:

```
# gmirror remove gm4 ada8
```

If the mirror is not running, but old mirror metadata is still on the disk, use `gmirror clear` to remove it:

```
# gmirror clear
```
Because GPT partition schemes also store metadata at the end of the disk, mirroring entire GPT disks with `gmirror(8)` is not recommended. MBR partitioning is used here because it only stores a partition table at the start of the disk and does not conflict with the mirror metadata.

18.3.2. 使用兩個新磁碟建立鏡像

In this example, FreeBSD has already been installed on a single disk, `ada0`. Two new disks, `ada1` and `ada2`, have been connected to the system. A new mirror will be created on these two disks and used to replace the old single disk.

The `geom_mirror.ko` kernel module must either be built into the kernel or loaded at boot- or run-time. Manually load the kernel module now:

```bash
# gmirror load
```

Create the mirror with the two new drives:

```bash
# gmirror label -v gm0 /dev/ada1 /dev/ada2
```

`gm0` is a user-chosen device name assigned to the new mirror. After the mirror has been started, this device name appears in `/dev/mirror/`.

MBR and `bsdlabel` partition tables can now be created on the mirror with `gpart(8)`. This example uses a traditional file system layout, with partitions for `/`, `swap`, `/var`, `/tmp`, and `/usr`. A single `/` and a `swap` partition will also work.

Partitions on the mirror do not have to be the same size as those on the existing disk, but they must be large enough to hold all the data already present on `ada0`.

```bash
# gpart create -s MBR mirror/gm0
# gpart add -t freebsd -a 4k mirror/gm0
# gpart show mirror/gm0
=>
63 156301423 mirror/gm0 MBR (74G)
63         63                    - free - (31k)
126 156301299                 1 freebsd (74G)
156301425         61                    - free - (30k)
# gpart create -s BSD mirror/gm0s1
# gpart add -t freebsd-ufs -a 4k -s 2g mirror/gm0s1
# gpart add -t freebsd-swap -a 4k -s 4g mirror/gm0s1
# gpart add -t freebsd-ufs -a 4k -s 2g mirror/gm0s1
# gpart add -t freebsd-ufs -a 4k -s 1g mirror/gm0s1
# gpart add -t freebsd-ufs -a 4k mirror/gm0s1
# gpart show mirror/gm0s1
```

```bash
361
```
Make the mirror bootable by installing bootcode in the MBR and bsdlabel and setting the active slice:

```bash
# gpart bootcode -b /boot/mbr mirror/gm0
# gpart set -a active -i 1 mirror/gm0
# gpart bootcode -b /boot/boot mirror/gm0s1
```

Format the file systems on the new mirror, enabling soft-updates.

```bash
# newfs -U /dev/mirror/gm0s1a
# newfs -U /dev/mirror/gm0s1d
# newfs -U /dev/mirror/gm0s1e
# newfs -U /dev/mirror/gm0s1f
```

File systems from the original ada0 disk can now be copied onto the mirror with `dump(8)` and `restore(8)`.

```bash
# mount /dev/mirror/gm0s1a /mnt
# dump -C16 -b64 -0aL -f - / | (cd /mnt && restore -rf -)
# mount /dev/mirror/gm0s1d /mnt/var
# mount /dev/mirror/gm0s1e /mnt/tmp
# mount /dev/mirror/gm0s1f /mnt/usr
# dump -C16 -b64 -0aL -f - /var | (cd /mnt/var && restore -rf -)
# dump -C16 -b64 -0aL -f - /tmp | (cd /mnt/tmp && restore -rf -)
# dump -C16 -b64 -0aL -f - /usr | (cd /mnt/usr && restore -rf -)
```

Edit `/mnt/etc/fstab` to point to the new mirror file systems:

<table>
<thead>
<tr>
<th>Device</th>
<th>Mountpoint</th>
<th>FStype</th>
<th>Options</th>
<th>Dump</th>
<th>Pass#</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/mirror/gm0s1a</td>
<td>/</td>
<td>ufs</td>
<td>rw</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>/dev/mirror/gm0s1b</td>
<td>none</td>
<td>swap</td>
<td>sw</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>/dev/mirror/gm0s1d</td>
<td>/var</td>
<td>ufs</td>
<td>rw</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>/dev/mirror/gm0s1e</td>
<td>/tmp</td>
<td>ufs</td>
<td>rw</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>/dev/mirror/gm0s1f</td>
<td>/usr</td>
<td>ufs</td>
<td>rw</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
If the \texttt{geom_mirror.ko} kernel module has not been built into the kernel, \texttt{/mnt/boot/loader.conf} is edited to load the module at boot:

\begin{verbatim}
geom_mirror_load="YES"
\end{verbatim}

Reboot the system to test the new mirror and verify that all data has been copied. The BIOS will see the mirror as two individual drives rather than a mirror. Because the drives are identical, it does not matter which is selected to boot.

See \texttt{疑難排解} if there are problems booting. Powering down and disconnecting the original \texttt{ada0} disk will allow it to be kept as an offline backup.

In use, the mirror will behave just like the original single drive.

18.3.3. 使用既有磁碟建立鏡像

In this example, FreeBSD has already been installed on a single disk, \texttt{ada0}. A new disk, \texttt{ada1}, has been connected to the system. A one-disk mirror will be created on the new disk, the existing system copied onto it, and then the old disk will be inserted into the mirror. This slightly complex procedure is required because \texttt{gmirror} needs to put a 512-byte block of metadata at the end of each disk, and the existing \texttt{ada0} has usually had all of its space already allocated.

Load the \texttt{geom_mirror.ko} kernel module:

\begin{verbatim}
gmirror load
\end{verbatim}

Check the media size of the original disk with \texttt{diskinfo}:

\begin{verbatim}
diskinfo -v ada0 | head -n3
/dev/ada0 512 # sectorsize 1000204821504 # mediasize in bytes (931G)
\end{verbatim}

Create a mirror on the new disk. To make certain that the mirror capacity is not any larger than the original \texttt{ada0} drive, \texttt{gnop(8)} is used to create a fake drive of the exact same size. This drive does not store any data, but is used only to limit the size of the mirror. When \texttt{gmirror(8)} creates the mirror, it will restrict the capacity to the size of \texttt{gzero.nop}, even if the new \texttt{ada1} drive has more space. Note that the 1000204821504 in the second line is equal to \texttt{ada0}’s media size as shown by \texttt{diskinfo} above.

\begin{verbatim}
geom zero load
gnop create -s 1000204821504 gzero
gmirror label -v gm0 gzero.nop ada1
gmirror forget gm0
\end{verbatim}

Since \texttt{gzero.nop} does not store any data, the mirror does not see it as connected. The mirror is told to “forget” unconnected components, removing references to \texttt{gzero.nop}. The result is a mirror device containing only a single disk, \texttt{ada1}.

After creating \texttt{gm0}, view the partition table on \texttt{ada0}. This output is from a 1 TB drive. If there is some unallocated space at the end of the drive, the contents may be copied directly from \texttt{ada0} to the new mirror.
However, if the output shows that all of the space on the disk is allocated, as in the following listing,
```
# gpart show ada0
```
```
63  1953525105        ada0  MBR (931G)
63  1953525105           1  freebsd [active] (931G)
```
In this case, the partition table must be edited to reduce the capacity by one sector on `mirror/gm0`.
The procedure will be explained later.
In either case, partition tables on the primary disk should be first copied using `gpart backup` and `gpart restore`.
```
# gpart backup ada0 > table.ada0
# gpart backup ada0s1 > table.ada0s1
```
These commands create two files, `table.ada0` and `table.ada0s1`. This example is from a 1 TB drive:
```
# cat table.ada0
MBR 4
1 freebsd         63 1953525105 [active]
```
```
# cat table.ada0s1
BSD 8
1  freebsd-ufs          0    4194304
2 freebsd-swap    4194304   33554432
4  freebsd-ufs   37748736   50331648
5  freebsd-ufs   88080384   41943040
6  freebsd-ufs  130023424  838860800
7  freebsd-ufs  968884224  984640881
```
If no free space is shown at the end of the disk, the size of both the slice and the last partition must be reduced by one sector. Edit the two files, reducing the size of both the slice and last partition by one. These are the last numbers in each listing.
```
# cat table.ada0
MBR 4
1 freebsd         63 1953525104 [active]
```
```
# cat table.ada0s1
BSD 8
1  freebsd-ufs          0    4194304
2 freebsd-swap    4194304   33554432
4  freebsd-ufs   37748736   50331648
```
Both the slice and the last partition must have at least one free block at the end of the disk.

Create file systems on these new partitions. The number of partitions will vary to match the original disk, ada0.

newfs -U /dev/mirror/gm0s1a
newfs -U /dev/mirror/gm0s1d
newfs -U /dev/mirror/gm0s1e
newfs -U /dev/mirror/gm0s1f
newfs -U /dev/mirror/gm0s1g

Make the mirror bootable by installing bootcode in the MBR and bsdlabel and setting the active slice:

gpart bootcode -b /boot/mbr mirror/gm0
Adjust /etc/fstab to use the new partitions on the mirror. Back up this file first by copying it to /etc/fstab.orig.

```
# cp /etc/fstab /etc/fstab.orig
```

Edit /etc/fstab, replacing /dev/ada0 with mirror/gm0.

```
# Device        Mountpoint  FStype  Options Dump    Pass#
/dev/mirror/gm0s1a  /       ufs rw  1   1
/dev/mirror/gm0s1b  none        swap    sw  0   0
/dev/mirror/gm0s1d  /var        ufs rw  2   2
/dev/mirror/gm0s1e  /usr        ufs rw  2   2
/dev/mirror/gm0s1f  /data1      ufs rw  2   2
/dev/mirror/gm0s1g  /data2      ufs rw  2   2
```

If the geom_mirror.ko kernel module has not been built into the kernel, edit /boot/loader.conf to load it at boot:

```
geom_mirror_load="YES"
```

File systems from the original disk can now be copied onto the mirror with dump(8) and restore(8).

```
# mount /dev/mirror/gm0s1a /mnt
# dump -C16 -b64 -0aL -f - /    | (cd /mnt && restore -rf -)
# mount /dev/mirror/gm0s1d /mnt/var
# mount /dev/mirror/gm0s1e /mnt/usr
# mount /dev/mirror/gm0s1f /mnt/data1
# mount /dev/mirror/gm0s1g /mnt/data2
# dump -C16 -b64 -0aL -f - /usr | (cd /mnt/usr && restore -rf -)
# dump -C16 -b64 -0aL -f - /var | (cd /mnt/var && restore -rf -)
# dump -C16 -b64 -0aL -f - /data1 | (cd /mnt/data1 && restore -rf -)
# dump -C16 -b64 -0aL -f - /data2 | (cd /mnt/data2 && restore -rf -)
```

Restart the system, booting from ada1. If everything is working, the system will boot from mirror/gm0, which now contains the same data as ada0 had previously. See 疑難排解 if there are problems booting.

At this point, the mirror still consists of only the single ada1 disk. After booting from mirror/gm0 successfully, the final step is inserting ada0 into the mirror.

When ada0 is inserted into the mirror, its former contents will be overwritten by...
data from the mirror. Make certain that mirror/gm0 has the same contents as ada0 before adding ada0 to the mirror. If the contents previously copied by dump(8) and restore(8) are not identical to what was on ada0, revert /etc/fstab to mount the file systems on ada0, reboot, and start the whole procedure again.

gmirror insert gm0 ada0
GEOM_MIRROR: Device gm0: rebuilding provider ada0
Synchronization between the two disks will start immediately. Use gmirror status to view the progress.

gmirror status
Name Status Components
mirror/gm0 DEGRADED ada1 (ACTIVE)
ada0 (SYNCHRONIZING, 64%)

After a while, synchronization will finish.
GEOM_MIRROR: Device gm0: rebuilding provider ada0 finished.
gmirror status
Name Status Components
mirror/gm0 COMPLETE ada1 (ACTIVE)
ada0 (ACTIVE)
mirror/gm0 now consists of the two disks ada0 and ada1, and the contents are automatically synchronized with each other. In use, mirror/gm0 will behave just like the original single drive.

18.3.4. 疑難排解
If the system no longer boots, BIOS settings may have to be changed to boot from one of the new mirrored drives. Either mirror drive can be used for booting, as they contain identical data.

If the boot stops with this message, something is wrong with the mirror device:
Mounting from ufs:/dev/mirror/gm0s1a failed with error 19.
Loader variables:
vfs.root.mountfrom = ufs:/dev/mirror/gm0s1a
vfs.root.mountfrom.options = rw

Manual root filesystem specification:
<fstype>:<device>[
 options]
Mount <device> using filesystem <fstype>
and with the specified (optional) option list.
eg. ufs:/dev/da0s1a
zfs: tank

```
cd9660:/dev/acd0 ro
```

(which is equivalent to: mount -t cd9660 -o ro /dev/acd0 /)

? List valid disk boot devices

Yield 1 second (for background tasks)

Abort manual input

mountroot>

Forgetting to load the geom_mirror.ko module in /boot/loader.conf can cause this problem. To fix it, boot from a FreeBSD installation media and choose Shell at the first prompt. Then load the mirror module and mount the mirror device:

```
# gmirror load
# mount /dev/mirror/gm0s1a /mnt
```

Edit /mnt/boot/loader.conf, adding a line to load the mirror module:

```
geom_mirror_load="YES"
```

Save the file and reboot.

Other problems that cause error 19 require more effort to fix. Although the system should boot from ada0, another prompt to select a shell will appear if /etc/fstab is incorrect. Enter ufs:/dev/ada0s1a at the boot loader prompt and press Enter. Undo the edits in /etc/fstab then mount the file systems from the original disk (ada0) instead of the mirror. Reboot the system and try the procedure again.

```
Enter full pathname of shell or RETURN for /bin/sh:
```

```
# cp /etc/fstab.orig /etc/fstab
# reboot
```

18.3.5. 自磁碟故障復原

The benefit of disk mirroring is that an individual disk can fail without causing the mirror to lose any data. In the above example, if ada0 fails, the mirror will continue to work, providing data from the remaining working drive, ada1.

To replace the failed drive, shut down the system and physically replace the failed drive with a new drive of equal or greater capacity. Manufacturers use somewhat arbitrary values when rating drives in gigabytes, and the only way to really be sure is to compare the total count of sectors shown by diskinfo -v. A drive with larger capacity than the mirror will work, although the extra space on the new drive will not be used.

After the computer is powered back up, the mirror will be running in a "degraded" mode with only one drive. The mirror is told to forget drives that are not currently connected:

```
# gmirror forget gm0
```
Any old metadata should be cleared from the replacement disk using the instructions in Metadata. Then the replacement disk, ada4 for this example, is inserted into the mirror:

```
# gmirror insert gm0 /dev/ada4
```

Resynchronization begins when the new drive is inserted into the mirror. This process of copying mirror data to a new drive can take a while. Performance of the mirror will be greatly reduced during the copy, so inserting new drives is best done when there is low demand on the computer. Progress can be monitored with `gmirror status`, which shows drives that are being synchronized and the percentage of completion. During resynchronization, the status will be **DEGRADED**, changing to **COMPLETE** when the process is finished.

18.4. RAID3 - 位元級串連與獨立奇偶校驗

RAID3 is a method used to combine several disk drives into a single volume with a dedicated parity disk. In a RAID3 system, data is split up into a number of bytes that are written across all the drives in the array except for one disk which acts as a dedicated parity disk. This means that disk reads from a RAID3 implementation access all disks in the array. Performance can be enhanced by using multiple disk controllers. The RAID3 array provides a fault tolerance of 1 drive, while providing a capacity of 1 - 1/n times the total capacity of all drives in the array, where n is the number of hard drives in the array. Such a configuration is mostly suitable for storing data of larger sizes such as multimedia files.

At least 3 physical hard drives are required to build a RAID3 array. Each disk must be of the same size, since I/O requests are interleaved to read or write to multiple disks in parallel. Also, due to the nature of RAID3, the number of drives must be equal to 3, 5, 9, 17, and so on, or 2^n + 1.

This section demonstrates how to create a software RAID3 on a FreeBSD system.

While it is theoretically possible to boot from a RAID3 array on FreeBSD, that configuration is uncommon and is not advised.

18.4.1. 建立 Dedicated RAID3 陣列

In FreeBSD, support for RAID3 is implemented by the `graid3(8)` GEOM class. Creating a dedicated RAID3 array on FreeBSD requires the following steps.

1. First, load the `geom_raid3.ko` kernel module by issuing one of the following commands:
   ```
   # graid3 load
   or:
   # kldload geom_raid3
   ```

2. Ensure that a suitable mount point exists. This command creates a new directory to use as the mount point:
   ```
   # mkdir /multimedia
   ```

3. Determine the device names for the disks which will be added to the array, and create the...
The final device listed will act as the dedicated parity disk. This example uses three unpartitioned ATA drives: `ada1` and `ada2` for data, and `ada3` for parity.

```
# graid3 label -v gr0 /dev/ada1 /dev/ada2 /dev/ada3
```

Metadata value stored on /dev/ada1.

Metadata value stored on /dev/ada2.

Metadata value stored on /dev/ada3.

```
Done.
```

4. Partition the newly created `gr0` device and put a UFS file system on it:

```
# gpart create -s GPT /dev/raid3/gr0
# gpart add -t freebsd-ufs /dev/raid3/gr0
# newfs -j /dev/raid3/gr0p1
```

Many numbers will glide across the screen, and after a bit of time, the process will be complete. The volume has been created and is ready to be mounted:

```
# mount /dev/raid3/gr0p1 /multimedia/
```

The RAID3 array is now ready to use.

Additional configuration is needed to retain this setup across system reboots.

1. The `geom_raid3.ko` module must be loaded before the array can be mounted. To automatically load the kernel module during system initialization, add the following line to `/boot/loader.conf`:

```
geom_raid3_load="YES"
```

2. The following volume information must be added to `/etc/fstab` in order to automatically mount the array's file system during the system boot process:

```
/dev/raid3/gr0p1    /multimedia ufs rw  2   2
```

Several levels of RAID are supported, depending on the hardware in use. See `graid(8)` for a complete list.
Software RAID devices often have a menu that can be entered by pressing special keys when the computer is booting. The menu can be used to create and delete RAID arrays.

`graid(8)` can also create arrays directly from the command line.

graid label is used to create a new array. The motherboard used for this example has an Intel software RAID chipset, so the Intel metadata format is specified. The new array is given a label of `gm0`, it is a mirror (RAID1), and uses drives `ada0` and `ada1`.

```
Some space on the drives will be overwritten when they are made into a new array. Back up existing data first!

# graid label Intel gm0 RAID1 ada0 ada1
GEOM_RAID: Intel-a29ea104: Array Intel-a29ea104 created.
GEOM_RAID: Intel-a29ea104: Disk ada0 state changed from NONE to ACTIVE.
GEOM_RAID: Intel-a29ea104: Subdisk gm0:0-ada0 state changed from NONE to ACTIVE.
GEOM_RAID: Intel-a29ea104: Disk ada1 state changed from NONE to ACTIVE.
GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-ada1 state changed from NONE to ACTIVE.
GEOM_RAID: Intel-a29ea104: Array started.
GEOM_RAID: Intel-a29ea104: Volume gm0 state changed from STARTING to OPTIMAL.
```

Intel-a29ea104 created

```
GEOM_RAID: Intel-a29ea104: Provider raid/r0 for volume gm0 created.
```

A status check shows the new mirror is ready for use:

```
# graid status
Name   Status  Components
raid/r0  OPTIMAL  ada0 (ACTIVE (ACTIVE))
ada1 (ACTIVE (ACTIVE))
```

The array device appears in `/dev/raid/`. The first array is called `r0`. Additional arrays, if present, will be `r1`, `r2`, and so on.

The BIOS menu on some of these devices can create arrays with special characters in their names. To avoid problems with those special characters, arrays are given simple numbered names like `r0`. To show the actual labels, like `gm0` in the example above, use `sysctl(8)`:

```
# sysctl kern.geom.raid.name_format=1
```

```
```

18.5.2. 多磁碟區

Some software RAID devices support more than one volume on an array. Volumes work like partitions, allowing space on the physical drives to be split and used in different ways. For example, Intel software RAID devices support two volumes. This example creates a 40 G mirror for safely storing the operating system, followed by a 20 G RAID0 (stripe) volume for fast temporary storage:
Volumes appear as additional entries in /dev/raid. An array with two volumes will show r0 and r1.

See graid(8) for the number of volumes supported by different software RAID devices.

18.5.3. 轉換單一磁碟為鏡像

Under certain specific conditions, it is possible to convert an existing single drive to a graid(8) array without reformatting. To avoid data loss during the conversion, the existing drive must meet these minimum requirements:

- The drive must be partitioned with the MBR partitioning scheme. GPT or other partitioning schemes with metadata at the end of the drive will be overwritten and corrupted by the graid(8) metadata.
- There must be enough unpartitioned and unused space at the end of the drive to hold the graid(8) metadata. This metadata varies in size, but the largest occupies 64 M, so at least that much free space is recommended.

If the drive meets these requirements, start by making a full backup. Then create a single-drive mirror with that drive:

```
# graid label Intel gm0 RAID1 ada0 NONE
```

graid(8) metadata was written to the end of the drive in the unused space. A second drive can now be inserted into the mirror:

```
# graid insert raid/r0 ada1
```

Data from the original drive will immediately begin to be copied to the second drive. The mirror will operate in degraded status until the copy is complete.

18.5.4. 插入新磁碟到陣列

Drives can be inserted into an array as replacements for drives that have failed or are missing. If there are no failed or missing drives, the new drive becomes a spare. For example, inserting a new drive into a working two-drive mirror results in a two-drive mirror with one spare drive, not a three-drive mirror.

In the example mirror array, data immediately begins to be copied to the newly-inserted drive. Any existing information on the new drive will be overwritten.

```
# graid insert raid/r0 ada1
```

GEOM_RAID: Intel-a29ea104: Disk ada1 state changed from NONE to ACTIVE.
GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-ada1 state changed from NONE to NEW.
GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-ada1 state changed from NEW to REBUILD.
GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-ada1 rebuild start at 0.
18.5.5. Individual drives can be permanently removed from a from an array and their metadata erased:

```
# graid remove raid/r0 ada1
```

GEOM_RAID: Intel-a29ea104: Disk ada1 state changed from ACTIVE to OFFLINE.

GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-[unknown] state changed from ACTIVE to NONE.

GEOM_RAID: Intel-a29ea104: Volume gm0 state changed from OPTIMAL to DEGRADED.

18.5.6. An array can be stopped without removing metadata from the drives. The array will be restarted when the system is booted.

```
# graid stop raid/r0
```

18.5.7. Array status can be checked at any time. After a drive was added to the mirror in the example above, data is being copied from the original drive to the new drive:

```
# graid status
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>raid/r0</td>
<td>DEGRADED</td>
<td>ada0 (ACTIVE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ada1 (ACTIVE) (REBUILD 28%)</td>
</tr>
</tbody>
</table>

Some types of arrays, like RAID0 or CONCAT, may not be shown in the status report if disks have failed. To see these partially-failed arrays, add `-ga`:

```
# graid status -ga
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel-e2d07d9a</td>
<td>BROKEN</td>
<td>ada6 (ACTIVE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ACTIVE) (ACTIVE)</td>
</tr>
</tbody>
</table>

18.5.8. Arrays are destroyed by deleting all of the volumes from them. When the last volume present is deleted, the array is stopped and metadata is removed from the drives:

```
# graid delete raid/r0
```

18.5.9. Drives may unexpectedly contain `graid(8)` metadata, either from previous use or manufacturer testing. `graid(8)` will detect these drives and create an array, interfering with access to the individual drive. To remove the unwanted metadata:
1. Boot the system. At the boot menu, select 2 for the loader prompt. Enter:

```
OK
set kern.geom.raid.enable = 0
OK boot
```

The system will boot with `graid(8)` disabled.

2. Back up all data on the affected drive.

3. As a workaround, `graid(8)` array detection can be disabled by adding `kern.geom.raid.enable=0` to `/boot/loader.conf`.

To permanently remove the `graid(8)` metadata from the affected drive, boot a FreeBSD installation CD-ROM or memory stick, and select Shell. Use `status` to find the name of the array, typically `raid/r0`:

```
# graid status
Name   Status  Components
raid/r0  OPTIMAL  ada0 (ACTIVE (ACTIVE))
ada1 (ACTIVE (ACTIVE))
```

Delete the volume by name:

```
# graid delete raid/r0
```

If there is more than one volume shown, repeat the process for each volume. After the last array has been deleted, the volume will be destroyed.

Reboot and verify data, restoring from backup if necessary. After the metadata has been removed, the `kern.geom.raid.enable=0` entry in `/boot/loader.conf` can also be removed.

18.6. GEOM Gate Network

GEOM provides a simple mechanism for providing remote access to devices such as disks, CDs, and file systems through the use of the GEOM Gate network daemon, ggated. The system with the device runs the server daemon which handles requests made by clients using `ggatec`. The devices should not contain any sensitive data as the connection between the client and the server is not encrypted.

Similar to NFS, which is discussed in 路網檔案系統 (NFS), ggated is configured using an exports file. This file specifies which systems are permitted to access the exported resources and what level of access they are offered. For example, to give the client `192.168.1.5` read and write access to the fourth slice on the first SCSI disk, create `/etc/gg.exports` with this line:

```
192.168.1.5 RW /dev/da0s4d
```
Before exporting the device, ensure it is not currently mounted. Then, start `ggated`:

```
# ggated
```

Several options are available for specifying an alternate listening port or changing the default location of the exports file. Refer to `ggated(8)` for details.

To access the exported device on the client machine, first use `ggatec` to specify the IP address of the server and the device name of the exported device. If successful, this command will display a `ggate` device name to mount. Mount that specified device name on a free mount point. This example connects to the `/dev/da0s4d` partition on `192.168.1.1`, then mounts `/dev/ggate0` on `/mnt`:

```
# ggatec create -o rw 192.168.1.1 /dev/da0s4d
# mount /dev/ggate0 /mnt
```

The device on the server may now be accessed through `/mnt` on the client. For more details about `ggatec` and a few usage examples, refer to `ggatec(8)`.

The mount will fail if the device is currently mounted on either the server or any other client on the network. If simultaneous access is needed to network resources, use NFS instead.

When the device is no longer needed, unmount it with `umount` so that the resource is available to other clients.

During system initialization, the FreeBSD kernel creates device nodes as devices are found. This method of probing for devices raises some issues. For instance, what if a new disk device is added via USB? It is likely that a flash device may be handed the device name of `da0` and the original `da0` shifted to `da1`. This will cause issues mounting file systems if they are listed in `/etc/fstab` which may also prevent the system from booting.

One solution is to chain SCSI devices in order so a new device added to the SCSI card will be issued unused device numbers. But what about USB devices which may replace the primary SCSI disk? This happens because USB devices are usually probed before the SCSI card. One solution is to only insert these devices after the system has been booted. Another method is to use only a single ATA drive and never list the SCSI devices in `/etc/fstab`.

A better solution is to use `glabel` to label the disk devices and use the labels in `/etc/fstab`. Because `glabel` stores the label in the last sector of a given provider, the label will remain persistent across reboots. By using this label as a device, the file system may always be mounted regardless of what device node it is accessed through.

`glabel` can create both transient and permanent labels. Only permanent labels are consistent across reboots. Refer to `glabel(8)` for more information on the differences between labels.

18.7.1.

標籤類型與範例

Permanent labels can be a generic or a file system label. Permanent file system labels can be created with `tunefs(8)` or `newfs(8)`. These types of labels are created in a sub-directory of `/dev`, and will be named according to the file system type. For example, UFS2 file system labels will be created in `/dev/ufs`. Generic permanent labels can be created with `glabel label`. These are not file.
Temporary labels are destroyed at the next reboot. These labels are created in `/dev/label` and are suited to experimentation. A temporary label can be created using `glabel create`.

To create a permanent label for a UFS2 file system without destroying any data, issue the following command:

```
# tunefs -L home /dev/da3
```

A label should now exist in `/dev/ufs` which may be added to `/etc/fstab`:

```
/dev/ufs/home       /home            ufs     rw              2      2
```

The file system must not be mounted while attempting to run `tunefs`.

Now the file system may be mounted:

```
# mount /home
```

From this point on, so long as the `geom_label.ko` kernel module is loaded at boot with `/boot/loader.conf` or the `GEOM_LABEL` kernel option is present, the device node may change without any ill effect on the system.

File systems may also be created with a default label by using the `-L` flag with `newfs`. Refer to `newfs(8)` for more information.

The following command can be used to destroy the label:

```
# glabel destroy home
```

The following example shows how to label the partitions of a boot disk.

Example 43. In opening the boot disk label partitions

By permanently labeling the partitions on the boot disk, the system should be able to continue to boot normally, even if the disk is moved to another controller or transferred to a different system. For this example, it is assumed that a single ATA disk is used, which is currently recognized by the system as `ad0`. It is also assumed that the standard FreeBSD partition scheme is used, with `/`, `/var`, `/usr` and `/tmp`, as well as a swap partition.

Reboot the system, and at the `loader(8)` prompt, press `4` to boot into single user mode. Then enter the following commands:

```
# glabel label rootfs /dev/ad0s1a
GEOM_LABEL: Label for provider /dev/ad0s1a is label/rootfs

# glabel label var /dev/ad0s1d
GEOM_LABEL: Label for provider /dev/ad0s1d is label/var

# glabel label usr /dev/ad0s1f
GEOM_LABEL: Label for provider /dev/ad0s1f is label/usr
```
The system will continue with multi-user boot. After the boot completes, edit /etc/fstab and replace the conventional device names, with their respective labels. The final /etc/fstab will look like this:

```
# Device                Mountpoint      FStype  Options         Dump    Pass#
/dev/label/swap         none            swap    sw              0       0
/dev/label/rootfs       /               ufs     rw              1       1
/dev/label/tmp          /tmp            ufs     rw              2       2
/dev/label/usr          /usr            ufs     rw              2       2
/dev/label/var          /var            ufs     rw              2       2
```

The system can now be rebooted. If everything went well, it will come up normally and mount will show:

```
# mount
/dev/label/rootfs on / (ufs, local)
devfs on /dev (devfs, local)
/dev/label/tmp on /tmp (ufs, local, soft-updates)
/dev/label/usr on /usr (ufs, local, soft-updates)
/dev/label/var on /var (ufs, local, soft-updates)
```

The glabel(8) class supports a label type for UFS file systems, based on the unique file system id, ufsid. These labels may be found in /dev/ufsid and are created automatically during system startup. It is possible to use ufsid labels to mount partitions using /etc/fstab. Use glabel status to receive a list of file systems and their corresponding ufsid labels:

```
% glabel status
Name  Status  Components
ufsid/486b6fc38d330916     N/A  ad4s1d
ufsid/486b6fc16926168e     N/A  ad4s1f
```

In the above example, ad4s1d represents /var, while ad4s1f represents /usr. Using the ufsid values shown, these partitions may now be mounted with the following entries in /etc/fstab:

```
/dev/ufsid/486b6fc38d330916        /var        ufs        rw        2      2
/dev/ufsid/486b6fc16926168e        /usr        ufs        rw        2      2
```

Any partitions with ufsid labels can be mounted in this way, eliminating the need to manually create permanent labels, while still enjoying the benefits of device name independent mounting.
Support for journals on UFS file systems is available on FreeBSD. The implementation is provided through the GEOM subsystem and is configured using `gjournal`. Unlike other file system journaling implementations, the `gjournal` method is block based and not implemented as part of the file system. It is a GEOM extension.

Journaling stores a log of file system transactions, such as changes that make up a complete disk write operation, before meta-data and file writes are committed to the disk. This transaction log can later be replayed to redo file system transactions, preventing file system inconsistencies. This method provides another mechanism to protect against data loss and inconsistencies of the file system. Unlike Soft Updates, which tracks and enforces meta-data updates, and snapshots, which create an image of the file system, a log is stored in disk space specifically for this task. For better performance, the journal may be stored on another disk. In this configuration, the journal provider or storage device should be listed after the device to enable journaling on.

The `GENERIC` kernel provides support for `gjournal`. To automatically load the `geom_journal.ko` kernel module at boot time, add the following line to `/boot/loader.conf`:

```
geom_journal_load="YES"
```

If a custom kernel is used, ensure the following line is in the kernel configuration file:

```
options GEOM_JOURNAL
```

Once the module is loaded, a journal can be created on a new file system using the following steps. In this example, `da4` is a new SCSI disk:

```
# gjournal load
# gjournal label /dev/da4
```

This will load the module and create a `/dev/da4.journal` device node on `/dev/da4`.

A UFS file system may now be created on the journaled device, then mounted on an existing mount point:

```
# newfs -O 2 -J /dev/da4.journal
# mount /dev/da4.journal /mnt
```

In the case of several slices, a journal will be created for each individual slice. For instance, if `ad4s1` and `ad4s2` are both slices, then `gjournal` will create `ad4s1.journal` and `ad4s2.journal`.

Journaling may also be enabled on current file systems by using `tunefs`. However, always make a backup before attempting to alter an existing file system. In most cases, `gjournal` will fail if it is unable to create the journal, but this does not protect against data loss incurred as a result of misusing `tunefs`. Refer to `gjournal(8)` and `tunefs(8)` for more information about these commands.

It is possible to journal the boot disk of a FreeBSD system. Refer to the article *Implementing UFS Journaling on a Desktop PC* for detailed instructions.
ZFS 是設計來克服許多在以往設計中發現的主要問題的一個先進的檔案系統。最初由 Sun™ 所開發，後來的開放源始碼 ZFS 發展已移到 OpenZFS 計畫。

ZFS 的設計目標主要有三個:

• 資料完整性: 所有資料會有一個資料的校驗碼 (checksum)，資料寫入時會計算校驗碼然後一併寫入，往後讀取資料時會再計算一次校驗碼，若校驗碼與當初寫入時不相符，便可偵測到資料錯誤，此時若有可用的資料備援 (Data redundancy)，ZFS 會嘗試自動修正錯誤。

• 儲存池: 實體的儲存裝置都會先被加入到一個儲存池 (Pool)，這個共用的儲存池可用來配置儲存空間，儲存池的空間可被所有的檔案系統使用且透過加入新的儲存裝置來增加空間。

• 效能: 提供多個快取機制來增加效能。先進、以記憶體為基礎的讀取快取可使用 ARC。第二層以磁碟為基礎的讀取快取可使用 L2ARC，以磁碟為基礎的同步寫入快取則可使用 ZIL。

完整的功能清單與術語在 ZFS 特色與術語中有詳述。

19.1. 什麼使 ZFS 與眾不同
ZFS 與以往任何的檔案系統有顯著的不同，因為它不只是一個檔案系統，ZFS 的獨特優點來自結合了以往被分開的磁碟區管理程式 (Volume Manager) 及檔案系統兩個角色，讓檔案系統也夠察覺磁碟底層結構的變動。傳統在一個磁碟上只能建立一個檔案系統，若有兩個磁碟則會需要建立兩個分開的檔案系統，在傳統要解決這個問題要使用硬體 RAID 來製作一個空間實際上由數顆實體磁碟所組成的單一的邏輯磁碟給作業系統，作業系統便可在這個邏輯磁碟上放置檔案系統，即使是在那一些使用 GEOM 提供的軟體 RAID 解決方案也是一樣，把 UFS 檔案系統放在 RAID Transform 上面當是一個單一的裝置。ZFS 結合了磁碟區管理程式 (Volume Manager) 與檔案系統來解決這個問題並讓建立多個檔案系統可以共用一個儲存池 (Pool)。ZFS 最大的優點是可以察覺實體磁碟配置的變動，當有額外的磁碟加入到儲存池時可以自動擴增現有的檔案系統，所有的檔案系統便可使用這個新的空間。

ZFS 也有數個不同的屬性可以套用到各別檔案系統上，比起單一檔案系統，對建立數個不同檔案系統與資料集 (Dataset) 時有多的好處。

19.2. 快速入門指南
這裡有一個啟動機制，可讓 FreeBSD 在系統初始化時掛載 ZFS 儲存池。要開啓這個功能，可加入此行到 /etc/rc.conf:

```
zfs_enable="YES"
```

然後啟動服務:

```
# service zfs start
```

本節的例子會假設有三個 SCSI 磁碟，名稱分別為 da0, da1 及 da2。SATA 硬體的使用者裝置名稱改為 ada。

19.2.1. 單磁碟儲存池
要使用一個磁碟裝置建立一個簡單、無備援的儲存池可:

```bash
379
```
要检视这个新的存储池，查看 df 的输出结果：

```
# df
Filesystem  1K-blocks    Used    Avail Capacity  Mounted on
/dev/ad0s1a   2026030  235232  1628716    13%    /
devfs               1       1        0   100%    /dev
/dev/ad0s1d  54098308 1032864 48737580     2%    /usr
example      17547136       0 17547136     0%    /example
```

这个输出结果说明 example 存储池已建立且被挂载，现在已经可以作为文件系统存取，可以在上面建立档案且使用者可以浏览：

```
# cd /example
# ls
# touch testfile
# ls -al
total 4
drwxr-xr-x   2 root  wheel    3 Aug 29 23:15 ...
-rw-r--r--  1 root  wheel    0 Aug 29 23:15 testfile
```

但这个存储池并未运用到任何 ZFS 功能，若要在这个存储池上建立一个有开启压缩功能的资料集：

```
# zfs create example/compressed
# zfs set compression=gzip example/compressed
```

example/compressed 资料集现在是一个 ZFS 压缩的档案系统，可以试着复制较大的档案到 /example/compressed。

压缩功能也可以使用以下指令关闭：

```
# zfs set compression=off example/compressed
```

要卸载档案系统，使用 zfs umount 然后再次使用 df 确认：

```
# zfs umount example/compressed
# df
Filesystem  1K-blocks    Used    Avail Capacity  Mounted on
/dev/ad0s1a   2026030  235232  1628716    13%    /
devfs               1       1        0   100%    /dev
/dev/ad0s1d  54098308 1032864 48737580     2%    /usr
```
要重新挂载档案系统以便再次使用，使用 `zfs mount` 然后以 `df` 检查：

```
# zfs mount example/compressed
# df
```

```
Filesystem         1K-blocks    Used    Avail Capacity  Mounted on
/dev/ad0s1a          2026030  235234  1628714    13%    /
devfs                      1       1        0   100%    /dev
/dev/ad0s1d         54098308 1032864 48737580     2%    /usr
example             17547008       0 17547008     0%    /example
example/compressed  17547008       0 17547008     0%    /example/compressed
```

存储池与档案系统也可以从 `mount` 的结果查询到：

```
# mount
/dev/ad0s1a on / (ufs, local)
devfs on /dev (devfs, local)
/dev/ad0s1d on /usr (ufs, local, soft-updates)
example on /example (zfs, local)
example/compressed on /example/compressed (zfs, local)
```

在建立之后，ZFS 的资料集可如同其他档案系统一般使用，且有许多额外功能可在每个资料集上设定。例如，建立一个预计存放重要资料的新档案系统 `data`，要设定每个资料区块 (Data block) 要保留两份备份：

```
# zfs create example/data
# zfs set copies=2 example/data
```

现在，可以使用 `df` 指令来查看资料与空间的使用率：

```
# df
```

```
Filesystem         1K-blocks    Used    Avail Capacity  Mounted on
/dev/ad0s1a          2026030  235234  1628714    13%    /
devfs                      1       1        0   100%    /dev
/dev/ad0s1d         54098308 1032864 48737580     2%    /usr
example             17547008       0 17547008     0%    /example
example/compressed  17547008       0 17547008     0%    /example/compressed
example/data        17547008       0 17547008     0%    /example/data
```

注意，从这个可以发现每个在存储池上的档案系统都有相同的可用空间，这是为什么要在这些范例使用 `df` 的原因，为了要显示档案系统只会用到它们所需要使用的空间，并且均取自同一存储池。

ZFS 淘汰了磁碟区 (Volume) 与分割区 (Partition) 的概念，并允许多个档案系统共用相同的存储池。

不需要使用时可摧毁档案系统后再摧毁存储池：

```
381
```
```
# zfs destroy example/compressed
# zfs destroy example/data
# zpool destroy example
```

19.2.2. RAID-Z

When a disk fails, it is necessary to ensure data availability. RAID-Z is designed to support this functionality.

RAID-Z storage pools require at least three disks, but provide more space compared to Mirror storage pools.

This example will create a RAID-Z storage pool and specify which disks should be included:

```
# zpool create storage raidz da0 da1 da2
```

Sun™ recommends that the number of devices in a RAID-Z configuration should be between three and nine. If a larger environmental storage pool is desired, consider splitting it into smaller RAID-Z clusters. If only two disks are available and redundancy is needed, consider using ZFS Mirror. For more information, refer to `zpool(8)`.

In the previous example, a `storage` pool was created using `zpool`, and now this example will create a new file system named `home`:

```
# zfs create storage/home
```

You can configure compression and save directory and file metadata:

```
# zfs set copies=2 storage/home
# zfs set compression=gzip storage/home
```

To make this space available as the user's new home directory, copy the user's data to this directory and create symbolic links:

```
# cp -rp /home/* /storage/home
# rm -rf /home /usr/home
# ln -s /storage/home /home
# ln -s /storage/home /usr/home
```

Now the user's data is stored in the newly created `/storage/home`, and it is possible to add a new user and log in to test.

To create and store file system snapshots, which can be used to restore:

```
# zfs snapshot storage/home@08-30-08
```

Snapshots can only be created for entire file systems, not individual directories or files. The `@` character is used to separate file system or volume names. If an important directory is accidentally deleted, the file system can be backed up and restored to a previous point in time with the snapshot.
要列出所有可用的快照，可在档案系统的`.zfs/snapshot`目录执行`ls`，举例来说，要查看先前已做过的快照:

```
# ls /storage/home/.zfs/snapshot
```

也可以写一个Script来对使用者资料做例行的快照，但随着时间快照可能消耗大量的磁碟空间。先前的快照可以使用指令移除:

```
# zfs destroy storage/home@08-30-08
```

在测试之后，便可以将 `/storage/home` 成为真正的 `/home` 使用此指令:

```
# zfs set mountpoint=/home storage/home
```

执行`df`兴mount来确认系统现在是否以把档案系统做为真正的 `/home`:

```
# df
```

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>1K-blocks</th>
<th>Used</th>
<th>Avail</th>
<th>Capacity</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/ad0s1a</td>
<td>2026030</td>
<td>235240</td>
<td>1628708</td>
<td>13%</td>
<td>/</td>
</tr>
<tr>
<td>devfs</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>100%</td>
<td>/dev</td>
</tr>
<tr>
<td>/dev/ad0s1d</td>
<td>54098308</td>
<td>1032826</td>
<td>48737618</td>
<td>2%</td>
<td>/usr</td>
</tr>
<tr>
<td>storage</td>
<td>26320512</td>
<td>0</td>
<td>26320512</td>
<td>0%</td>
<td>/storage</td>
</tr>
<tr>
<td>storage/home</td>
<td>26320512</td>
<td>0</td>
<td>26320512</td>
<td>0%</td>
<td>/home</td>
</tr>
</tbody>
</table>
```

这个动作完成RAID-Z最后的设定，有关已建立的档案系统每日状态更新可以做为`periodic(8)`的一部份在每天晚上执行。加入此行到 `/etc/periodic.conf`:

```
daily_status_zfs_enable="YES"
```

19.2.3. 复原RAID-Z

每个软体RAID都有监控其状态的方式，而RAID-Z装置的状态可以使用这个指令来查看:

```
zpool status -x
```

```
383
```
如果所有储存池為上線（Online）且正常，則訊息會顯示：`all pools are healthy`。

如果有發生問題，可能磁碟會呈現離線（Offline）的狀態，此時儲存池的狀態會是：`pool: storage state: DEGRADED`。

状态说明：`status: One or more devices has been taken offline by the administrator. Sufficient replicas exist for the pool to continue functioning in a degraded state.`

操作：可以使用`zpool online`指令將裝置線上，或使用`zpool replace`指令替換裝置。

`errors: No known data errors`

這代表著裝置在之前被管理者使用此指令拿下線:

```
zpool offline storage da1
```

現在系統可以關機然後更換`da1`，當系統恢復上線，則可以替換掉儲存池中故障的磁碟:

```
zpool replace storage da1
```

到這裡，可以再檢查狀態一次，這時不需使用`-x`參數來顯示所有的儲存池:

```
zpool status storage
```

```
pool: storage state: ONLINE
scrub: resilver completed with 0 errors on Sat Aug 30 19:44:11 2008
```
在這個例子中，所有的磁碟均已正常運作。

19.2.4. 資料檢驗

ZFS 使用校驗碼 (Checksum) 來檢驗資料的完整性 (Integrity)，會在建立檔案系統時便自動開啟。

校驗碼可以關閉，但並不建議！校驗碼只會使用非常少的儲存空間來確保資料的完整性。若關閉校驗碼會使許多 ZFS 功能無法正常運作，且關閉校驗碼對並不會明顯的改善效能。

檢驗校驗碼這個動作即所謂的清潔 (Scrub)，可以使用以下指令來檢驗 storage 儲存池的資料完整性:

```bash
zpool scrub storage
```

清潔所需要的時間依儲存的資料量而定，較大的資料量相對會需要花費較長的時間來檢驗。清潔會對 I/O 有非常密集的操作且一次只能進行一個清潔動作。在清潔完成之後，可以使用 status 來查看狀態:

```bash
zpool status storage
```

pool: storage
state: ONLINE
scrub: scrub completed with 0 errors on Sat Jan 26 19:57:37 2013
config:
NAME        STATE     READ WRITE CKSUM
storage     ONLINE       0     0     0
raidz1    ONLINE       0     0     0
da0     ONLINE       0     0     0
da1     ONLINE       0     0     0
da2     ONLINE       0     0     0
errors: No known data errors

查詢結果會顯示上次完成清潔的時間來協助追蹤是否要做清潔。定期清潔可以協助保護資料不會默默損壞且確保儲存池的完整性。

請參考 zfs(8) 及 zpool(8) 來取得其他 ZFS 選項。
ZFS管理分成兩個主要的工具。zpool工具用来控制储存池的运作并可处理磁碟的新增、移除、更换与管理。zfs工具用来建立、摧毁与管理文件系统（File system）与磁碟区（Volume）的资料集。

19.3.1. 建立与摧毁储存池
建立ZFS储存池（zpool）要做几个涉及长远规划的决定，因为建立储存池之后便无法再更改储存池的结构。最重要的决定是要使用那一种型态的vdev来将实体磁碟设为同一群组。请参考vdev型态的清单来取得有关可用选项的详细资讯。大部份的vdev型态不许在建立储存池之后再加入额外的磁碟，镜像（Mirror）是可以允许加入额外的磁碟到vdev的其中一种外，另一个则为串连（Stripe），可以加入额外的磁碟到vdev来升级为镜像。虽然可以加入额外的vdev来扩充储存池，但储存池的配置在建立之后便无法更改，若要更改，则必须要先备份资料，把储存池摧毁后再重新建立。

建立一个简单的镜像储存池:
```
zpool create mypool mirror /dev/ada1 /dev/ada2
zpool status
pool: mypool
 state: ONLINE
 scan: none requested
 config:
 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada1 ONLINE 0 0 0
 ada2 ONLINE 0 0 0
 errors: No known data errors
```
可以一次建立数个vdev，磁碟群组之间使用vdev型态关键字来区隔，在这个例子使用mirror:
```
zpool create mypool mirror /dev/ada1 /dev/ada2 mirror /dev/ada3 /dev/ada4
pool: mypool
 state: ONLINE
 scan: none requested
 config:
 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada1 ONLINE 0 0 0
 ada2 ONLINE 0 0 0
 mirror-1 ONLINE 0 0 0
 ada3 ONLINE 0 0 0
 ada4 ONLINE 0 0 0
 errors: No known data errors
```
儲存池也可以不使用整個磁盤而改使用分割區（Partition）來建立。把ZFS放到不同的分割區可讓同一個磁碟有其他的分割區可做他用途，尤其是有Bootcode與檔案系統要用來開機的分割區，這讓磁碟可以用來開機也同樣可以做為儲存池的一部份。在FreeBSD用分割區來代替整個磁碟並不會對效能有影響。使用分割區也讓管理者可以對磁碟容量做少算的預備，使用比完整容量少的容量，未來若要替換的磁碟號稱與原磁碟相同，但實際上卻比較小時，也可符合這個較小的分割區容量，以使用替換的磁碟。

使用分割區建立一個RAID-Z2儲存池：
```
```
```
zpool status
pool: mypool
 state: ONLINE
 scan: none requested
 config:
 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 raidz2-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0
 ada3p3 ONLINE 0 0 0
 ada4p3 ONLINE 0 0 0
 ada5p3 ONLINE 0 0 0
 errors: No known data errors
```
不需使用的儲存池可以摧毀，來讓磁碟可以再使用。摧毀一個儲存池要先卸載所有該儲存池的資料集。若資料集在使用中，卸載的操作會失敗且儲存池不會被摧毀。儲存池的摧毀可以使用-zf來強制執行，但這可能造成那些有啟動這些資料集之中檔案的應用程式無法辨識的行為。

19.3.2. 加入與移除裝置
加入磁碟到儲存池（zpool）會有兩種情形：使用zpool attach加入一個磁碟到既有的vdev，或使用zpool add加入vdev到儲存池。只有部份vdev型態允許在vdev建立之後加入磁碟。

由單一磁碟所建立的儲存池缺乏備援（Redundancy）功能，可以偵測到資料的損壞但無法修復，因為資料沒有其他備份可用。備份數（Copies）屬性可以讓您從較小的故障中復原，如磁碟壞軌（Bad sector），但無法提供與鏡像或RAID-Z一樣層級的保護。

由單一磁碟所建立的儲存池可以使用zpool attach來加入額外的磁碟到vdev，來建立鏡像。zpool attach
也可用來加入額外的磁碟到鏡像群組，來增加備援與讀取效率。若使用的磁碟已有分割區，可以複製該磁碟的分割區配置到另一個，使用 `gpart backup` 與 `gpart restore` 可讓這件事變得非常簡單。

加入 `ada1p3` 來升級單一磁碟串連 (`stripe`) vdev `ada0p3` 採用鏡像型態 (`mirror`)。

```
zpool status
pool: mypool
 state: ONLINE
 scan: none requested
 config:
 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 errors: No known data errors
zpool attach mypool ada0p3 ada1p3
Make sure to wait until resilver is done before rebooting.
If you boot from pool 'mypool', you may need to update boot code on newly attached disk 'ada1p3'.
Assuming you use GPT partitioning and 'da0' is your new boot disk you may use the following command:
 gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 da0
gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada1
 bootcode written to ada1
zpool status
pool: mypool
 state: ONLINE
 status: One or more devices is currently being resilvered. The pool will continue to function, possibly in a degraded state.
 action: Wait for the resilver to complete.
 scan: resilver in progress since Fri May 30 08:19:19 2014
 527M scanned out of 781M at 47.9M/s, 0h0m to go
 527M resilvered, 67.53% done
 config:
 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
```

388
若不想选择加入磁碟到既有的vdev，对RAID-Z来说，可以选择另一种方式，就是加入另一个vdev到储存池。额外的vdev可以提供更高的效能，分散写入资料到vdev之间，每个vdev会负责自己的备援。也可以混合使用不同的vdev型态，但并不建议，例如混合使用mirror与RAID-Z，加入一个无备援的vdev到一个含mirror或RAID-Z vdev的储存池会让资料损坏的风险扩大整储存池，由于会分散写入资料，若在无备援的磁碟上发生故障的结果便是遗失大部分写到储存池的资料区块。

在每个vdev间的资料是串连的，例如有两个mirror vdev，便跟RAID 10一样在两个mirror间分散写入资料，并会做空间的分配，因此vdev会在同时达到全满100%的用量。若vdev间的可用空间量不同则会影响到效能，因为资料量会不成比例的写入到使用量较少的vdev。

当连接额外的装置到一个可以开机的储存池，要记得更新Bootcode。

连接第二个mirror群组（ada2p3及ada3p3）到既有的mirror:

```
zpool status
pool: mypool
state: ONLINE
scan: resilvered 781M in 0h0m with 0 errors on Fri May 30 08:19:35 2014
config:
NAME STATE READ WRITE CKSUM
mypool ONLINE 0 0 0
mirror-0 ONLINE 0 0 0
ada0p3 ONLINE 0 0 0
ada1p3 ONLINE 0 0 0
zpool add mypool mirror ada2p3 ada3p3
gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada2 ada3
```
bootcode written to ada2
# gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada3
bootcode written to ada3
# zpool status
pool: mypool
state: ONLINE
scan: scrub repaired 0
in 0h0m with 0 errors on Fri May 30 08:29:51 2014
config:
NAME        STATE     READ WRITE CKSUM
mypool      ONLINE       0     0     0
mirror-0  ONLINE       0     0     0
ada0p3  ONLINE       0     0     0
ada1p3  ONLINE       0     0     0
mirror-1  ONLINE       0     0     0
ada2p3  ONLINE       0     0     0
ada3p3  ONLINE       0     0     0
errors: No known data errors
# zpool detach mypool ada2p3
# zpool status
pool: mypool
state: ONLINE
19.3.3. 檢查儲存池的狀態

儲存池的狀態很重要，若有磁碟機離線或偵測到讀取、寫入或校驗碼（Checksum）錯誤，對應的錯誤計數便會增加。status 會顯示儲存池中每一個磁碟機的設定與狀態及整個儲存池的狀態。需要處置的方式與最近清潔（Scrub）的詳細資訊也會一併顯示。

# zpool status

pool: mypool
state: ONLINE
scan: scrub repaired 0 in 2h25m with 0 errors on Sat Sep 14 04:25:50 2013
config:
NAME        STATE     READ WRITE CKSUM
mypool      ONLINE       0     0     0
raidz2-0    ONLINE       0     0     0
ada0p3      ONLINE       0     0     0
ada1p3      ONLINE       0     0     0
ada2p3      ONLINE       0     0     0
ada3p3      ONLINE       0     0     0
ada4p3      ONLINE       0     0     0
ada5p3      ONLINE       0     0     0
errors: No known data errors

19.3.4. 清除錯誤

當偵測到錯誤發生，讀取、寫入或校驗碼（Checksum）的計數便會增加。使用 zpool clear mypool 可以清除錯誤訊息及重置計數。清空錯誤狀態對當儲存池發生錯誤要使用自動化 Script 通知的管理者來說會很重要，因為在舊的錯誤尚未清除前不會回報後續的錯誤。

19.3.5. 更換運作中的裝置

可能有一些情況會需要更換磁碟為另一個磁碟，當要更換運作中的磁碟，此程序會維持舊有的磁碟在更換的過程中為線上狀態，儲存池不會進入降級（Degraded）的狀態，來減少資料遺失的風險。zpool replace 會複製所有舊磁碟的資料到新磁碟，操作完成之後舊磁碟便會與 vdev
中斷連線。若新磁碟容量較舊磁碟大，也可以增加儲存池來使用新的空間。請參考擴增儲存池。

更換儲存池中正在運作的狀態:

```bash
zpool status
pool: mypool
state: ONLINE
scan: none requested
config:
 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0
errors: No known data errors
```

```bash
zpool replace mypool ada1p3 ada2p3
Make sure to wait until resilver is done before rebooting.

If you boot from pool 'zroot', you may need to update boot code on newly attached disk 'ada2p3'.
Assuming you use GPT partitioning and 'da0' is your new boot disk you may use the following command:

```bash
gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 da0
```

```bash
# gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada2
```

```bash
# zpool status
pool: mypool
state: ONLINE
status: One or more devices is currently being resilvered. The pool will continue to function, possibly in a degraded state.
action: Wait for the resilver to complete.
scan: resilver in progress since Mon Jun  2 14:21:35 2014
604M scanned out of 781M at 46.5M/s, 0h0m to go
604M resilvered, 77.39% done
config:
  NAME             STATE     READ WRITE CKSUM
  mypool           ONLINE       0     0     0
  mirror-0       ONLINE       0     0     0
  ada0p3       ONLINE       0     0     0
```

When a storage pool disk fails, the disk's vdev enters a degraded (Degraded) state, and the available data can still be accessed, but performance may decrease as the lost data must be restored from the available spare data. To restore the vdev to a full-operational state, the failed physical device must be replaced. ZFS will then begin to repair (Resilver,修理鏡像) the operation by restoring the failed disk's data from the available backup data to the replacement device. Once completed, the vdev will return to an online (Online) state.

If the vdev has no spare data or multiple devices are failed, there is insufficient spare data to compensate, the storage pool will enter a fault (Faulted) state. When replacing the failed disk, the name of the failed disk will be replaced with the device's GUID. If the replacement device uses the same device name, the 'zpool replace' command does not require the new device name parameter.

```
# zpool status
pool: mypool
state: DEGRADED
status: One or more devices could not be opened. Sufficient replicas exist for the pool to continue functioning in a degraded state.
action: Attach the missing device and online it using 'zpool online'.
see: http://illumos.org/msg/ZFS-8000-2Q
scan: none requested
config:
NAME                    STATE     READ WRITE CKSUM
```
zpool replace mypool 316502962686821739 ada2p3

zpool status

pool: mypool

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATE</th>
<th>READ</th>
<th>WRITE</th>
<th>CKSUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>mypool</td>
<td>DEGRADED</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mirror-0</td>
<td>DEGRADED</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ada0p3</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>replacing-1</td>
<td>UNAVAIL</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15732067398082357289</td>
<td>UNAVAIL</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ada2p3</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

errors: No known data errors

zpool status

pool: mypool

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATE</th>
<th>READ</th>
<th>WRITE</th>
<th>CKSUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>mypool</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mirror-0</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ada0p3</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ada2p3</td>
<td>ONLINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

errors: No known data errors

394
清潔儲存池

建議儲存池要定期清潔（*Scrub*），最好是每個月清潔一次。

作業對磁碟操作非密集，執行時會降低磁碟的效能。在排程*scrub*時避免在使用高峯的時期，或使用`vfs.zfs.scrub_delay`來調整*scrub*的相對優先權來避免影響其他的作業。

```
# zpool scrub mypool
# zpool status
```

若發生需要取消清潔作業的事，可以下`zpool scrub -s mypool`。

自我修復校驗碼（Checksum）會隨著資料區塊一併儲存，這使得檔案系統可以做到自我修復。這個功能可以在校驗碼與儲存池中的另個一個裝置不同時自動修復資料。

例如，有兩個磁碟做鏡像（Mirror），其中一個磁碟機開始失常並無法正常儲存資料，甚至資料放在一起久封存的儲存裝置上，已經很久沒有被存取。

傳統的檔案系統需要執行演算法來檢查並修復資料如`fsck(8)`，這些指令耗費時間，且在嚴重時需要系統管理者手動決定要做那種修復操作。當ZFS偵測到資料區塊的校驗碼不對時，它除了把資料交給需要的應用程式外，也會修正在磁碟上錯誤的資料。這件事情不需要與系統管理者任何互動便會在一般的儲存池操作時完成。

接下來的例子會示範自我修復會如何運作。

```
# zpool create healer mirror /dev/ada0 /dev/ada1
# zpool status healer
```

若在鏡像儲存池中有一個磁碟機開始失常時，ZFS會自動修復資料，而不需要系統管理者手動介入。
將部份需要使用自我修復功能來保護的重耍資料複製到該儲存池，建立一個儲存池的校驗碼供稍後做比較時使用。

```
# cp /some/important/data /healer
# zfs list
NAME     SIZE  ALLOC   FREE    CAP  DEDUP  HEALTH  ALTROOT
healer   960M  67.7M   892M     7%  1.00x  ONLINE  -
```

```
# sha1 /healer > checksum.txt
# cat checksum.txt
SHA1    (/healer) = 2753eff56d77d9a536ece6694bf0a82740344d1f
```

寫入隨機的資料到鏡像的第一個磁碟來模擬資料損毁的場合。要避免ZFS偵測到錯誤時馬上做修復，接著要將儲存池匯出，待模擬資料損毀之後再匯入。

```
這是一個危險的操作，會破壞重耍的資料。在這裡使用僅為示範用，不應在儲存池正常運作時嘗試使用，也不應將這個故意損壞資料的例子用在任其他的檔案系統上，所以請勿使用任何不屬於該儲存池的其他磁碟裝置名稱並確定位執行指令前已對儲存池做正確的備份！
```

```
# zpool export healer
# dd if=/dev/random of=/dev/ada1 bs=1m count=200
200+0 records in 200+0 records out
209715200 bytes transferred in 62.992162 secs (3329227 bytes/sec)
# zpool import healer
```

儲存池的狀態顯示有一個裝置發生了錯誤。注意，應用程式從儲存池讀取的資料中並沒有任何的錯誤資料，ZFS會自ada0裝置提供有正確校驗碼的資料。結果裡面CKSUM欄位含有的非零值便是有錯誤校驗碼的裝置。
One or more devices has experienced an unrecoverable error. An attempt was made to correct the error. Applications are unaffected.

Action: Determine if the device needs to be replaced, and clear the errors using 'zpool clear' or replace the device with 'zpool replace'.

See: http://illumos.org/msg/ZFS-8000-4J

Scan: scrub in progress since Mon Dec 10 12:23:30 2012
10.4M scanned out of 67.0M at 267K/s, 0h3m to go
9.63M repaired, 15.56% done
清潔作業會從ada0讀取資料並重新寫入任何在ada1上有錯誤校驗碼的資料。這個操作可以由zpool status的輸出中呈現修復中（repairing）的項目來辨識。這個作業完成後，儲存池的狀態會更改為:

```
# zpool status healer
pool: healer
state: ONLINE
status: One or more devices has experienced an unrecoverable error. An attempt was made to correct the error. Applications are unaffected.
action: Determine if the device needs to be replaced, and clear the errors using 'zpool clear' or replace the device with 'zpool replace'.
see: http://illumos.org/msg/ZFS-8000-4J
scan: scrub repaired 66.5M in 0h2m with 0 errors on Mon Dec 10 12:26:25 2012
```

配置:

```
NAME    STATE     READ WRITE CKSUM
healer     ONLINE       0     0     0
mirror-0  ONLINE       0     0     0
ada0     ONLINE       0     0     0
ada1     ONLINE       0     0 2.72K
errors: No known data errors
```

清潔操作完成便同步了ada0到ada1間的所有資料。執行zpool clear可以清除（Clear）儲存池狀態的錯誤訊息。

```
# zpool clear healer
# zpool status healer
pool: healer
state: ONLINE
scan: scrub repaired 66.5M in 0h2m with 0 errors on Mon Dec 10 12:26:25 2012
```
儲存池現在恢復完整的狀態且清除了所有的錯誤。

19.3.9. 擴增儲存池可用的備援儲存池大小會受到每個vdev中容量最小的裝置限制。最小的裝置可以替換成較大的裝置，在更換（Replace）或修復（Resilver）作業後，儲存池可以成長到該新裝置的可用容量。例如，要建立一個1 TB磁碟機與一個2 TB磁碟機的鏡像，可用的空間會是1 TB，當1 TB磁碟機備更換成另一個2 TB的磁碟機時，修復程序會複製既有的資料到新的磁碟機，由於現在兩個裝置都有2 TB的容量，所以鏡像的可用空間便會成長到2 TB。

可以在每個裝置用`zpool online -e`來觸發擴充的動作，在擴充完所有裝置後，儲存池便可使用額外的空間。

19.3.10. 輸入與輸出儲存池儲存池在移動到其他系統之前需要做輸出（Export），會卸載所有的資料集，然後標記每個裝置為已輸出，為了避免被其他磁碟子系統存取，因此仍會鎖定這些裝置。這個動作讓儲存池可以在支援ZFS的其他機器、其他作業系統做輸入（Import），甚至是不同的硬體架構（有一些注意事項，請參考zpool(8)）。當資料集有被開啟的檔案，可使用`zpool export -f`來強制輸出儲存池，使用這個指令需要小心，資料集是被強制卸載的，因此有可能造成在該資料集開啟檔案的應用程式發生無法預期的結果。

輸出未使用的儲存池:
```
# zpool export mypool
```
輸入儲存池會自動掛載資料集，若不想自動掛載，可以使用`zpool import -N`。

`zpool import -o`可以設定在輸入時暫時使用的屬性。

`zpool import altroot=`允許輸入時指定基礎掛載點（Base mount point）來替換檔案系統根目錄。若儲存池先前用在不同的系統且不正常輸出，可能會需要使用`zpool import -f`來強制輸入。

`zpool import -a`會輸入所有沒有被其他系統使用的儲存池。

列出所有可以輸入的儲存池:
```
# zpool import
```

使用替代的根目錄輸入儲存池：
```
``
zpool import -o altroot=/mnt mypool

zfs list

NAME                 USED  AVAIL  REFER  MOUNTPOINT
mypool               110K  47.0G    31K  /mnt/mypool

19.3.11.
升級
儲存池
在
升級
FreeBSD
之後或
儲存池
是由
其他使用舊版
ZFS
的系統
匯入,
儲存池
可以
手動
升級
到最新版本的
ZFS
來
支援
新的
功能。在
升級
前請
評估
儲存池
是否
還要在舊的系統
做
匯入,
由於
升級
是一個
單向
的程序,
舊的
儲存池
可以
升級,
但
有新
功能的
儲存池
無法降級。
升級
一個
v28
的
儲存
以
支援
功能
旗標
(Feature Flags):

# zpool status
pool: mypool
state: ONLINE
status: The pool is formatted using a legacy on-disk format. The pool can
still be used, but some features are unavailable.
action: Upgrade the pool using
zpool upgrade.
Once this is
done,
the
pool will no longer be accessible on software that does not support feat
ures.
scan: none requested
config:
NAME        STATE     READ WRITE CKSUM
mypool      ONLINE       0     0     0
mirror-0  ONLINE       0     0     0
ada0    ONLINE       0     0     0
ada1    ONLINE       0     0     0
errors: No known data errors

# zpool upgrade
This system supports ZFS pool feature flags.
The following pools are formatted with legacy version numbers and can
be upgraded to use feature flags. After being upgraded, these pools
will no longer be accessible by software that does not support feature
flags.

VER  POOL
---  -------
28   mypool
Use `zpool upgrade -v` for a list of available legacy versions.

Every feature flags pool has all supported features enabled.

```
zpool upgrade mypool
```

This system supports ZFS pool feature flags.

Successfully upgraded `mypool` from version 28 to feature flags.

Enabled the following features on `mypool`:

- async_destroy
- empty_bpobj
- lz4_compress
- multi_vdev_crash_dump

ZFS的新功能在 `zpool upgrade` 尚未完成之前无法使用。可以用 `zpool upgrade -v` 来查看升级后有哪些新功能，也同时会列出已经支援那些功能。

升级存储池支援新版的功能旗标 (Feature flags):

```
zpool status
```

```
pool: mypool
state: ONLINE
status: Some supported features are not enabled on the pool. The pool can still be used, but some features are unavailable.
action: Enable all features using `zpool upgrade`.
Once this is done, the pool may no longer be accessible by software that does not support the features. See zpool-features (7) for details.
scan: none requested
config:
```
```
NAME STATE READ WRITE CKSUM
```
```
mypool ONLINE 0 0 0
mirror-0 ONLINE 0 0 0
ada0 ONLINE 0 0 0
ada1 ONLINE 0 0 0
```

errors: No known data errors

```
zpool upgrade
This system supports ZFS pool feature flags.
All pools are formatted using feature flags.
```

Some supported features are not enabled on the following pools. Once a feature is enabled the pool may become incompatible with software.
that does not support the feature. See zpool-features (7) for details.

POOL FEATURE
---------------
zstore  
multi_vdev_crash_dump

This system supports ZFS pool feature flags.

Enabled the following features on 'mypool':
  spacemap_histogram
  enabled_txg
  hole_birth
  extensible_dataset
  bookmarks
  filesystem_limits

# zpool upgrade mypool

In systems using a storage pool to boot, the boot code must also be updated to support new storage pool versions, which can be done using gpart bootcode.

Currently, there are two types of boot code that can be used, depending on the system boot method:

- GPT (most common option)
- EFI (newer systems)

For systems that used to boot with GPT, the following command can be used:

# gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada1

For systems that used to boot with EFI, the following command can be used:

# gpart bootcode -p /boot/boot1.efifat -i 1 ada1

Apply boot code to all storage pools that can be booted. Refer to gpart(8) for more information.

19.3.12. Show recorded pool history

Modifications to the pool will be logged, including the creation of datasets, property changes, or replacement of disks. This history record is used to view how the pool was created, who performed the action, what action was taken, and when. History records are not stored in a log file (Log file), but instead stored in the pool.

To view this history record, the command name is zpool history:

# zpool history
輸出結果顯示曾在該儲存池上執行的zpool與zfs指令及時間戳記。只有會修改儲存池或類似的指令會被記錄下來，像是zfs list這種指令並不會被記錄。當不指定儲存池名稱時，會列出所有儲存池的歷史記錄。

在提供選項-i或-l時zpool history可以顯示更多詳細資訊。

- i會顯示使用者觸發的事件外，也會顯示內部記錄的ZFS事件。

## zpool history -i

2013-02-26.23:02:35 [internal pool create txg:5] pool spa 28 ; zfs spa 28 ; zpl 5 ; uts 9.1-RELEASE 901000 amd64

2013-02-27.18:50:53 [internal property set txg:50] atime = 0 dataset = 21

2013-02-27.18:50:58 zfs set atime = off tank

2013-02-27.18:51:04 [internal property set txg:53] checksum = 7 dataset = 21

2013-02-27.18:51:09 zfs set checksum = fletcher4 tank


2013-02-27.18:51:18 zfs create tank/backup

## zpool history -l

2013-02-26.23:02:35 zpool create tank mirror /dev/ada0 /dev/ada1 [user 0 (root) on :global]

2013-02-27.18:50:58 zfs set atime = off tank [user 0 (root) on myzfsbox:global]

2013-02-27.18:51:09 zfs set checksum = fletcher4 tank [user 0 (root) on myzfsbox:global]

2013-02-27.18:51:18 zfs create tank/backup [user 0 (root) on myzfsbox:global]

輸出結果顯示root使用者使用/dev/ada0及/dev/ada1建立鏡像的儲存池。主機名稱myzfsbox在建立完儲存池後也同樣會顯示。由於儲存池可以從一個系統匯出再匯入到另一個系統，因此主機名稱也很重要，這樣一來可以清楚的辦識在其他系統上執行的每一個指令的主機名稱。

兩個zpool history選項可以合併使用來取得儲存池最完整的詳細資訊。儲存池歷史記錄在追蹤執行動作或要取得除錯所需輸出結果提供了非常有用的資訊。19.3.13.監視效能

內建的監視系統可以即時顯示儲存池的I/O統計資訊。它會顯示儲存池剩餘的空間與使用的空間，每秒執行了多少讀取與寫入的操作，有多少I/O頻寬被使用。預設會監視所有在系統中的儲存池都並顯示出來，可以提供儲存池名稱來只顯示該儲存池的監視資訊。

舉一個簡單的例子：
要繼續監視 I/O 的活動可以在最後的參數指定一個數字，這個數字代表每次更新資料所間隔的秒數。在每次經過間隔的時間後會列出新一行的統計資料，按下 Ctrl+C 可以中止監視。或者在指令列的間隔時間之後再指定一個數字，代表總共要顯示的統計資料筆數。

使用 -v 可以顯示更詳細的 I/O 統計資料。

每個在儲存池中的裝置會以一行統計資料顯示。這可以幫助了解每一個裝置做了多少讀取與寫入的操作，並可協助確認是否有個別裝置拖慢了整個儲存池的速度。以下範例會顯示有兩個裝置的鏡像儲存池:

```
zpool iostat -v

capacity operations bandwidth
pool alloc free
read write

----- ----- ----- ----- ----- ----- -----
data 288G 1.53T 2 11 9.23K 61.5K
mirror 288G 1.53T 2 11 9.23K 61.5K
ada1 - - 0 4 5.61K 61.7K
ada2 - - 1 4 5.04K 61.7K

----- ----- ----- ----- ----- ----- -----
```

19.3.14. 分割儲存池由一個或多個鏡像 vdev 所組成的儲存池可以切分開成兩個儲存池。除非有另外指定，否則每個鏡像的最後一個成員會被分離來建立一個含相同資料的新儲存池。在做這個操作的第一次應先使用-n，會顯示預計會做 的操作而不會真的執行，這可以協助確認操作是否與使用者所要的相同。

19.4. zfs 管理 zfs 工具負責建立、摧毀與管理在一個儲存池中所有的 ZFS 資料集。儲存池使用 zpool 來管理。

19.4.1. 建立與摧毀資料集不同於傳統的磁碟與磁碟區管理程式 (Volume manager)，在 ZFS 中的空間並不需要事先分配。傳統的檔案系統在分割與分配空間完後，若沒有增加新的磁碟便無法再增加額外的檔案系統。在 ZFS 中，可以隨時建立新的資料集，每個資料集 (Dataset) 都有自己的屬性，包含壓縮 (Compression)、去重複 (Deduplication)、快取 (Caching) 與配額 (Quota) 功能以及其他有用的屬性如唯讀 (Readonly)、區分大小寫 (Case sensitivity)、網路檔案分享 (Network file sharing) 以及掛載點 (Mount point)。資料集可以存在於其他的資料集中，且子資料集會繼承其父資料集的屬性。每個資料集都可以作為一個單位來管理、委託 (Delegate)、備份 (Replicate)、快照 (Snapshot)、監禁 (Jail) 與摧毀 (Destroy)，替每種不同類型或集合的檔案建立各自的資料集還有多個好處。唯一的缺點是在當有非常大量的資料集時，部份指令例如 zfs list 會變的較緩慢；且掛載上百個或甚至上千個資料集可能會使 FreeBSD 的開機程序變慢。
建立一個新資料集並啓用LZ4壓縮:

```
zfs list
NAME USED AVAIL REFER MOUNTPOINT
mypool 781M 93.2G 144K none
mypool/ROOT 777M 93.2G 144K none
mypool/ROOT/default 777M 93.2G 777M /
mypool/tmp 176K 93.2G 176K /tmp
mypool/usr 616K 93.2G 144K /usr
mypool/usr/home 184K 93.2G 184K /usr/home
mypool/usr/ports 144K 93.2G 144K /usr/ports
mypool/usr/src 144K 93.2G 144K /usr/src
mypool/var 1.20M 93.2G 608K /var
mypool/var/crash 148K 93.2G 148K /var/crash
mypool/var/log 178K 93.2G 178K /var/log
mypool/var/mail 144K 93.2G 144K /var/mail
mypool/var/tmp 152K 93.2G 152K /var/tmp
zfs create -o compress=lz4 mypool/usr/mydataset
zfs list
NAME USED AVAIL REFER MOUNTPOINT
mypool 781M 93.2G 144K none
mypool/ROOT 777M 93.2G 144K none
mypool/ROOT/default 777M 93.2G 777M /
mypool/tmp 176K 93.2G 176K /tmp
mypool/usr 704K 93.2G 144K /usr
mypool/usr/home 184K 93.2G 184K /usr/home
mypool/usr/mydataset 87.5K 93.2G 87.5K /usr/mydataset
mypool/usr/ports 144K 93.2G 144K /usr/ports
mypool/usr/src 144K 93.2G 144K /usr/src
mypool/var 1.20M 93.2G 610K /var
mypool/var/crash 148K 93.2G 148K /var/crash
mypool/var/log 178K 93.2G 178K /var/log
mypool/var/mail 144K 93.2G 144K /var/mail
mypool/var/tmp 152K 93.2G 152K /var/tmp
```

摧毀資料集會比刪除所有在資料集上殘留的檔案來的快，由於摧毀資料集並不會掃描所有檔案並更新所有的Metadata。

摧毀先前建立的資料集:

```
zfs list
NAME USED AVAIL REFER MOUNTPOINT
mypool 880M 93.1G 144K none
```
在最新的ZFS版本中，`zfs destroy`是非同步的，而且释放出的空间可能需要花费几分钟才会出现在存储池上。可以使用`zpool get freeing poolname`来查看freeing属性，该属性会指出存储池中已释放了多少数据块。如果有子数据集，如快照（Snapshot）或其他数据集存在，则无法摧毁父数据集。要摧毁一个数据集及其所有子数据集，可以使用`-r`来递归摧毁数据集及其所有子数据集，同时使用`-n -v`来列出会被此操作摧毁的数据集和快照，而不实际摧毁。摧毁快照所释放出的空间也会同时显示。

19.4.2. 建立与摧毁磁碟区

磁碟区（Volume）是特殊类型的数据集，不会被挂载为一个文件系统，而是会被当作存储区块装置出现于`/dev/zvol/poolname/dataset`下。这让磁碟区可供其他文件系统使用，用于备份虚拟机的磁碟或使用iSCSI或HAST通信协议输出。

磁碟区可以被格式化成任何文件系统，或不使用文件系统来存储原始数据。对一般使用者，磁碟区就像是一般的磁碟，可以在这些zvols上放置一般文件系统，并提供一般磁盘或文件系统一般所没有的功能。例如，使用压缩属性在一个250 MB的磁碟区建立一个压缩的FAT文件系统。
```sh
zfs create -V 250m -o compression=on tank/fat32
zfs list tank

NAME USED AVAIL REFER MOUNTPOINT
tank 258M 670M 31K /tank

newfs_msdos -F32 /dev/zvol/tank/fat32
mount -t msdosfs /dev/zvol/tank/fat32 /mnt
df -h /mnt | grep fat32

Filesystem Size Used Avail Capacity Mounted on
/dev/zvol/tank/fat32 249M 24k 249M 0% /mnt

mount | grep fat32
/dev/zvol/tank/fat32 on /mnt (msdosfs, local)
```

19.4.3. **Rename Dataset**

Dataset names can be changed using `zfs rename`. Parent datasets can be changed in the same way.

Renaming a dataset to another parent dataset will change its parent and its properties.

Renaming a dataset will cause it to be unloaded and reloaded at the new location (depending on the new parent), which can be avoided with `-u`.

Renaming a dataset and moving it to another parent dataset:

```sh
zfs list

NAME USED AVAIL REFER MOUNTPOINT
mypool 780M 93.2G 144K none
mypool/ROOT 777M 93.2G 144K none
mypool/ROOT/default 777M 93.2G 777M /
mypool/tmp 176K 93.2G 176K /tmp
mypool/usr 704K 93.2G 144K /usr
mypool/usr/home 184K 93.2G 184K /usr/home
mypool/usr/mydataset 87.5K 93.2G 87.5K /usr/mydataset
mypool/usr/ports 144K 93.2G 144K /usr/ports
mypool/usr/src 144K 93.2G 144K /usr/src
mypool/var 1.21M 93.2G 614K /var
mypool/var/crash 148K 93.2G 148K /var/crash
mypool/var/log 178K 93.2G 178K /var/log
mypool/var/mail 144K 93.2G 144K /var/mail
mypool/var/tmp 152K 93.2G 152K /var/tmp

zfs rename mypool/usr/mydataset mypool/var/newname

zfs list

NAME USED AVAIL REFER MOUNTPOINT
mypool 780M 93.2G 144K none
mypool/ROOT 777M 93.2G 144K none
```
快照也可以像這樣重新命名，因為快照的本質使其無法被重新命名到另一個父資料集。要遞迴重新命名快照可指定 `-r`，然後在子資料集中所有同名的快照也會一併被重新命名。

```
zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
mypool/var/newname@first_snapshot 0 - 87.5K -
zfs rename mypool/var/newname@first_snapshot new_snapshot_name
zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
mypool/var/newname@new_snapshot_name 0 - 87.5K -
```

設定資料集屬性

每個ZFS資料集有數個屬性可以用來控制其行為。大部份的屬性會自動繼承自其父資料集，但可以被自己覆蓋。設定資料集上的屬性可使用 `zfs set property=value dataset`。大部份屬性有限制可用的值，`zfs get`會顯示每個可以使用的屬性及其可用的值。大部份可以使用 `zfs inherit`還原成其繼承的值。也可設定使用者自訂的屬性。這些屬性也會成為資料集設定的一部份，且可以用來提供資料集或其內容的額外資訊。要別分自訂屬性與ZFS提供的屬性，會使用冒號（:）建立一個自訂命名空間供自訂屬性使用。

```
zfs set custom:costcenter=1234 tank
zfs get custom:costcenter tank
NAME PROPERTY VALUE SOURCE
tank custom:costcenter 1234 local
```

要移除自訂屬性，可用 `zfs inherit`加上 `-r`。若父資料集未定義任何自訂屬性，將會將該屬性完全移除（更改動作仍會記錄於儲存池的歷史記錄）。

```
zfs inherit -r custom:costcenter tank
zfs get custom:costcenter tank
NAME PROPERTY VALUE SOURCE
408
```

建立快照可以使用 `zfs snapshot dataset@snapshotname` 来建立。加入 `-r` 可以递迴对所有同名的子资料集建立快照。

建立一个整池的递迴快照:

```
zfs list -t all
NAME USED AVAIL REFER MOUNTPOINT
mypool 780M 93.2G 144K none
mypool/ROOT 777M 93.2G 144K none
mypool/ROOT/default 777M 93.2G 777M /
mypool/tmp 176K 93.2G 176K /tmp
mypool/usr 616K 93.2G 144K /usr
mypool/usr/home 184K 93.2G 184K /usr/home
mypool/usr/ports 144K 93.2G 144K /usr/ports
mypool/usr/src 144K 93.2G 144K /usr/src
mypool/var 1.29M 93.2G 616K /var
mypool/var/crash 148K 93.2G 148K /var/crash
mypool/var/log 178K 93.2G 178K /var/log
mypool/var/mail 144K 93.2G 144K /var/mail
mypool/var/newname 87.5K 93.2G 87.5K /var/newname
mypool/var/newname@new_snapshot_name 0 - 87.5K -
mypool/var/tmp 152K 93.2G 152K /var/tmp
```

```
zfs snapshot -r mypool@my_recursive_snapshot
zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
mypool@my_recursive_snapshot 0 - 144K -
mypool/ROOT@my_recursive_snapshot 0 - 144K -
mypool/ROOT/default@my_recursive_snapshot 0 - 777M -
```

建立的快照不会显示在一般的 `zfs list` 操作结果，要列出快照需在 `zfs list` 后加上 `-t snapshot`，使用 `-t all` 可以同时列出档案系统的内容及快照。
[並不會](https://example.com)直[掛載](https://example.com)，因此[MOUNTPOINT](https://example.com)欄位的路徑如此[顯示](https://example.com)。在[AVAIL](https://example.com)欄位不會有可用的[磁碟](https://example.com)空間，因為快照[建立](https://example.com)之後便無法再[寫入](https://example.com)。

比較快照與其[原](https://example.com)來[建立](https://example.com)時的資料集:

```bash
zfs list -rt all mypool/usr/home
NAME USED AVAIL REFER MOUNTPOINT
mypool/usr/home 184K 93.2G 184K /usr/home
mypool/usr/home@my_recursive_snapshot 0 - 184K -
```

同時[顯示](https://example.com)資料集與[快照](https://example.com)可以了[解](https://example.com)快照如[何](https://example.com)使用[COW](https://example.com)技術來[運](https://example.com)作。快照只會[保](https://example.com)存有[更動](https://example.com)(差異)的資料，並[非整(個)](https://example.com)档[案](https://example.com)系統的內容，這個意[思](https://example.com)是說，快照只會在做更動時使用一小[部份](https://example.com)的空[間](https://example.com)，複製一個[档](https://example.com)案到該資料集，可以讓空間使用量變的[更](https://example.com)明[显](https://example.com)，然後再做[第二](https://example.com)个快照:

```bash
cp /etc/passwd /var/tmp
zfs snapshot mypool/var/tmp@after_cp
zfs list -rt all mypool/var/tmp
NAME USED AVAIL REFER MOUNTPOINT
mypool/var/tmp 206K 93.2G 118K /var/tmp
mypool/var/tmp@my_recursive_snapshot 88K - 152K -
mypool/var/tmp@after_cp 0 - 118K -
```

第二快照只會包[含](https://example.com)了資料集做[複](https://example.com)製動作後的[更](https://example.com)動，這種的[機制](https://example.com)可以節[省](https://example.com)大量[的](https://example.com)空[間](https://example.com)。注意在[複](https://example.com)製之後[快照](https://example.com)mypool/var/tmp@my_recursive_snapshot於[USE](https://example.com)中的大小也[更改](https://example.com)了，這說明了這個[更](https://example.com)動在前次[快照](https://example.com)與之後[快照](https://example.com)間的[關](https://example.com)係。

```bash
zfs diff mypool/var/tmp@my_recursive_snapshot
M /var/tmp/
+ /var/tmp/passwd
```

指令會列出指定快照(在這個例子中為mypool/var/tmp@my_recursive_snapshot)與目[前](https://example.com)案[系](https://example.com)间[的](https://example.com)更改。第一個[栏](https://example.com)位是[更](https://example.com)动的[类](https://example.com)型：

- 加入了該路徑或[案](https://example.com)
- 刪除[了](https://example.com)該路徑或[案](https://example.com)
- 修改了該路徑或[案](https://example.com)
- 重命名了該路徑或[案](https://example.com)

指令會列出指定快照(在這個例子中為mypool/var/tmp@my_recursive_snapshot)與目[前](https://example.com)案[系](https://example.com)间[的](https://example.com)更改。第一個[栏](https://example.com)位是[更](https://example.com)动的[类](https://example.com)型：

- 加入了該路徑或[案](https://example.com)
- 刪除[了](https://example.com)該路徑或[案](https://example.com)
- 修改了該路徑或[案](https://example.com)
- 重命名了該路徑或[案](https://example.com)

19.4.5.2. 比對快照

ZFS提供了內[建](https://example.com)指令可以用來[比](https://example.com)對兩[个](https://example.com)快照(Snapshot)之[间](https://example.com)的[差](https://example.com)，在使用者[想](https://example.com)要[要](https://example.com)查看一[段](https://example.com)時[间](https://example.com)之[间](https://example.com)檔案系統所的[变](https://example.com)更時非[常](https://example.com)有用。例[如](https://example.com)zfs diff可以讓使用者在最後一次[快](https://example.com)照中找到意外[删](https://example.com)除的[案](https://example.com)。對前面一節所做[的](https://example.com)兩[个](https://example.com)快照使用這個[指](https://example.com)令會[生](https://example.com)以下結[果](https://example.com):

```bash
zfs list -rt all mypool/var/tmp
NAME USED AVAIL REFER MOUNTPOINT
mypool/var/tmp 206K 93.2G 118K /var/tmp
mypool/var/tmp@my_recursive_snapshot 88K - 152K -
mypool/var/tmp@after_cp 0 - 118K -
zfs diff mypool/var/tmp@my_recursive_snapshot
M /var/tmp/
+ /var/tmp/passwd
```

指令會列出指定快照(在這個例子中為mypool/var/tmp@my_recursive_snapshot)與目[前](https://example.com)案[系](https://example.com)间[的](https://example.com)更改。第一個[栏](https://example.com)位是[更](https://example.com)动的[类](https://example.com)型：

- 加入了該路徑或[案](https://example.com)
- 刪除[了](https://example.com)該路徑或[案](https://example.com)
- 修改了該路徑或[案](https://example.com)
- 重命名了該路徑或[案](https://example.com)
對照這個表格來看輸出的結果，可以明顯看出 passwd 是在快照 mypool/var/tmp@my_recursive_snapshot 建立之後才加入的，結果也同樣看到掛載到 /var/tmp 的父目錄已經做過修改。

在使用 ZFS 備份功能來傳輸一個資料集到另一個主機備份時比對兩個快照也同樣很有用。比對兩個快照需要提供兩個資料集的完整資料集名稱與快照名稱:

```
cp /var/tmp/passwd /var/tmp/passwd.copy
zfs snapshot mypool/var/tmp@diff_snapshot
zfs diff mypool/var/tmp@my_recursive_snapshot mypool/var/tmp@diff_snapshot
```

```
M /var/tmp/
+ /var/tmp/passwd
+ /var/tmp/passwd.copy
```

備份管理者可以比對兩自傳送主機所接收的兩個快照並查看實際在資料集中的變更。請參考備份一節來取得更多資訊。

19.4.5.3. 使用快照還原
只要至少有一個可用的快照便可以隨時還原。大多數在已不需要目前資料集, 想要改用較舊版的資料的情況，例本地開發的測試發生錯誤、不良的系統更新破壞了系統的整體功能或需要還原意外刪除的檔案或目錄…等，都是非常常見的情形。幸運的,要還原到某個快照只需要簡單輸入 `zfs rollback`。會依快照所做的變更數量來決定處理的時間,還原的操作會在這段時間後完成。在這段時間中,資料集會一直保持一致的狀態,類似一個符合 ACID 原則的資料庫在做還原。還原可在資料集處於上線及可存取的情況下完成,不需要停機。還原到快照之後, 資料集便回道當初執行快照時相同的狀態,所有沒有在快照中的其他資料便會被丟棄,因此往後若還有可能需要部份資料時,建議在還原到前一個快照之前先對目前的資料集做快照,這樣一來,使用者便可以在快照之間來回快換,而不會遺失重要的資料。

在此時,使用者發現到刪除太多了檔案並希望能夠還原。ZFS 提供了簡單的方可以取回檔案，便是在還原（Rollback），但這只在有定期對重要的檔案使用快照時可用。要拿回檔案並從最後一次快照重新開始,可執行以下指令:

```
zfs list -rt all mypool/var/tmp
```

```
NAME USED AVAIL REFER MOUNTPOINT
mypool/var/tmp 262K 93.2G 120K /var/tmp
mypool/var/tmp@my_recursive_snapshot 88K - 152K -
mypool/var/tmp@after_cp 53.5K - 118K -
mypool/var/tmp@diff_snapshot 0 - 120K -
```

```
ls /var/tmp
passwd passwd.copy vi.recover
```

```
rm /var/tmp/passwd*
ls /var/tmp
vi.recover
```

在此時,使用者發現到刪除太多了檔案並希望能夠還原。ZFS 提供了簡單的方可以取回檔案，便是在還原（Rollback），但這只在有定期對重要的檔案使用快照時可用。要拿回檔案並從最後一次快照重新開始,可執行以下指令:
zfs rollback mypool/var/tmp@diff_snapshot

ls /var/tmp

passwd          passwd.copy     vi.recover

還原操作會將資料集還原為最後一次快照的狀態。這也可以還原到更早之前，有其他在其之後建立的快照。

要這麼做時，ZFS會發出這個警告：

zfs list -rt snapshot mypool/var/tmp

NAME                                   USED  AVAIL  REFER  MOUNTPOINT
mypool/var/tmp@my_recursive_snapshot    88K      -   152K  -
mypool/var/tmp@after_cp               53.5K      -   118K  -
mypool/var/tmp@diff_snapshot              0      -   120K  -

zfs rollback mypool/var/tmp@my_recursive_snapshot
cannot rollback to 'mypool/var/tmp@my_recursive_snapshot': more recent snapshots exist

use '-r' to force deletion of the following snapshots:
  mypool/var/tmp@after_cp
  mypool/var/tmp@diff_snapshot

這個警告是因為在該快照與資料集的目前狀態之間有其他快照存在，然而使用者想還原到該快照。要完成這樣的目的，必須刪除在這之間的快照，因為ZFS無法追蹤不同資料集狀態間的變更。在使用者未指定-r來確認這個動作前，ZFS不會刪除受影響的快照。若確定要這麼做，那必須要知道會遺失所有在這之間的快照，然後可執行以下指令：

zfs rollback -r mypool/var/tmp@my_recursive_snapshot

zfs list -rt snapshot mypool/var/tmp

NAME                                   USED  AVAIL  REFER  MOUNTPOINT
mypool/var/tmp@my_recursive_snapshot     8K      -   152K  -

ls /var/tmp

vi.recover

可從zfs list -t snapshot的結果來確認zfs rollback -r會移除的快照。

19.4.5.4. 从快照还原个别档案
快照會掛載在父資料集下的隱藏目錄：.zfs/snapshots/snapshotname。預設不會顯示這些目錄，即使使用ls -a指令。雖然該目錄不會顯示，但該目錄實際存儲，而且可以像一般的目錄一樣存取。一個名稱為snapdir的屬性可以控制是否在目錄清單中顯示這些隱藏目錄，設定該屬性為可見(visible)可以讓這些目錄出現在ls以及其他處理目錄內容的指令中。

zfs get snapdir mypool/var/tmp

NAME            PROPERTY  VALUE    SOURCE
mypool/var/tmp  snapdir   hidden   default
要还原别的档案到先前的状态非常简单，只要从快照中复制档案到父资料集。在.zfs/snapshot目录结构下有一个与先前所做快照名称相同的目录，可以很容易的找到。在下个范例中，我们会示范从隐藏的.zfs目录还原一个档案，透过含有该档案的最新版快照复制：

```
rm /var/tmp/passwd
ls -a /var/tmp
.. .zfs passwd vi.recover
ls /var/tmp/.zfs/snapshot
after_cp my_recursive_snapshot
ls /var/tmp/.zfs/snapshot/after_cp
passwd vi.recover
cp /var/tmp/.zfs/snapshot/after_cp/passwd /var/tmp
```

执行ls .zfs/snapshot时，虽然snapdir可能已经设为隐藏，但仍可能可以显示该目录中的内容，这取决于管理者是否要显示这些目录，可以只显示特定的资料集，而其他的则不显示。从这个隐藏的.zfs/snapshot复制档案或目录非常简单，除此之外，尝试其他的动作则会出现以下错误：

```
cp /etc/rc.conf /var/tmp/.zfs/snapshot/after_cp/
cp: /var/tmp/.zfs/snapshot/after_cp/rc.conf: Read-only file system
```

这个错误用来提醒使用者快照是唯读的，在建立之后不能更改。无法复制档案进去或从该快照目录中移除，因为这会变更该资料集所代表的状况。

快照所消耗的空问是依据自快照之后父档案系统做了多少变更来决定，快照的written属性可以用来自追踪使用了多少空间。

使用zfs destroy dataset@snapshot可以摧毁快照并回收空问。加上-r可以递回移除所有在父资料集下使用同名的快照。加入-n -v来显示将要移除的快照清单以及估计回收的空问，而不实际执行摧毁的操作。

19.4.6. 管理复本（Clone）

复本（Clone）是快照的复制，但更像是归档的资料集，与快照不同的是，复本是可写的，且可挂载，可以有自己的属性。使用zfs clone建立复本之后，便无法再摧毁用来建立复本的快照。复本与快照的父/子关系可以使用zfs promote来对换。提升复本之后，快照便会成为复本的子资料集，而不是原来的父资料集，这个动作会改变空问计算的方式，但并不会实际改变空问的使用量。复本可以被挂载到ZFS档案系统阶层中的任何一点，而不局限在原本快照的位置底下。要示范复本功能会用到这个范例资料集：

```
zfs list -rt all camino/home/joe
NAME USED AVAIL REFER MOUNTPOINT
camino/home/joe 108K 1.3G 87K /usr/home/joe
```

```
會使用到複本一般是要在可以保留快照以便出錯時還原指定的資料集做實驗，由於快照並無法做更改，所以會建立一個可以讀/寫的快照複本。當在複本中做完想執行的動作後，便可以提升複本成資料集，然後移除舊的檔案系統。嚴格說來這並非要，因為複本與資料集可同時存在，不會有任何問題。

```bash
# zfs clone camino/home/joe@backup camino/home/joenew

# ls /usr/home/joe*
/usr/home/joe:
  backup.txz     plans.txt

/usr/home/joenew:
  backup.txz     plans.txt

# df -h /usr/home
Filesystem          Size    Used   Avail Capacity  Mounted on
usr/home/joe        1.3G     31k    1.3G     0%    /usr/home/joe
usr/home/joenew     1.3G     31k    1.3G     0%    /usr/home/joenew
```

建立完的複本便有與建立快照時狀態相同的資料集，現在複本可以獨立於原來的資料集來做更改。剩下唯一與資料集間的關係便是快照，ZFS會在屬性origin紀錄這個關係，一旦在快照與複本間的相關關係因為使用zfs promote提升而移除時，複本的origin也會因為成為一個完全獨立的資料集而移除。以下範例會示範這個動作:

```bash
# zfs get origin camino/home/joenew
NAME                  PROPERTY  VALUE                     SOURCE
camino/home/joenew    origin    camino/home/joe@backup    -

# zfs promote camino/home/joenew

# zfs get origin camino/home/joenew
NAME                  PROPERTY  VALUE   SOURCE
camino/home/joenew    origin    -       -
```

做為部份更改之後，例如複製loader.conf到提升後的複本，這個例子中的舊目錄便無須保留，取而代之的是提升後的複本，這個作可以用兩個連続的指令來完成: 在舊資料集上執行zfs destroy並在與舊資料相似名稱(也可能用完全不同的名稱)的複本上執行zfs rename。

```bash
# cp /boot/defaults/loader.conf /usr/home/joenew
# zfs destroy -f camino/home/joe
# zfs rename camino/home/joenew camino/home/joe

# ls /usr/home/joe
backup.txz     loader.conf     plans.txt

# df -h /usr/home
Filesystem          Size    Used   Avail Capacity  Mounted on
usr/home/joe        1.3G    128k    1.3G     0%    /usr/home/joe
```
快照的複本現在我們可以如同一般的資料集一樣使用，它的內容包含所有來自原快照的資料以及後來加入的檔案，例如 `loader.conf`。

複本可以在許多年境下使用提供 ZFS 的使用者有用的機能，例如，`Jail` 可以透過含有已裝設了各種應用程式集的快照來提供，使用者可以複製這些快照然後加入自己想試的應用程式，一旦更改可以滿足需求，便可提升複本為完整的資料集然後提供給終端使用者，讓終端使用者可以如同實際擁有資料集一般使用，這個以節省提供這些 `Jail` 的時間與管理成本。

19.4.7. 備份（Replication）

將資料儲存在同一地點的單一儲存池上會讓資料暴露在盜竊、自然或人為的風險下，定期備份整個儲存池非常重要，ZFS 提供了內建的序列化（Serialization）機能可以將資料以串流通送到標準輸出。使用這項技術，不僅可以將資料儲存到另一個已連結到本地系統的儲存池，也可以透過網路將資料傳送到另一個系統，這種備份方式基於快照（請參考章節 ZFS 快照（Snapshot））。用來備份資料的指令為 `zfs send` 及 `zfs receive`。

以下例子將示範使用兩個儲存池來做 ZFS 備份:

```bash
# zpool list
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>SIZE</th>
<th>ALLOC</th>
<th>FREE</th>
<th>CKPOINT</th>
<th>EXPANDSZ</th>
<th>FRAG</th>
<th>CAP</th>
<th>DEDUP</th>
<th>HEALTH</th>
<th>ALTROOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>backup</td>
<td>960M</td>
<td>77K</td>
<td>896M</td>
<td>-</td>
<td>-</td>
<td>0%</td>
<td>0%</td>
<td>1.00x</td>
<td>ONLINE</td>
<td>-</td>
</tr>
<tr>
<td>mypool</td>
<td>984M</td>
<td>43.7M</td>
<td>940M</td>
<td>-</td>
<td>-</td>
<td>0%</td>
<td>4%</td>
<td>1.00x</td>
<td>ONLINE</td>
<td>-</td>
</tr>
</tbody>
</table>

名為 `mypool` 的儲存池為主要的儲存池，資料會定期寫入與讀取的位址。第二個儲存池 `backup` 用來待命（Standby），萬一主要儲存池無法使用時可替換。注意，ZFS 并不會自動做容錯轉移（Fail-over），必須要由系統管理者在需要的時候手動完成。快照會用來提供一個與檔系統一致的版本來做備份，`mypool` 的快照建立之後，便可以複製到 `backup` 儲存池，只有快照可以做備份，最近一次快照之後所做的變更有不會含在內容裡面。

```bash
# zfs snapshot mypool@backup1
# zfs list -t snapshot
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>USED</th>
<th>AVAIL</th>
<th>REFER</th>
<th>MOUNTPOINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>mypool@backup1</td>
<td>0</td>
<td>-</td>
<td>43.6M</td>
<td>-</td>
</tr>
</tbody>
</table>

快照存在以後，便可以使用 `zfs send` 建立一個代表快照內容的串流，這個串流可以儲存成檔案或由其他儲存池接收。串流會寫入到標準輸出，但必須要重新導向到一個位於在已掛載到備份儲存池上的檔案。確定向該儲存池有足夠的空間容納要傳送的快照，這裡指的是該快照中內含的所有資料，並非只有上一次快照至該快照間的變更。

```bash
# zfs send mypool@backup1 > /backup/backup1
# zpool list
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>SIZE</th>
<th>ALLOC</th>
<th>FREE</th>
<th>CKPOINT</th>
<th>EXPANDSZ</th>
<th>FRAG</th>
<th>CAP</th>
<th>DEDUP</th>
<th>HEALTH</th>
<th>ALTROOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>backup</td>
<td>960M</td>
<td>63.7M</td>
<td>896M</td>
<td>-</td>
<td>-</td>
<td>0%</td>
<td>6%</td>
<td>1.00x</td>
<td>ONLINE</td>
<td>-</td>
</tr>
<tr>
<td>mypool</td>
<td>984M</td>
<td>43.7M</td>
<td>940M</td>
<td>-</td>
<td>-</td>
<td>0%</td>
<td>4%</td>
<td>1.00x</td>
<td>ONLINE</td>
<td>-</td>
</tr>
</tbody>
</table>
zfs send 會傳輸在快照backup1中的資料到儲存池backup。可以使用cron(8)排程來自動完成建立與傳送快照的動作。

若不想將備份以封存檔案儲存，ZFS可用實際的檔案系統來接收資料，讓備份的資料可以直接被存取。要取得實際包含在串流中的資料可以用zfs receive將串流轉換回檔案與目錄。以下例子會以管線符號連接zfs send及zfs receive，將資料從一個儲存池複製到另一個，傳輸完成後可以直接使用接收儲存池上的資料。一個資料集只可以被複製到另一個空的資料集。

```
# zfs snapshot mypool@replica1
# zfs send -v mypool@replica1 | zfs receive backup/mypool
send from @ to mypool@replica1 estimated size is 50.1M
total estimated size is 50.1M
```

```
# zpool list
```

```
NAME    SIZE  ALLOC   FREE   CKPOINT  EXPANDSZ   FRAG    CAP  DEDUP  HEALTH  ALTROOT  
backup  960M  63.7M   896M         -         -     0%     6%  1.00x  ONLINE  -
mypool  984M  43.7M   940M         -         -     0%     4%  1.00x  ONLINE  -
```

```
19.4.7.1.
```

進式備份zfs send也可以比較兩個快照之間的差異，並且只傳送兩者之間的差異，這樣做可以節省磁碟空間及傳輸時間。例如:

```
# zfs snapshot mypool@replica2
# zfs list -t snapshot
```

```
NAME                    USED  AVAIL  REFER  MOUNTPOINT  
mypool@replica1         5.72M      -  43.6M  -
mypool@replica2             0      -  44.1M  -
```

```
# zpool list
```

```
NAME    SIZE  ALLOC   FREE   CKPOINT  EXPANDSZ   FRAG   CAP  DEDUP  HEALTH  ALTROOT  
backup  960M  61.7M   898M         -         -     0%    6%  1.00x  ONLINE  -
mypool  960M  50.2M   910M         -         -     0%    5%  1.00x  ONLINE  -
```

會建立一個名為replica2的第二個快照，這個快照只中只會含有目前與前次快照replica1之間檔案系統所做變更。使用zfs send -i並指定要用來產生漸進備份串流的快照，串流中只會含有做過更改的資料。這個動作只在接收端已經有初始快照時才可用。

```
# zfs send -v -i mypool@replica1 mypool@replica2 | zfs receive /backup/mypool
send from @replica1 to mypool@replica2 estimated size is 5.02M
total estimated size is 5.02M
```

```
# zpool list
```

```
```
如此一來，便成功轉換進式的串流，只有做過更改的資料會被備份，不會傳送完整的replica1。由於不會備份完整的儲存池，只傳送差異的部分，所以可以減少傳輸的時間並節省磁碟空間，特別是在網路緩慢或需要考量每位元傳輸成本時非常有用。

從儲存池mypool複製所有檔案與資料的新檔案系統backup/mypool便可以使用。若指定-P，會一併複製資料集的屬性，這包含壓縮(Compression)設定，配額(Quota)及掛載點(Mount point)。若指定-R，會複製所有指定資料集的子資料集，及這些子資料集的所有屬性。可將傳送與接收自動來定期使用第二個儲存池做備份。

19.4.7.2. 透過SSH傳送加密的備份透過網路來傳送串流是一個做遠端備份不錯的方式，但是一些缺點，透過網路連線傳送的資料沒有加密，這會讓任何人都可以在未告知传送方的狀況下攔截並轉換串流回資料，這是我們所不想到的情況，特別是在使用網際網路傳送串流到遠端的主機時。SSH可用來加密要透過網路連線傳送的資料，在ZFS只需要將串流重新導向到標準輸出，如此一來便可簡單地轉接到SSH。若要讓檔案系統內容在傳送或在遠端系統中也維持在加密的狀態可考慮使用PEFS。

有一些設定以及安全性注意事項必須先完成，只有對zfs send操作必要的步驟會在此說明，要取得更多有關SSH的資訊請參考OpenSSH。

必要的環境設定:
• 使用SSH金鑰設定傳送端與接收端之間無密碼的SSH存取
• 正常會需要root的權限來傳送與接收串流，這需要可以root登入到接收端系統。但是，預設因安全性考慮會關閉以root登入。

ZFS委託(ZFS Delegation)
系統可以用來允許一個非root使用者在每個系統上執行各自的發送與接收操作。
• 在傳送端系統上:
 # zfs allow -u someuser send,snapshot mypool
• 要掛載儲存池，無權限的使用者必須擁有該目錄且必須允許一般的使用者掛載檔案系統。在接收端系統上:

sysctl vfs.usermount=1
vfs.usermount: 0 -> 1
sysrc -f /etc/sysctl.conf vfs.usermount=1
zfs create recvpool/backup
zfs allow -u someuser create,mount,receive recvpool/backup
chown someuser /recvpool/backup

無
權限
的使用者
現在有能力接收並掛載資料集，且home資料集可以被複製到遠端系統:
% zfs snapshot -r mypool/home@monday
% zfs send -R mypool/home@monday | ssh someuser@backuphost zfs recv
recvpool/backup
替儲存
在儲存池mypool上的檔案系統資料集home製作一個遞迴快照monday，然後使用zfs send -R來傳送包含該資料集及其所有子資料集、快照、複製與設定的串流。輸出會被導向到SSH連線的遠端主機backuphost上等候輸入的zfs receive，在此建議使用完整的網域名稱或IP位置。接收端的機器會寫入資料到recvpool儲存池上的backup資料集，在zfs recv加上-d可覆寫在接收端使用相同名稱的快照，加上-u可讓檔案系統在接收端不會被掛載，當使用-v，會顯示更多有關傳輸的詳細訊息，包括已花費的時間及已傳輸的資料量。

19.4.8. 資料集、使用者及群組配額
資料集配額(Dataset quota)可用來限制特定資料集可以使用的的空間。參考配額(Reference Quota)的功能也非
常相似，不同在參考配額只會計算資料集自己使用的空間，不含快照與子資料集。類似地，使用者(User)與群組(Group)配額可以用來避免使用者或群組用掉儲存池或資料集的所有空間。

要設定storage/home/bob的資料集配額為10 GB:
zfs set quota=10G storage/home/bob
要設定storage/home/bob的參考配額為10 GB:
zfs set refquota=10G storage/home/bob
要移除storage/home/bob的10 GB配額:
zfs set quota=none storage/home/bob

設定使用者配額的一般格式為userquota@user=size
使用者的名稱必須使用以下格式:
• POSIX相容的名稱，如joe。
• POSIX數字ID，如789。
• SID名稱，如joe.bloggs@example.com。
• SID數字ID，如S-1-123-456-789。

例如，要設定使用者名為joe的使用者配額為50 GB:
zfs set userquota@joe=50G
要移除所有配額:

```
# zfs set userquota@joe=none
```

使用者配額的屬性不會顯示在`zfs get all`。

非root的使用者只可以看看到自己的配額，除非它們有被授予`userquota`權限，擁有這個權限的使用者可以檢視與設定任何人的配額。

要設定群組配額的一般格式為:

```
groupquota@group=size
```

要設定群組`firstgroup`的配額為50 GB可使用:

```
# zfs set groupquota@firstgroup=50G
```

要移除群組`firstgroup`的配額，或確保該群組未設定配額可使用:

```
# zfs set groupquota@firstgroup=none
```

如同使用者配額屬性，非root使用者只可以查看自己所屬群組的配額。而root或擁有`groupquota`權限的使用者，可以檢視並設定所有群組的任何配額。

要顯示在檔案系統或快照上每位使用者所使用的空間及配額可使用`zfs userspace`，要取得群組的資訊則可使用`zfs groupspace`，要取得有關支援的選項資訊或如何只顯示特定選項的資訊請參考`zfs(1)`。

有足夠權限的使用者及root可以使用以下指令列出`storage/home/bob`的配額:

```
# zfs get quota storage/home/bob
```

保留空間（Reservation）可以確保資料集最少可用的空間，其他任何資料集無法使用保留的空間，這個功能能在要確保有足夠的可用空間來存放重要資料集或日誌档時特別有用。

reservation屬性的一般格式為`reservation=size`，所以要在`storage/home/bob`設定保留10 GB的空間可以用:

```
# zfs set reservation=10G storage/home/bob
```

要清除任何保留空間:

```
# zfs set reservation=none storage/home/bob
```

同樣的原則可以用在`refreservation`屬性來設定參考保留空間（Reference Reservation），參考保留空間的一般格式為`refreservation=size`。
開設要外的額功能,而壓縮體。改開間功能記憶間的:重量啟量能來省,這在資料中有大複檔訊來量重考區或資代寫入重接到時可以節塊複的資料區來,偵測與重複(開重,去重料寫入的況可用。更備,可能會有份空有考量能在與問來份壓縮量題,通常會使用屬,到使用者)導致的。

沒實有(雖於的資料增加量便造少間較可用的現奇怪是,那成,這可能會新了一個間檔儲存額可壓縮的資料,使用者更庫的據是以,但衡預副空配額法一併制生無壓縮配額功。在尚未壓縮前,該資料集496 GB屬空於應前使用了的間資料集)目空(性449 GB(間數)考術語演中可用的壓縮多有無法或上已經壓縮的資料關。要取得浪CPU率區避免有擁,LZ4量,可的壓縮能來啟開消法個技術是演LZ4法ZFS隨著,

ZFS v5000演一種都有不同的去125%替能也可來(功代重,際的速25%的層級省能,在資料可以節提供效塊功19.4.10.

這個顯指令會示NAME PROPERTY VALUE SOURCE
zfs get used,compressratio,compression,logicalused mypool/compressed_dataset

User Quota,因此,若一個使用者有了配額空的部份開少的無的部份開,這個)

的部份開少的無的部份開,這個)

的部份開少的無的部份開,這個)
只有要被写入到储存池的新资料才会做去重複的动作，先前已写入到储存池的资料不会因此启动这个选项而做去重複。查看已开启去重複属性的储存池会如下:

```bash
# zpool list
NAME  SIZE  ALLOC  FREE   CKPOINT  EXPANDSZ   FRAG  CAP   DEDUP   HEALTH   ALTROOT
pool 2.84G 20.9M 2.82G         -         -     0%   0%   3.00x   ONLINE   -
```

DEDUP 框位会显示储存池的实际去重複率，数值为 1.00x 代表资料尚未被去重複。在下一个例子会在前面所建立的去重複储存池中複製三份Port树到不同的目录中。

```bash
# for d in dir1 dir2 dir3; do
    mkdir $d && cp -R /usr/ports $d
done
```

已经侦测到重複的资料并做去重複：

```bash
# zpool list
NAME  SIZE  ALLOC  FREE   CKPOINT  EXPANDSZ   FRAG  CAP   DEDUP   HEALTH   ALTROOT
pool 2.84G 2.19M 2.83G         -         -     0%    0%   1.00x   ONLINE   -
```

DEDUP 框位显示有 3.00x 的去重複率，这代表已侦测到多份複製的Port树资料并做了去重複的动作，且只会使用第三份资料所佔的空閒。去重複能节省空间的潜力可以非常巨大，但会需要消耗大量的记忆体来持续追踪去重複的资料区块。去重複并非总是有经济效益的，特别是当储存池中的资料本身并没有重複时。ZFS可以透过在现有储存池上模拟开启去重複功能来显示可能节省的空间：

```bash
# zdb -S pool
```

Simulated DDT histogram:

<table>
<thead>
<tr>
<th>bucket</th>
<th>allocated</th>
<th>referenced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>______________________________</td>
<td>__________________________</td>
</tr>
<tr>
<td>refcnt blocks</td>
<td>LSIZE PSIZE DSIZE</td>
<td>blocks LSIZE PSIZE DSIZE</td>
</tr>
<tr>
<td>------ ------</td>
<td>------ ------ ------</td>
<td>------ ------ ------ ------</td>
</tr>
<tr>
<td>1 2.58M 289G 264G 264G 2.58M 289G 264G 264G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 37.6K 692M 276M 276M 170K 3.04G 1.26G 1.26G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 2.18K 45.2M 19.4M 19.4M 20.0K 425M 176M 176M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 174 2.83M 1.20M 1.20M 3.33K 48.4M 20.4M 20.4M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 40 56K 10.5K 10.5K 1.70K 97.2M 9.91M 9.91M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64 9 56K 10.5K 10.5K 865 4.96M 948K 948K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128 2 9.50K 222K 222K 419 2.11M 438K 438K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>256 5 61.5K 12.6K 12.6K 1.90K 23.0M 4.47M 4.47M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1K 2 1K 1K 1K 2.98K 1.49M 1.49M 1.49M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Project 对, 来调校让个可佳。这里有数状可以作都能以工运况在面 ZFS

19.6.1. 调校进 19.6. 主题阶

拥有在派给其他人。若該使用者的使用者有目标权限资料集或其子资料集何它们拥指定可以给予任指上权限 zfs allow 委託权限委託 19.5.2.

载的才权限使用者挂案系统中所在载。位置必须拥点档挂在另制载一个避免项: 非有可以用限一档挂滥载, 因此需要 FreeBSD 設定指定父予: 权限的资料集下。这里需要注意挂指定可以给到子资料集的新资料集会的使用者在立立

zfs allow 建委託立 19.5.1. 資料集权限委託与大多数。允个子其在执指令间取所有使用者的每存将委託权限委託行时能可以至可以许用给其他人, 率空资料。

Script 中的。可以给备。一个使用份予备量权限快照份使用者使用统計的每例便与权限建能。予如, 若目录均为个使用者的摧毁立可以给家一个资料集, 它们家的管理委託权限面执全 ZFS 性无系统可能一个管理委託 19.5.

jailed 指定将連結一个資料集可以的到一个 Jail, 而 zfs jail Jail 与 19.4.12. ZFS 功空可足夠複的以大大提且有做能只有在可以節體觀間高能。去重記憶效間那開記憶能, 且壓縮建壓縮啟好節空, 功果可能會的的功效體。若資料是可壓縮的, 常議先少能也可非 copies/

空公式大節就省量複費不值得啟那耗的間功使用記憶量重能。去過開透體来能是因比例比例節儲存成。若在此上便複顯空動這個非差省的常達功為啟的間池使用壓縮在

sysctl(8)

vfs.zfs.arc_min

 vfs.zfs.arc_meta_limit

 with other daemons or processes that may require memory. This value can be adjusted at runtime whichever is more. However, a lower value should be used if the system will be running any

total 2.82M 303G 275G 275G 3.20M 319G 287G 287G

zdb -S

vfs.usermount

sysctl(8)

vfs.zfs.arc_max

ARC that can be used to store metadata. The

dedup

1.05, compress

compress / copies

1.00, dedup

dedup * compress / copies ratio = dedup * compress

1.11, copies

/boot/loader.conf

sysctl(8)

/boot/loader.conf
vfs.zfs.scan_idle

scrub

Using a value of different effective IOPS limit. The default value is kern.hz Per Second) generated by the scrub.

 vfs.zfs.scrub_delay

reboot. This value can be adjusted at any time with Warmup Phase" is designed to reduce the performance loss from an empty increases the write speed to the SSD until the first block is evicted from the vfs.zfs.l2arc_write_boost
tunable is designed to extend the longevity of SSDs by limiting the amount of data written to the device. This value can be adjusted at any time with vfs.zfs.l2arc_write_max

the limit applies to each depth of the command queue to prevent high latency. The limit is per top-level vdev, meaning vfs.zfs.top_maxinflight

will keep the device command queue full and may give higher throughput. A lower value will vfs.zfs.vdev.max_pending

Large number of random reads, disabling prefetch may actually improve performance by large number of random reads, disabling prefetch may actually improve performance by vfs.zfs.prefetch_disable

Reducing unnecessary reads. This value can be adjusted at any time with vfs.zfs.vdev.trim_on_init

Forcing 4 KB blocks is also useful on pools where disk upgrades are planned. Future disks are likely to use 4 KB blocks for best performance on these drives. ZFS to use 4 KB blocks for creating a pool, but many drives with 4 KB sectors report that their sectors are 512 bytes for creating a pool, but many drives with 4 KB sectors report that their sectors are 512 bytes for compatibility. Setting vfs.zfs.min_auto_ashift

In some specific cases, the smaller 512-byte block size might be preferable. When used with 512-byte disks for databases, or as storage for virtual machines, less data is transferred during small amplification on these devices. Data that could be contained in a single 4 KB write must instead be written in eight 512-byte writes. ZFS tries to read the native sector size from all devices when be written in eight 512-byte writes. ZFS tries to read the native sector size from all devices when

is only limited when there has been recent activity on the pool, as determined by vfs.zfs.scrub_delay

does not interfere with the normal operation of the pool, if any other I/O is happening the vfs.zfs.scrub_delay

which defaults to 1000 ticks per second. This setting may be changed, resulting in a speed of

20

This value can be adjusted at any time with sysctl(8). This value can be adjusted at any time with sysctl(8)

Setting vfs.zfs.min_auto_ashift

devices. This value can only be adjusted at boot time, and is set in vfs.zfs.vdev.cache.size

in the pool. The total amount of memory used will be this value multiplied by the number of vfs.zfs.vdev.cache.size

in the pool. The total amount of memory used will be this value multiplied by the number of vfs.zfs.vdev.cache.size

value is a power of two. The default value of vfs.zfs.min_auto_ashift

is enabled and get the best performance, set this value to vfs.zfs.min_auto_ashift

9

represents value is only limited when there has been recent activity on the pool, as determined by vfs.zfs.min_auto_ashift

write amplification

during a command run on them. This ensures the best performance and longevity for SSDs, but takes extra time. If the device has already been secure erased, disabling this setting will make the extra time. If the device has already been secure erased, disabling this setting will make the vfs.zfs.vdev.cache.size

is only limited when there has been recent activity on the pool, as determined by vfs.zfs.min_auto_ashift

is only limited when there has been recent activity on the pool, as determined by vfs.zfs.min_auto_ashift

is only limited when there has been recent activity on the pool, as determined by vfs.zfs.min_auto_ashift

is only limited when there has been recent activity on the pool, as determined by vfs.zfs.min_auto_ashift

Ashift

TRIM

Values cannot be changed after a pool is created. This "Turbo

0

4 KB

4 KB

2^12 = 4096

2^9 = 512

2^9 = 512

write amplification on these devices results in write

2^12 = 4096

write amplification on these devices results in write

2^12 = 4096

write amplification on these devices results in write

2^12 = 4096

write amplification on these devices results in write

2^12 = 4096

write amplification on these devices results in write

2^12 = 4096
• vfs.zfs.resilver_delay
 - Number of milliseconds of delay inserted between each I/O during a resilver. To ensure that a resilver does not interfere with the normal operation of the pool, if any other I/O is happening the resilver will delay between each command. This value controls the limit of total IOPS (I/Os Per Second) generated by the resilver. The granularity of the setting is determined by the value of kern.hz which defaults to 1000 ticks per second. This setting may be changed, resulting in a different effective IOPS limit. The default value is 2, resulting in a limit of: 1000 ticks/sec / 2 = 500 IOPS. Returning the pool to an Online state may be more important if another device failing could Fault the pool, causing data loss. A value of 0 will give the resilver operation the same priority as other operations, speeding the healing process. The speed of resilver is only limited when there has been other recent activity on the pool, as determined by vfs.zfs.scan_idle. This value can be adjusted at any time with sysctl(8).

• vfs.zfs.scan_idle
 - Number of milliseconds since the last operation before the pool is considered idle. When the pool is idle the rate limiting for scrub and resilver are disabled. This value can be adjusted at any time with sysctl(8).

• vfs.zfs.txg.timeout
 - Maximum number of seconds between transaction group s. The current transaction group will be written to the pool and a fresh transaction group started if this amount of time has elapsed since the previous transaction group. A transaction group my be triggered earlier if enough data is written. The default value is 5 seconds. A larger value may improve read performance by delaying asynchronous writes, but this may cause uneven performance when the transaction group is written. This value can be adjusted at any time with sysctl(8).
要取得更多詳盡的ZFS相調校建議清單，請參考https://wiki.freebsd.org/ZFSTuningGuide。

19.7. 其他資源
- FreeBSD Wiki - ZFS
- FreeBSD Wiki - ZFS Tuning
- Illumos Wiki - ZFS
- Oracle Solaris ZFS Administration Guide
- Calomel Blog - ZFS Raidz Performance, Capacity and Integrity

19.8. ZFS特色與術語
ZFS是一個從本質上與眾不同的檔案系統，由於它並非只是一個檔案系統，ZFS結合了檔案系統及磁碟區管理程式，讓額外的儲存裝置可以即時的加入到系統並可讓既有的檔案系統立即使用這些在儲存池中空間。透過結合傳統區分為二的角色，ZFS能夠克服以往RAID磁碟組無法擴充的限制。每個在儲存池頂層的裝置稱作vdev，其可以是一個簡單的磁碟或是一個RAID如鏡像或RAID-Z陣列。ZFS的檔案系統（稱作資料集（Dataset））每一個資料集均可存取整個儲存池所共通的可用空間，隨著使用儲存池來配置空間區塊，儲存池能給每個檔案系統使用的可用空間就會減少，這種方式可以避免擴大分割區會使的可用空間分隔分割區之間的常見問題。

儲存池（Pool）儲存池（Pool）是構建ZFS最基本單位。一個儲存池可由一個或多個vdev所組成，是用來儲存資料的底層裝置。儲存池會被拿來建立一個或多個檔案系統（資料集）或區塊裝置（磁碟區），這些資料集與磁碟區會共用儲存池的剩餘空間。每一個儲存池可由名稱與GUID來辨認。可用的功能會依儲存池上的ZFS版本而有不同的。
vdev 型態 (vdev Types)

儲存池是由一個或多個 vdev 所組成，vdev 可以是一個磁碟或是 RAID Transform 的磁碟群組。當使用多個 vdev，ZFS 可以分散資料到各個 vdev 來增加效能與最大的可用空間。

• 磁碟 (Disk) - 最基本的 vdev 型態便是一個標準的資料區塊裝置，這可以是一個整體磁碟（例如 /dev/ada0 或 /dev/da0）或是一個分割區（/dev/ada0p3）。在 FreeBSD 上，使用分割區來替代整體磁碟不會影響效能，這可能與 Solaris 说明文件所建议的有所不同。

• 檔案 (File) - 除了磁碟外，ZFS 儲存池可以使用一般檔案為基礎，這在測試與實驗時特別有用。在 zpool create 時使用檔案的完整路徑作為裝置路徑。所有 vdev 必須至少有 128 MB 的大小。

• 鏡像 (Mirror) - 要建立鏡像，需使用 mirror 關鍵字，後面接著要做為該鏡像成員裝置的清單。一個鏡像需要由兩個或多個裝置來組成，所有的資料都會被寫入到所有的成員裝置。鏡像 vdev 可以對抗所有成員故障只剩其中一個而不損失任何資料。

• RAID-Z - ZFS 實作了 RAID-Z，以標準的 RAID-5 修改而來，可提供奇偶校驗 (Parity) 更佳的分散性並除去了"RAID-5 write hole" 在預期之外的重啟後資料與奇偶校驗資訊不一致的問題。ZFS 支援三層級的 RAID-Z，可提供不同程度的備援來換取減少不同程度的可用空間，類型的名稱以陣列中奇偶校驗裝置的數量與儲存池可以容許磁碟故障的數量來命名，從 RAID-Z1 到 RAID-Z3。

在 RAID-Z1 配置 4 個磁碟，每個磁碟 1 TB，可用的儲存空間則為 3 TB，且若其中一個磁碟故障仍可以降級 (Degraded) 的模式運作，若在故障磁碟尚未更換並修復 (Resilver) 之前又有多個磁碟故障，所有在儲存池中的資料便會遺失。

在 RAID-Z3 配置 8 個 1 TB 的磁碟，磁碟區域將會可以提供 5 TB 的可用空間且在 3 個磁碟故障的情況下仍可運作。Sun™ 建議一個 vdev 不要使用超過 9 個磁碟。若配置需要使用更多磁碟，建議分成兩個 vdev，這樣儲存池的資料便會分散到這兩個 vdev。

使用兩個 RAID-Z2 各由 8 個磁碟組成的 vdev 的配置可以建立一個類似 RAID-60 的陣列。RAID-Z 群組的儲存空間量會接近其中最小的磁碟乘上非奇容許的磁碟數量。
資料集
時
製
寫入
ZIL
L2ARC
委託
（性
父
的管理
權
其子資料
祖
及
屬
可以
。資料集
的
性

自
覆
屬
的
屬
。在子資料集的
可以
繼承
蓋預
設
mypool/home/user
展
後
續
屬
擴
往
。這可以在
的子資料集並且會
其
性
繼承
mypool/home
層級
資料集會
目錄
名
採
一
用像
，
的
來
樣
算
池
一個資料集,子
格式。
根
部
來說也
poolname/path@snapshot
料集都有
二的
無
使用
一
名稱
快照
磁碟區
。每
個資
案系統、
檔
、
本的通用
術語
複
或
複
或
案系統,在
統的
d
傳
ZFS
謂
棄
放
來
內容並不會
檔
寫
,只會
整
案的完
失
時,
未
過
(寫入檔
案的
在
源
或電
)程序中系統當
中斷
新的
發生寫入
。因此,在
位置
指向
寫入
Metadata
在資料
完成後
新
更
會
的
塊
,而是
寫入
將
,只
到
新資料會
一個資料
區
另
接
寫
時,不會
直
被
,當資料要
舊資料所在
ZFS
覆
覆
寫
。不像
案系統,在
統的
d
傳
ZIL
寫入
不會用到
全
案,
完
複
。像
檔
利
這
類
使用像資料
於
工
般非
作,一
的同步
同
ZIL
進
效
的
減
少
延
並
能。
遲
。這可大
一
儲存
的
到一
間
,之後
寫入
量
磁碟
空
併
到
ZIL
快
再
寫入
,資料會先
速度
的
寫入
(磁碟
快
資料會安
取
到
(儲存
後
保
証
的
,而不是先
全
一個同步的
寫入
求
應
做
時
。當
用程式請
(Synchronous transaction)
入動
作
,如
會使用
儲存
同步
寫
還更快
池
置
比
的
來
加速
儲存
裝
主要
ZIL
限
增加寫入
(Write limit)
,時
制
寫入加速
即
vfs.zfs.l2arc_write_boost
位
少數
取,而
元
秒
到
有多
寫入
組
快
控制每
vfs.zfs.l2arc_write_max
的
制
限
速度
個
控制
,可以
限
制
為寫入
,之後
兩
會
的
則
制
合
限
總
制
加速
(Boost limit)
限
與
在
L2ARC
率
的資料
制
速
限
寫入
會
的
塊
之前,
出
第一個資料
到
區
騰
空
去
寫入
除
間
率
到
被限
速
制
直
,
快
盡
,早
耗損
多而
取
裝
因
次
快
置
速
到
寫入
加入
了
SSD
避免
。要從
比
加快
為
L2ARC
磁碟
速度
並不
適合
在
, RAM
適合
放
複
也同
加速
重
樣
可以
去
快
速度
讀取。
取的
檔
般磁碟
無
須
從一
案讀取
L2ARC,
,使用可以明
是
使用
顯
那
些
但
RC
用的,
選
SSD
增
已
進
L2A
的
快
遲
態
有
與
,較
的
的延
速度
低
較
磁碟
磁碟
拿
作
為比
轉
處
置
起
旋
取
裝
,因
統
碟
片
vdev (Cache vdev)
ZFS
可用的
也可以使用
限
空
通常有
量
間
當中,
為
RAM
會
RAM
儲存
快
取
系統的第二
,主要的
L2ARC
ARC
ZFS
可用

複快照磁碟區檔案系統額與父量響既外的間空由前的子,這個操作不需要（父快照為子。）照本可以本所使用的刪為法被計會時，在先前資料則少建覆被區會成長，當在磁碟區塊表(Apparent本的)小新的資料,空外耗不會複案系統可分本是也可複版本的獨掛無照立但製複可磁碟區上快hold除快照快。在,而hold錯誤的可以個每刪嘗動時,作要會快照也可使用為回空這個資料可用被東西參滅考沒變,快照到數參案系統使用這個資料塊快照少追蹤器,可以用來持續記數有多的儲存變更池區。個在指定快照前的在之何任,來還原(原復唯。)可以用於快照隨著在前案系統面大前的配置會。當新的資料空使用複前的案系統,而的儲存變更則快照檔可用空區舊的資料為回,寫入但區((快照資料集的迴設即時、一致的計可以使用到任意的寫入時(Extent)。)出例磁區延伸UFS頂ZFS校及資料快照複與資料集相、製含寫入是資料塊，磁碟區多建也可以立磁碟區了一ZFS的有擁目錄案系統會一含載在系統層級掛某檔案系統，檔數做檔被其他的ZFS記來標，檔標release反轉本成(EBUSY))
若資料不
符合
預
期
的
校
驗
碼,
ZFS
會
嘗
試
從
任
何
可用
的
備
援
來
還
原
資料,
例
如
鏡
像
(Mirror)
或
RAID-
Z。要
檢
驗
所
有
資
料
的
校
驗
碼
可以
使
用
清
潔
(Scrub),
資
料
校
驗
的
演
算
法
有:

* fletcher2
* fletcher4
* sha256

演
算
法
最
快,
而
sha256
雖
較
消
耗
效
能,
但
其
有
強
大的
密
碼
雜
湊
與
較
低
的
衝
突
率。
也
可
關
閉
資
料
校
驗,
但
不
建
議。
壓
縮
(Compression)
每
個
資
料
集
都
有
壓
縮
(Compression)
屬
性,
預
設
是
關
閉
的,
這
個
属
性
可
設
定
使
用
以
下
幾
個
壓
縮
演
算
法
的
中
其
一
來
壓
縮
寫
入
到
資
料
集
的新
資
料。
壓
縮
除
了
減
少
空
間
使
用
量
外,
常
也
會
增
加
讀
取
與
寫
入
的
吞
吐
量,
因
為
會
減
少
讀
取
與
寫
入
的
資
料
區
塊。

* LZ4 - ZFS 儲
存
池
版
本
5000 （能
標
）
後
增
加
,
LZ4
現
在
是
建
議
的
壓
縮
演
算
法,
在
處
理
可
壓
縮
的
資
料
時
LZ4
壓
縮
比
LZJB
快
將
近
50%,
在
處
理
不
可
壓
縮
的
資
料
時
快
將
近
三
倍,
LZ4
解
壓
縮
也
比
LZJB
將
近
80%。
在
現
代
的
CPU
上,
LZ4
經
常
平
均
用
500 MB/s
的
速
度
壓
縮,
而
解
壓
縮
可
達
1.5 GB/s （每
個
CPU
核
心）。

* LZJB - 預
設
的
壓
縮
演
算
法。
由
Jeff Bonwick
所
開
發
（ZFS
的
創
始
人
之
一）。
LZJB
與
GZIP
相
比,
可
較
低
的
CPU
提
供
較
佳
的
壓
縮
功
能。在
未
來
預
設
的
壓
縮
演
算
法
將
更
換
為
LZ4。

* GZIP - 在
ZFS
用
的
熱
門
串
流
壓
縮
演
算
法。
使
用
GZIP
主
要
的
優
點
之
一
便
是
可
設
定
壓
縮
層
級。
當
設
定
compress
屬
性,
管
理
者
可
選
擇
壓
縮
層
級
範
圍
從
最
低
的
壓
縮
層
級
gzip1
to
最
高
的
壓
縮
層
級
gzip9。
這
讓
管
理
者
可
控
制
要
使
用
多
少
CPU
to
省
磁
碟
空
間。

* ZLE - 零
長
度
編
號
是
一
個
特
殊
的
壓
縮
演
算
法,
它
只
會
壓
縮
連
続
的
零
。這
種
壓
縮
演
算
法
只
在
資
料
集
含
有
大
量
為
零
的
資
料
區
塊
時
有
用。
去備份效動清潔池對上降低優工調整相保是被檢查,如此也會隱增隱能校的但清潔驗作可以少執會檢常使用讀取時每三作至但作,閉塊復所有正的資料已這些資料前常池期儲存定際碼檢良好區驗中這些資料的。Metadata儲存區中的資料並且來做查記憶而不需要大外的相衡代功。也可以慮及快速取得一個平較體間之DDT,去能有很大的重功DDT導塊前需個要有足夠的來。 MEMORY一資5-6 GB重複的去經體,每是記憶一資料,所以會消量區塊DDT由。

湊真料與記的完相同,若資料不同塊區則元檢確保設為會認為驗符合只要能是可以驗複湊,去演加密來提供一個安複重在料使用了已既碼會計清驗有資校符合中是位置資料考塊參的所在碼DDT)清去(Deduplication table, 偵測需要在空的資料儲存重記憶複既,可以參塊增加重損失所個的次要損壞但中磁碟無份原單功備能可以的在做備援沒池上時可做額符驗以做。不相原備援以在資料份。在屬性要的資料集塊在案系統的於當設定verify

File System屬性on)磁碟區
資料集保組配額群（Group Quota）配額使用者（User Quota）考配額（Reference Quota）

資料集

別個於線上作。代表置所有該裝正時或一個池vdev處於線上稱來計訊磁碟機算在其他的資料,會使用分奇磁碟上失必須回且換被存先前所磁碟間佔，所以也不會空並不會列裔入，主資料集的後功項要有操作足夠空列作一個問並不會快照及不同的是，資料集所使用的由間供這個資料集使用。若要製空留空使用所有試的問的間的storage/home/bob其後裔若在小可用的間有案的程序間或系統測磁碟皆一種如要不管留空情多裔例，的方式屬性但似也以算。

間保快照所使用的供這個資料集使用。若要製空留空使用所有試的問的間的storage/home/bob其後裔若在小可用的間有案的程序間或系統測磁碟皆一種如要不管留空情多裔例，的方式屬性但似也以算。

the ZFS supports different types of quotas: the Hard limit, reference quota (refquota), and reference reservation (refreservation).
若有足够的备援可避免储存池或vdev进入故障（Faulted）状态，个别装置若可由管理者设为离线（Offline）状态，管理者可以选择要设定那一个磁碟为离线来准备更换单或是让其更容易辨识。

降级（Degraded）一个储存池或vdev处於降级（Degraded）状态代表其有一个或多個磁碟已断线或故障，此时储存池仍可以使用，但只要再有其他的装置故障，储存池会无法复原。重新连线缺少的装置或更换故障的磁碟，并在新装置完成修复（Resilver）程序可让储存池返回线上（Online）状态。故障（Faulted）一个储存池或vdev处於故障（Faulted）状态代表无法运作，会无法存取在该装置上的资料。当在vdev中缺少或故障的装置数超过备援的层级，储存池或vdev会进入故障（Faulted）状态。若缺少的装置可以重新连线，储存池便会返回线上（Online）状态。若没有足够的备援可补偿故障的磁碟数量便会遗失储存池中的内容且只能从备份还原。
File systems are an integral part of any operating system. They allow users to upload and store files, provide access to data, and make hard drives useful. Different operating systems differ in their native file system. Traditionally, the native FreeBSD file system has been the Unix File System UFS which has been modernized as UFS2. Since FreeBSD 7.0, the Z File System (ZFS) is also available as a native file system. See Z档系统 (ZFS) for more information.

In addition to its native file systems, FreeBSD supports a multitude of other file systems so that data from other operating systems can be accessed locally, such as data stored on locally attached USB storage devices, flash drives, and hard disks. This includes support for the Linux™ Extended File System (EXT).

There are different levels of FreeBSD support for the various file systems. Some require a kernel module to be loaded and others may require a toolset to be installed. Some non-native file system support is full read-write while others are read-only.

Read this chapter to:

• The difference between native and supported file systems.
• Which file systems are supported by FreeBSD.
• How to enable, configure, access, and make use of non-native file systems.

Before starting this chapter, you need to:

• Understand UNIX™ and FreeBSD basics.
• Be familiar with the basics of kernel configuration and compilation.
• Feel comfortable installing software in FreeBSD.
• Have some familiarity with disks, storage, and device names in FreeBSD.

20.2. Linux™档系统
FreeBSD provides built-in support for several Linux™ file systems. This section demonstrates how to load support for and how to mount the supported Linux™ file systems.

20.2.1. ext2
Kernel support for ext2 file systems has been available since FreeBSD 2.2. In FreeBSD 8.x and earlier, the code is licensed under the GPL. Since FreeBSD 9.0, the code has been rewritten and is now BSD licensed.

The ext2fs(5) driver allows the FreeBSD kernel to both read and write to ext2 file systems. This driver can also be used to access ext3 and ext4 file systems. The ext2fs(5) filesystem has full read and write support for ext4 as of FreeBSD 12.0-RELEASE. Additionally, extended attributes and ACLs are also supported, while journaling and encryption are not. Starting with FreeBSD 12.1-RELEASE, a DTrace provider will be available as well. Prior versions of FreeBSD can access ext4 in read and write mode using sysutils/fusefs-ext2.
Then, mount the ext volume by specifying its FreeBSD partition name and an existing mount point. This example mounts `/dev/ad1s1` on `/mnt`:

```
# mount -t ext2fs /dev/ad1s1 /mnt
```
21.1. 概述

虛擬化軟體可以讓同一台機器得以同時執行多種作業系統。在 PC 上的這類軟體系統通常涉及的作業系統有執行虛擬化軟體的主端（Host）作業系統以及數個安裝在其中的客端（Guest）作業系統。

讀完這章，您將了解:

• 主端作業系統及客端作業系統的差別。
• 如何在 Intel™-based Apple™ Mac™ 電腦安裝 FreeBSD。
• 如何在 Microsoft™ Windows™ 使用 Virtual PC 安裝 FreeBSD。
• 如何以 FreeBSD 為客端安裝在 bhyve。
• 如何調校 FreeBSD 系統來取得虛擬化的最佳效能。

在開始閱讀這章之前，您需要:

• 了解 UNIX™ 與 FreeBSD 的基礎。
• 知道如何安裝 FreeBSD。
• 知道如何設定網路連線。
• 知道如何安裝其他第三方軟體。

21.2. 在 Mac OS™ X 的 Parallels 安裝 FreeBSD

在 Mac OS™ X 的 Parallels Desktop 是一套商業軟體可在 Intel™ 為基礎的 Apple™ Mac™ 的 Mac OS™ 10.4.6 或更新版本上執行。該軟體完全支援使用 FreeBSD 為客端作業系統。在 Mac OS™ X 裝好 Parallels 後，使用者必須先完成虛擬機器的設定後才可安裝想使用的客端作業系統。

21.2.1. 在 Parallels/Mac OS™ X 安裝 FreeBSD

在 Parallels 上安裝 FreeBSD 的第一步是建立供安裝 FreeBSD 使用的新虛擬機器。提出現後請選擇 Guest OS Type 為 FreeBSD：
根據您對此虛擬FreeBSD作業系統的規畫選擇合理的磁碟及記憶體空間，對大多數在Parallels下的FreeBSD使用來說4GB的磁碟空間與512MB的RAM便足夠。
Click the lock to prevent further changes.
Virtual Machine Configuration

FreeBSD

CPUs: 2
Memory: 256 MB
Disk space: 8 GB

Configure...

Continue
Welcome to FreeBSD

1. Boot Multi user [Enter]
2. Boot Single user
3. Escape to loader prompt
4. Reboot
5. Cons: Video

Options:
6. Kernel: default/kernel (1 of 1)
7. Boot Options

Autoboot in 9 seconds. [Space] to pause

OS Installation Assistant

Select virtual machine configuration file

Please specify a virtual machine name and location of the virtual machine configuration file.

Virtual Machine Name:
FreeBSD-CURRENT

Configuration File:
/s/murray/Library/Parallels/otherbsd/otherbsd.pvs
在 FreeBSD 虛擬機器新増後，就可継續以其安裝 FreeBSD。安裝方面，比較好的作法是使用官方的 FreeBSD CD/DVD 或是自官方 FTP 站下載的 ISO 映像檔。複製適合的 ISO 映像檔到 Mac™ 檔案系統本地端或放入 CD/DVD 到 Mac™ 的 CD-ROM 磁碟機。在 FreeBSD Parallels 視窗的右下角點選磁碟圖示後會出現一個視窗，可用來建立虛擬機器內的 CD-ROM 磁碟機與磁碟上 ISO 檔案或實際 CD-ROM 磁碟機的關聯。建立與 CD-ROM 來源的關聯後，點選重新開機圖示重新開機 FreeBSD 虛擬機器。
會重新開機進入一個特殊的BIOS畫面並檢查是否有CD-ROM。

在此處會找到FreeBSD安裝媒體並開始正常的FreeBSD安裝程序。完成安裝，但不要在此時嘗試設定Xorg。

當安裝完成後，重新開機將會進入新安裝的FreeBSD虛擬機器。
21.2.2. Setting FreeBSD in Parallels after successfully installing FreeBSD on Mac OS™ X, there are several configuration steps to complete to optimize the system performance on the virtual machine.

1. Setting Boot Loader:
 The most important step is reducing the `kern.hz` parameter to decrease FreeBSD CPU usage in the Parallels environment.
 Add the following line to `/boot/loader.conf` to complete this task:
   ```
kern.hz=100
   ```
 If this setting is not completed, the FreeBSD Parallels client will consume approximately 15% of the CPU on an iMac™. After making this change, the usage rate will reduce to nearly 5%.

2. Establishing New Core Configuration:
 All SCSI, FireWire, and USB devices can be removed from the default core configuration.
 Parallels provides virtual network cards that use the `ed(4)` driver, so except for `ed(4)` and `miibus(4)`, all network devices can be removed from the core.

3. Setting Network:
 The basic network setting is to use DHCP to connect the virtual machine to the same network as the host Mac™, which can be achieved by adding `ifconfig_ed0="DHCP"` to `/etc/rc.conf`.
 Advanced network settings are described in the advanced network settings.

In the virtual machine console, you may enter the following commands:

```
> pwd
/usr/home/murray
> su -m
Password:
ifconfig -a
```

```
ed0: flags=8002< BROADCAST, MULTICAST > mtu 1500
     ether 00:a6:db:0f:32:ca
     media: Ethernet autoselect (10baseT/UTP)
lo0: flags=3049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384
     inet6 fe80::1%lo0 prefixlen 64 scopeid 0x2
     inet6 ::1 prefixlen 128
     inet 127.0.0.1 netmask 0xff000000
```

DHCPDISCOVER on ed0 to 255.255.255.255 port 67 interval 7
DHCPOFFER from 192.168.1.1
DHCPREQUEST on ed0 to 255.255.255.255 port 67
DHCPACK from 192.168.1.1
bound to 192.168.1.107 — renewal in 43200 seconds.
21.3. 在 Windows™ 的 Virtual PC 安装 FreeBSD 为客户端

给 Windows™ 使用的 Virtual PC 是一套可免费下载的 Microsoft™ 软体产品，请参考此网站取得系统需求。

Virtual PC 在 Microsoft™ Windows™ 上安装完成之后，使用者可以设定一台虚拟机器然后安装想要的客户端操作系统。

21.3.1. 在 Virtual PC 安装 FreeBSD

安装 FreeBSD 到 Virtual PC 的第一个步骤是建立新的虚拟机器来安装 FreeBSD。当提示画面出现时，请选择 Create a virtual machine:

当提示画面出现时，选择 Operating system 为 Other:

Name and location: FreeBSD-CURRENT

Browse...
然後，根據您對此虛擬FreeBSD作業系統的規畫選擇合理的磁碟及記憶體空間，對大多數在Virtual PC下的FreeBSD使用來說4GB的磁碟空間與512MB的RAM便足夠。

New Virtual Machine Wizard
Operating System
Select the operating system you plan to install on this virtual machine.

Selecting an operating system here allows the wizard to recommend appropriate settings for this virtual machine. If the desired guest operating system is not listed, select an operating system that requires an equivalent amount of memory or select Other.

Operating system: Other
Default hardware selection:
Memory: 128 MB
Virtual disk: 16,384 MB
Sound: Sound Blaster 16 compatible

New Virtual Machine Wizard
Memory
You can configure the RAM on this virtual machine.

To improve the performance of this virtual machine and run more applications on its operating system, increase the amount of RAM allocated to it. To leave more RAM for other virtual machines on your system, use the recommended RAM allocation.

Recommended RAM: 128 MB
Allocate RAM for this virtual machine by:
- Using the recommended RAM
- Adjusting the RAM

Set the RAM for this virtual machine:
4 MB 1079 MB
512 MB
Choose FreeBSD virtual machine and then select Settings to set up the network type and network interface card.
FreeBSD 虛擬機器建立完成之後，便可安裝 FreeBSD 到該虛擬機器。安裝最 好使用官 方 FreeBSD CD/DVD 或使用自 官方 FTP 站下載的 ISO 映 像 檔。複製適當的 ISO 映 像 檔到本地 Windows™ 檔 案系統或 插 入 CD/DVD 到 CD 磁碟機，然後雙擊點選 FreeBSD 虛擬機器來開機。接 著，點選 CD並在 Virtual PC 視窗 選擇 Capture ISO Image…，這 將會顯示一個視窗可以建 立虛擬機器中的 CD-ROM 與 ISO 檔或 磁碟或實體 CD-ROM 磁碟機之間的關 聯。

You can select the number of network adapters you want to have on this virtual machine. You can then select which network adapter from the physical computer will be used for network communication with each virtual adapter. You can also select to use the local network or, for the first adapter, the shared network.
建立与 CD-ROM 来源的关联后，点选 Action 及 Reset 重新开机 FreeBSD 虚拟机器。 Virtual PC 会重新开始并进入特殊的 BIOS 来做 CD-ROM 的第一次检查。
在這個情況下會找到 FreeBSD 安裝媒體然後開始正常的 FreeBSD 安裝。接著繼續安裝，但此時請不要嘗試設定 Xorg。
當安裝完成之後，記得退出 CD/DVD 或釋放 ISO 映像檔。最後，重新開機進入新安裝的 FreeBSD 虛擬機器。
21.3.2. In Virtual PC setting FreeBSD in successful Windows Virtual PC installation, there are several steps to complete to optimize system operation in the virtual machine.

1. Setting Boot Loader is the most important step to reduce kern.hz, to reduce FreeBSD CPU usage in the Virtual PC environment. This can be done by adding the following lines to /boot/loader.conf:

 Kernel.hz=100

 If not completed, the FreeBSD Virtual PC guest OS will consume almost 40% of the CPU. After completing this change, the usage rate will decrease to nearly 3%.

2. Setting up new kernel configuration, all SCSI, FireWire, and USB devices can be removed from the kernel configuration. Virtual PC provides a virtual network card using de(4) driver, so except de(4) and miibus(4), all network devices can be removed from the kernel configuration.

3. Setting up network The basic network setup is to use DHCP to connect the virtual machine to the domain network of the same as the host Microsoft™ Windows™ network, which can be done by adding ifconfig_de0="DHCP" to /etc/rc.conf. Advanced network settings are described in the advanced network settings.
21.4 在 Mac OS™ 的 VMware Fusion 安装 FreeBSD 为客户端

VMware Fusion 是一套商业软件，可在 Intel™ 为基础的 Apple™ Mac™ 的 Mac OS™ 10.4.9 或更新版本上执行。该软件完全支持使用 FreeBSD 作为客户端操作系统。在 Mac OS™ X 安装好 VMware Fusion 后，使用者必须先完成虚拟机器的设定后才可安装想使用的客户端操作系统。

21.4.1 在 VMware Fusion 安装 FreeBSD

第一步骤是启动 VMware Fusion 载入 Virtual Machine Library，点选 New 建立虚拟机器：这动作会载入 New Virtual Machine Assistant，点选 Continue 继续。
Select the Installation Method

- **Install from disc or image**
 Drag your ISO file here to start installing

 - **Migrate your PC**
 - **Install macOS from the recovery partition**
 - **Import an existing virtual machine**
 - **Install from Boot Camp**
 - **Create a custom virtual machine**

Continue
Choose Operating System
Select the operating system to be used in this virtual machine.

Select the operating system for this virtual machine:

- Microsoft Windows
- Linux
- Apple OS X
- VMware ESX
- Other

- eComStation2
- eComStation
- FreeBSD 12 64-bit
- FreeBSD 11 64-bit
- FreeBSD 11
- FreeBSD version 10 and earlier 64-bit
- FreeBSD version 10 and earlier
- MS-DOS
- NetWare 6
- NetWare 5
- Other 64-bit
Choose Firmware Type
Select the firmware type to be used to boot this virtual machine.

Specify the boot firmware:
- Legacy BIOS
- UEFI
- UEFI Secure Boot
Choose a Virtual Disk
Select a virtual disk to be used with this virtual machine.

Choose a virtual disk option:
- Create a new virtual disk
- Use an existing virtual disk

Choose virtual disk...

Guest OS: FreeBSD 12 64-bit
Option: New Hard Disk
Capacity: 20 GB
Finish
The configuration of the virtual machine is now complete.

Virtual Machine Summary
Guest Operating System FreeBSD 12 64-bit
New Hard Disk Capacity 20 GB
Memory 256 MB
Networking Share with my Mac (NAT)
Device Summary CD/DVD, USB Controller, Sound Card

To change the default virtual machine settings, click Customize Settings. To run the virtual machine now, click Finish.

Customize Settings
Finish
The configuration of the virtual machine is now complete.

Save As: FreeBSD 12 64-bit.vmwarevm
Tags:
Where: Virtual Machines

Share this virtual machine with other users on this Mac
Some features will be limited when sharing a virtual machine. Sharing is only available when the virtual machine is saved in a shared folder.

Cancel Save

To change the default virtual machine settings, click Customize Settings. To run the virtual machine now, click Finish.

Customize Settings

Go Back Finish
安装完成後，可以修改虛擬機器的設定，例如記憶體使用量。

虛擬機器要使用的CPU數量:
CD-ROM 裝置的狀態，正常情況 CD/DVD/ISO 在不需要時會中斷與虛擬機器的連線。
最後一件事是更改虛擬機器連線到網路的方式。要允許除了主端以外的機器連線到虛擬機器，請選擇「Connect directly to the physical network (Bridged)」。否則會偏好使用「Share the host's internet connection (NAT)」來讓虛擬機器可以存取網際網路，但外部網路無法連線到虛擬機器。
在修改设定之后，开机进入新安装的 FreeBSD 虚拟机。

21.4.2. 在 VMware Fusion 设定 FreeBSD 成功将 FreeBSD 安装到 Mac OS™ X 的 VMware Fusion 后, 有数个设定步骤要完成来最佳化系统在虚拟机器上的运作。

1. 调整 Boot Loader 变数最重要的一个步骤是减少 kern.hz, 来减少 FreeBSD 在 VMware Fusion 环境下 CPU 的使用量。这可以透过加入下列几行到 /boot/loader.conf 来完成:

   ```
   kern.hz=100
   ```

 若没有完成此设定，闲置的 FreeBSD VMware Fusion 客端将会消耗掉单一处理器的 iMac™ 将近 15% 的 CPU。完成此更改后使用率会降至接近 5%。

2. 建立新核心设定档

 所有的 SCSI, FireWire 及 USB 装置可以从自订的核心设定档中移除。VMware Fusion 提供的虚拟网路卡使用 em(4) 驱动程式, 因此除了 em(4) 外的所有网路装置可以自核心中移除。

3. 调整网络

 最基本的网络设定是使用 DHCP 来让虚拟机器连线到与主端 Mac™ 相同的区域能路, 这可以透过加入 ifconfig_em0="DHCP" 到 /etc/rc.conf 来完成。更进阶的网络设定在进阶网络设定中描述。

21.5. 在 VirtualBox™ 安装 FreeBSD 作为客端
作为客户端，系统也可以运作得很好，虚拟化软件可以支援最常见的几个作业系统，这当然也包含FreeBSD。

VirtualBox™客机添加支援以下功能：
- 剪贴簿共享。
- 滑鼠指针整合。
- 主机时间同步。
- 视窗缩放。
- 无痕模式。

以下指令均是在FreeBSD客机中执行。

首先，在FreeBSD客机安装emulators/virtualbox-ose-additions套件或Port，以下指令会安装Port：
```
# cd /usr/ports/emulators/virtualbox-ose-additions && make install clean
```

加入下行到/etc/rc.conf：
```
vboxguest_enable="YES"
vboxservice_enable="YES"
```

若有使用ntpd(8)或ntpdate(8)，便可关闭主机时间同步功能：
```
vboxservice_flags="--disable-timesync"
```

Xorg会自动辨识vboxvideo驱动程式，也可手动在/etc/X11/xorg.conf中输入：
```
Section "Device"
Identifier "Card0"
Driver "vboxvideo"
VendorName "InnoTek Systemberatung GmbH"
BoardName "VirtualBox Graphics Adapter"
EndSection
```

要使用vboxmouse驱动程式，可调整在/etc/X11/xorg.conf中与滑鼠相关的节：
```
Section "InputDevice"
Identifier "Mouse0"
Driver "vboxmouse"
EndSection
```

HAL的使用者应建立以下/usr/local/etc/hal/fdi/policy/90-vboxguest.fdi或复制自/usr/local/shared/hal/fdi/policy/10osvendor/90-vboxguest.fdi：
```
<?xml version="1.0" encoding="utf-8"?>
```
Shared folders for file transfers between host and VM are accessible by mounting them using `mount_vboxvfs`. A shared folder can be created on the host using the VirtualBox GUI or via `vboxmanage`. For example, to create a shared folder called `myshare` under `/mnt/bsdboxshare` for the VM named `BSDBox`, run:

```
# vboxmanage sharedfolder add 'BSDBox' --name myshare --hostpath /mnt/bsdboxshare
```

Note that the shared folder name must not contain spaces. Mount the shared folder from within the guest system like this:

```
# mount_vboxvfs -w myshare /mnt
```
以 FreeBSD 作為主端使用 VirtualBox™

VirtualBox™ 是一套極開發、完整的虛擬化套件，適用大多數作業系統，包含 Windows™、Mac OS™、Linux™ 與 FreeBSD，它同樣能夠執行類 Windows™ 或 UNIX™ 的客端系統。它是以開源軟體的方式發佈，但閉源元件可獨立在擴充包中使用，這些元件包含對 USB 2.0 裝置的支援。

更多資訊可在 VirtualBox wiki 的 Downloads 頁面。

目前，這些擴充套件並不像支援 FreeBSD。

21.6.1. 安裝 VirtualBox™

VirtualBox™ 可於 emulators/virtualbox-ose 以 FreeBSD 套件或 Port 的方式取得。要安裝 Port 可使用以下指令:

```
# cd /usr/ports/emulators/virtualbox-ose
# make install clean
```

在 Port 的設定選單中，GuestAdditions 相關程式是最有用的選項之一，這些程式可在客端作業系統提供數個有用的功能，如滑鼠指標整合（允許滑鼠在主端與客端之間移動，不需要按特殊快速鍵來切換）與較快的影像繪圖速度，特別是在 Windows™ 的客端系統。Guest additions 可在客端系統安裝完之後的 Devices 選單中找到。

還有一些設定需要在 VirtualBox™ 第一次啟動端做修改，Port 會安裝一個核心模組在 /boot/modules，該模組必須在核心中載入:

```
# kldload vboxdrv
```

要確保該模組在重開機後會載入，可加入下列到 /boot/loader.conf:

```
vboxdrv_load="YES"
```

要使用可支援橋接或僅限主端（Host-only）的網路，可加入下列到 /etc/rc.conf，然後重新啟動電腦:

```
vboxnet_enable="YES"
```

在安裝 VirtualBox™ 的過程中會建立 vboxusers 群組，所有需要存取 VirtualBox™ 的使用者均需要加入成為此群組的成員，pw 可用來加入新的成員:

```
# pw groupmod vboxusers -m yourusername
```

/dev/vboxnetctl 的預設權限是受限的，需要更改後才可使用橋接網路:

```
# chown root:vboxusers /dev/vboxnetctl
# chmod 0660 /dev/vboxnetctl
```

要永久变更權限，可加入下列幾行到 /etc/devfs.conf:

```
own     vboxnetctl root:vboxusers
```

要变更權限，可加入下列幾行到 /etc/devfs.conf:

```
own     vboxnetctl root:vboxusers
```
要執行VirtualBox™，可在Xorg工作階段輸入:

% VirtualBox

要取得更多關於設定與使用VirtualBox™的資訊，請參考官方網站。

供FreeBSD特定的資訊與疑難排解操作指示，可參考FreeBSD wiki中相關的頁面。

21.6.2. VirtualBox™ USB支援
VirtualBox™ can be configured to pass USB devices through to the guest operating system. The host controller of the OSE version is limited to emulating USB 1.1 devices until the extension pack supporting USB 2.0 and 3.0 devices becomes available on FreeBSD.

For VirtualBox™ to be aware of USB devices attached to the machine, the user needs to be a member of the operator group.

pw groupmod operator -m yourusername

Then, add the following to /etc/devfs.rules, or create this file if it does not exist yet:

```
[system=10]
add path 'usb/*' mode 0660 group operator
```

若服務未執行，請加入下行到/etc/rc.conf:

```
devfs_system_ruleset="system"
```

然後重新啟動devfs:

```
# service devfs restart
```

重新啟動登作階段與VirtualBox™來讓這些變更生效，且建立必要的USB的過濾器。

21.6.3. VirtualBox™ Host DVD/CD存取
透過程實體磁碟機可讓客端系統能夠存取主端系統的DVD/CD磁碟機。在VirtualBox™中，這個功能可在虛擬機器設定中的儲存(Storage)視窗中設定。若需要，可先建立一個空的IDECD/DVD裝置，然後在跳出的選單中選擇要做為虛擬CD/DVD磁碟機的主端磁碟機，此時會出現一個標籤為Passthrough的核選方塊，勾選這個核選方塊可讓虛擬機器直接使用該硬體，例如，音樂CD或燒錄機只會在有勾選此選項時能夠運作。

VirtualBox™DVD/CD功能要能運作需要執行HAL，因此需在/etc/rc.conf中開啟，若該服務尚未啟動，則啟動它:

```
hald_enable="YES"
```
To enable users to use VirtualBox™ DVD/CD functionality, these users need access to /dev/xpt0, /dev/cdN as well as /dev/passN, which usually allows these users to become operator members to achieve.

Permissions for these devices must be added to /etc/devfs.conf:

```plaintext
perm cd* 0660
perm xpt0 0660
perm pass* 0660
```

service devfs restart

21.7.

To install bhyve on FreeBSD

The bhyveBSD-licensed hypervisor became part of the base system with FreeBSD 10.0-RELEASE.

This hypervisor supports a number of guests, including FreeBSD, OpenBSD, and many Linux™ distributions. By default, bhyve provides access to serial console and does not emulate a graphical console. Virtualization offload features of newer CPUs are used to avoid the legacy methods of translating instructions and manually managing memory mappings.

The bhyve design requires a processor that supports Intel™ Extended Page Tables (EPT) or AMD™ Rapid Virtualization Indexing (RVI) or Nested Page Tables (NPT). Hosting Linux™ guests or FreeBSD guests with more than one vCPU requires VMX unrestricted mode support (UG). Most newer processors, specifically the Intel™ Core™ i3/i5/i7 and Intel™ Xeon™ E3/E5/E7, support these features. UG support was introduced with Intel's Westmere micro-architecture. For a complete list of Intel™ processors that support EPT, refer to [https://ark.intel.com/content/www/us/en/ark/search?featurefilter.html?productType=873&0_ExtendedPageTables=True]. RVI is found on the third generation and later of the AMD Opteron™ (Barcelona) processors. The easiest way to tell if a processor supports bhyve is to run `dmesg` or look in /var/run/dmesg.boot for the POPCNT processor feature flag on the Features2 line for AMD™ processors or EPT and UG on the VT-x line for Intel™ processors.

21.7.1.

Preparing the host system

The first step to creating a virtual machine in bhyve is configuring the host system. First, load the bhyve kernel module:

```
# kldload vmm
```

Then, create a tap interface for the network device in the virtual machine to attach to. In order for the network device to participate in the network, also create a bridge interface containing the tap interface and the physical interface as members. In this example, the physical interface is igb0:

```
# ifconfig tap0 create
# sysctl net.link.tap.up_on_open=1
net.link.tap.up_on_open: 0 -> 1
# ifconfig bridge0 create
# ifconfig bridge0 addm igb0 addm tap0
```
Create a file to use as the virtual disk for the guest machine. Specify the size and name of the virtual disk:

```
# truncate -s 16G guest.img
```

Download an installation image of FreeBSD to install:

```
# fetch ftp://ftp.freebsd.org/pub/FreeBSD/releases/ISO-IMAGES/10.3/FreeBSD-10.3-RELEASE-amd64-bootonly.iso
```

FreeBSD comes with an example script for running a virtual machine in bhyve. The script will start the virtual machine and run it in a loop, so it will automatically restart if it crashes. The script takes a number of options to control the configuration of the machine:

- `-c` controls the number of virtual CPUs,
- `-m` limits the amount of memory available to the guest,
- `-t` defines which tap device to use,
- `-d` indicates which disk image to use,
- `-i` tells bhyve to boot from the CD image instead of the disk, and
- `-I` defines which CD image to use. The last parameter is the name of the virtual machine, used to track the running machines. This example starts the virtual machine in installation mode:

```
# sh /usr/shared/examples/bhyve/vmrun.sh -c 1 -m 1024M -t tap0 -d guest.img -i -I FreeBSD-10.3-RELEASE-amd64-bootonly.iso guestname
```

The virtual machine will boot and start the installer. After installing a system in the virtual machine, when the system asks about dropping in to a shell at the end of the installation, choose `[Yes]`.

Reboot the virtual machine. While rebooting the virtual machine causes bhyve to exit, the `vmrun.sh` script runs `bhyve` in a loop and will automatically restart it. When this happens, choose the reboot option from the boot loader menu in order to escape the loop. Now the guest can be started from the virtual disk:

```
# sh /usr/shared/examples/bhyve/vmrun.sh -c 4 -m 1024M -t tap0 -d guest.img guestname
```

In order to boot operating systems other than FreeBSD, the `sysutils/grub2-bhyve` port must be first installed. Next, create a file to use as the virtual disk for the guest machine:

```
# truncate -s 16G linux.img
```

Starting a virtual machine with bhyve is a two step process. First a kernel must be loaded, then the guest can be started. The Linux™ kernel is loaded with `sysutils/grub2-bhyve`. Create a `device.map` that grub will use to map the virtual devices to the files on the host system:
Use `sysutils/grub2-bhyve` to load the Linux™ kernel from the ISO image:

```
# grub-bhyve -m device.map -r cd0 -M 1024M linuxguest
```

This will start grub. If the installation CD contains a `grub.cfg`, a menu will be displayed. If not, the `vmlinuz` and `initrd` files must be located and loaded manually:

```
grub>
ls (hd0) (cd0) (cd0,msdos1) (host) (lvm/VolGroup-lv_swap) (lvm/VolGroup-lv_root)
```

```
grub> ls (cd0)
isolinux boot.cat boot.msg grub.conf initrd.img isolinux.bin isolinux.cfg memtest splash.jpg TRANS.TBL vesamenu.c32 vmlinuz
```

```
grub> linux (cd0)
```

```
grub> initrd (cd0)
```

```
grub> boot
```

Now that the Linux™ kernel is loaded, the guest can be started:

```
# bhyve -A -H -P -s 0:0,hostbridge -s 1:0,lpc -s 2:0,virtio-net,tap0 -s 3:0,virtio-blk,./linux.img
```

```
-s 4:0,ahci-cd,./somelinux.iso
```

```
-l com1,stdio -c 4 -m 1024M linuxguest
```

The system will boot and start the installer. After installing a system in the virtual machine, reboot the virtual machine. This will cause bhyve to exit. The instance of the virtual machine needs to be destroyed before it can be started again:

```
# bhyvectl --destroy --vm=linuxguest
```

Now the guest can be started directly from the virtual disk. Load the kernel:

```
# grub-bhyve -m device.map -r hd0,msdos1 -M 1024M linuxguest
```

```
grub>
ls (hd0) (hd0,msdos2) (hd0,msdos1) (cd0) (cd0,msdos1) (host) (lvm/VolGroup-lv_swap) (lvm/VolGroup-lv_root)
```

```
grub> ls (hd0,msdos1)
lost+found/ grub/ efi/ System.map-2.6.32-431.el6.x86_64 config-2.6.32-431.el6.x86_64 symvers-2.6.32-431.el6.x86_64.gz vmlinuz-2.6.32-431.el6.x86_64
```

```
grub> linux (hd0,msdos1)
```

```
root=/dev/mapper/VolGroup-lv_root
```

```
471```
boot

Boot the virtual machine:

```shell
bhyve -A -H -P -s 0:0,hostbridge -s 1:0,lpc -s 2:0,virtio-net,tap0 -s 3:0,virtio-blk,./linux.img -l com1,stdio -c 4 -m 1024M linuxguest
```

Linux™ will now boot in the virtual machine and eventually present you with the login prompt. Login and use the virtual machine. When you are finished, reboot the virtual machine to exit bhyve.

Destroy the virtual machine instance:

```shell
bhyvectl --destroy --vm=linuxguest
```

21.7.4. 使用 UEFI 韌體開機 bhyve 虛擬機器

In addition to bhyveload and grub-bhyve, the bhyve hypervisor can also boot virtual machines using the UEFI userspace firmware. This option may support guest operating systems that are not supported by the other loaders.

In order to make use of the UEFI support in bhyve, first obtain the UEFI firmware images. This can be done by installing `sysutils/bhyve-firmware` port or package.

With the firmware in place, add the flags `-l bootrom, /path/to/firmware` to your bhyve command line. The actual bhyve command may look like this:

```shell
bhyve -AHP -s 0:0,hostbridge -s 1:0,lpc -s 2:0,virtio-net,tap1 -s 3:0,virtio-blk,./disk.img -s 4:0,ahci-cd,./install.iso -l bootrom,/usr/local/shared/uefi-firmware/BHYVE_UEFI.fd -c 4 -m 1024M
```

`sysutils/bhyve-firmware` also contains a CSM-enabled firmware, to boot guests with no UEFI support in legacy BIOS mode:

```shell
bhyve -AHP -s 0:0,hostbridge -s 1:0,lpc -s 2:0,virtio-net,tap1 -s 3:0,virtio-blk,./disk.img -s 4:0,ahci-cd,./install.iso -l bootrom,/usr/local/shared/uefi-firmware/BHYVE_UEFI_CSM.fd -c 4 -m 1024M
```

21.7.5. 供 bhyve 客端用的圖型化 UEFI Framebuffer

The UEFI firmware support is particularly useful with predominantly graphical guest operating systems such as Microsoft Windows™. Support for the UEFI-GOP framebuffer may also be enabled with the `-s 29,fbuf,tcp=0.0.0.0:5900` flags. The framebuffer resolution may be configured with `-w 800` and `-h 600`, and bhyve can be instructed to wait for a VNC connection before booting the guest by adding `-wait`. The framebuffer...
may be accessed from the host or over the network via the VNC protocol.

```
bhyve -AHP -s 0:0,hostbridge -s 31:0,lpc
-s 2:0,virtio-net,tap1
-s 3:0,virtio-blk,./disk.img
-s 4:0,ahci-cd,./install.iso
-c 4 -m 1024M
-s 29,fbuf,tcp
-l bootrom,/usr/local/shared/uefi-firmware/BHYVE_UEFI.fd
```

Note, in BIOS emulation mode, the framebuffer will cease receiving updates once control is passed from firmware to guest operating system.

21.7.6. If ZFS is available on the host machine, using ZFS volumes instead of disk image files can provide significant performance benefits for the guest VMs. A ZFS volume can be created by:

```
zfs create -V16G -o volmode=dev zroot/linuxdisk0
```

When starting the VM, specify the ZFS volume as the disk drive:

```
bhyve -A -H -P -s 0:0,hostbridge -s 1:0,lpc -s 2:0,virtio-net,tap0
-s 3:0,virtio-blk,./linux.img
-l com1,stdio
-c 4 -m 1024M linuxguest
```

21.7.7. It is advantageous to wrap the bhyve console in a session management tool such as `sysutils/tmux` or `sysutils/screen` in order to detach and reattach to the console. It is also possible to have the console of bhyve be a null modem device that can be accessed with `cu`. To do this, load the `nmdm` kernel module and replace `-l com1,stdio` with `-l com1,/dev/nmdm0A`. The `/dev/nmdm` devices are created automatically as needed, where each is a pair, corresponding to the two ends of the null modem cable (`/dev/nmdm0A` and `/dev/nmdm0B`). See `nmdm(4)` for more information.

```
kldload nmdm
bhyve -A -H -P -s 0:0,hostbridge -s 1:0,lpc -s 2:0,virtio-net,tap0
-s 3:0,virtio-blk,./linux.img
-l com1,/dev/nmdm0A
-c 4 -m 1024M linuxguest
cu -l /dev/nmdm0B
```

ConnectedUbuntu 13.10 handbook ttyS0handbook login:
A device node is created in `/dev/vmm` for each virtual machine. This allows the administrator to easily see a list of the running virtual machines:

```
ls -al /dev/vmm
total 1
```
```
dr-xr-xr-x 2 root wheel 512 Mar 17 12:19 ./
```
```
dr-xr-xr-x 14 root wheel 512 Mar 17 06:38 ../
```
```
crw------- 1 root wheel 0x1a2 Mar 17 12:20 guestname
```
```
crw------- 1 root wheel 0x19f Mar 17 12:19 linuxguest
```
```
crw------- 1 root wheel 0x1a1 Mar 17 12:19 otherguest
```

A specified virtual machine can be destroyed using `bhyvectl`:

```
bhyvectl --destroy --vm=guestname
```

21.7.9. Persistent setting

In order to configure the system to start bhyve guests at boot time, the following configurations must be made in the specified files:

1. `/etc/sysctl.conf`
   ```
 net.link.tap.up_on_open=1
   ```

2. `/etc/rc.conf`
   ```
 cloned_interfaces="bridge0 tap0"
 ifconfig_bridge0="addm igb0 addm tap0"
 kld_list="nmdm vmm"
   ```

21.8. FreeBSD as a Host to Install Xen™

Xen is a GPLv2-licensed type 1 hypervisor for Intel™ and ARM™ architectures. FreeBSD has included i386™ and AMD™ 64-Bit DomU and Amazon EC2 unprivileged domain (virtual machine) support since FreeBSD 8.0 and includes Dom0 control domain (host) support in FreeBSD 11.0. Support for para-virtualized (PV) domains has been removed from FreeBSD 11 in favor of hardware virtualized (HVM) domains, which provides better performance.

Xen™ is a bare-metal hypervisor, which means that it is the first program loaded after the BIOS. A special privileged guest called the Domain-0 (Dom0 for short) is then started. The Dom0 uses its special privileges to directly access the underlying physical hardware, making it a high-performance solution. It is able to access the disk controllers and network adapters directly. The Xen™ management tools to manage and control the Xen™ hypervisor are also used by the Dom0 to create, list, and destroy VMs. Dom0 provides virtual disks and networking for unprivileged domains, often called DomU. Xen™ Dom0 can be compared to the service console of other hypervisor solutions, while the DomU is where individual guest VMs are run.
Xen™ can migrate VMs between different Xen™ servers. When the two xen hosts share the same underlying storage, the migration can be done without having to shut the VM down first. Instead, the migration is performed live while the DomU is running and there is no need to restart it or plan a downtime. This is useful in maintenance scenarios or upgrade windows to ensure that the services provided by the DomU are still provided. Many more features of Xen™ are listed on the Xen Wiki Overview page. Note that not all features are supported on FreeBSD yet.

21.8.1. Xen™ Dom0

To run the Xen™ hypervisor on a host, certain hardware functionality is required. Hardware virtualized domains require Extended Page Table (EPT) and Input/Output Memory Management Unit (IOMMU) support in the host processor.

In order to run a FreeBSD Xen™ Dom0 the box must be booted using legacy boot (BIOS).

21.8.2. Xen™ Dom0 installation

Users of FreeBSD 11 should install the emulators/xen-kernel47 and sysutils/xen-tools47 packages that are based on Xen version 4.7. Systems running on FreeBSD-12.0 or newer can use Xen 4.11 provided by emulators/xen-kernel411 and sysutils/xen-tools411, respectively.

Configuration files must be edited to prepare the host for the Dom0 integration after the Xen packages are installed. An entry to /etc/sysctl.conf disables the limit on how many pages of memory are allowed to be wired. Otherwise, DomU VMs with higher memory requirements will not run.

```
echo 'vm.max_wired=-1' >> /etc/sysctl.conf
```

Another memory-related setting involves changing /etc/login.conf, setting the memorylocked option to unlimited. Otherwise, creating DomU domains may fail with Cannot allocate memory errors. After making the change to /etc/login.conf, run cap_mkdb to update the capability database. See限制资源 for details.

```
sed -i '' -e 's/memorylocked=64K/memorylocked=unlimited/' /etc/login.conf
cap_mkdb /etc/login.conf
```

Add an entry for the Xen™ console to /etc/ttys:

```
echo 'xc0 "/usr/libexec/getty Pc" xterm onifconsole secure' >> /etc/ttys
```

Selecting a Xen™ kernel in /boot/loader.conf activates the Dom0. Xen™ also requires resources like CPU and memory from the host machine for itself and other DomU domains. How much CPU and memory depends on the individual requirements and hardware capabilities. In this example, 8 GB of memory and 4 virtual CPUs are made available for the Dom0. The serial console is also activated and logging options are defined.

The following command is used for Xen 4.7 packages:

```
sysrc -f /boot/loader.conf hw.pci.mcfg=0
sysrc -f /boot/loader.conf if_tap_load="YES"
sysrc -f /boot/loader.conf xen_kernel="/boot/xen"
sysrc -f /boot/loader.conf xen_cmdline="dom0_mem=8192M dom0_max_vcpus=4"
```
For Xen versions 4.11 and higher, the following command should be used instead:

```
sysrc -f /boot/loader.conf if_tap_load="YES"
sysrc -f /boot/loader.conf xen_kernel="/boot/xen"
sysrc -f /boot/loader.conf xen_cmdline="dom0_mem=8192M dom0_max_vcpus=4 dom0=pvh console=com1,vga com1=115200,8n1 guest_loglvl=all loglvl=all"
```

Log files that Xen™ creates for the DomU VMs are stored in `/var/log/xen`. Please be sure to check the contents of that directory if experiencing issues.

Activate the xencommons service during system startup:

```
sysrc xencommons_enable=yes
```

These settings are enough to start a Dom0-enabled system. However, it lacks network functionality for the DomU machines. To fix that, define a bridged interface with the main NIC of the system which the DomU VMs can use to connect to the network. Replace `em0` with the host network interface name.

```
sysrc cloned_interfaces="bridge0"
sysrc ifconfig_bridge0="addm em0 SYNCDHCP"
sysrc ifconfig_em0="up"
```

Restart the host to load the Xen™ kernel and start the Dom0.

```
reboot
```

After successfully booting the Xen™ kernel and logging into the system again, the Xen™ management tool `xl` is used to show information about the domains.

```
xl list
```

Name                                        ID   Mem VCPUs      State   Time

```
Domain-0 0 8192 4 r----- 962.0
```

The output confirms that the Dom0 (called `Domain-0`) has the ID `0` and is running. It also has the memory and virtual CPUs that were defined in `/boot/loader.conf` earlier. More information can be found in the Xen Documentation. DomU guest VMs can now be created.

21.8.3. Xen™ DomU

Unprivileged domains consist of a configuration file and virtual or physical hard disks. Virtual disk storage for the DomU can be files created by `truncate(1)` or ZFS volumes as described in 建立與摧毀磁碟區. In this example, a 20 GB volume is used. A VM is created with the ZFS volume, a FreeBSD ISO image, 1 GB of RAM and two virtual CPUs. The ISO installation file is retrieved with `fetch(1)` and saved locally in a file called `freebsd.iso`.
A ZFS volume of 20 GB called `xendisk0` is created to serve as the disk space for the VM.

The new DomU guest VM is defined in a file. Some specific definitions like name, keymap, and VNC connection details are also defined. The following `freebsd.cfg` contains a minimum DomU configuration for this example:

```
cat freebsd.cfg

builder
= hvm

name
= freebsd

memory
= 1024

vcpus
= 2

vif
= ['mac=00:16:3E:74:34:32,bridge=bridge0']

disk
= ['/dev/zvol/tank/xendisk0,raw,hda,rw', '/root/freebsd.iso,raw,hdc:cdrom,r']

vnc
= 1

vnclisten
= "0.0.0.0"

serial
= "pty"

usbdevice
= "tablet"
```

These lines are explained in more detail:

1. This defines what kind of virtualization to use. `hvm` refers to hardware-assisted virtualization or hardware virtual machine. Guest operating systems can run unmodified on CPUs with virtualization extensions, providing nearly the same performance as running on physical hardware. `generic` is the default value and creates a PV domain.

2. Name of this virtual machine to distinguish it from others running on the same Dom0. Required.

3. Quantity of RAM in megabytes to make available to the VM. This amount is subtracted from the hypervisor's total available memory, not the memory of the Dom0.

4. Number of virtual CPUs available to the guest VM. For best performance, do not create guests with more virtual CPUs than the number of physical CPUs on the host.

5. Virtual network adapter. This is the bridge connected to the network interface of the host. The `mac` parameter is the MAC address set on the virtual network interface. This parameter is optional, if no MAC is provided Xen™ will generate a random one.

6. Full path to the disk, file, or ZFS volume of the disk storage for this VM. Options and multiple disk definitions are separated by commas.

7. Defines the Boot medium from which the initial operating system is installed. In this example, it is the ISO imaged downloaded earlier. Consult the Xen™ documentation for other kinds of devices and options to set.

8. Options controlling VNC connectivity to the serial console of the DomU. In order, these are: active VNC support, define IP address on which to listen, device node for the serial console, and...
the input method for precise positioning of the mouse and other input methods.

---

The keymap defines which keymap to use, and is English by default.

---

After the file has been created with all the necessary options, the DomU is created by passing it to `xl create` as a parameter.

```
xl create freebsd.cfg
```

Each time the Dom0 is restarted, the configuration file must be passed to `xl create` again to re-create the DomU. By default, only the Dom0 is created after a reboot, not the individual VMs. The VMs can continue where they left off as they stored the operating system on the virtual disk. The virtual machine configuration can change over time (for example, when adding more memory). The virtual machine configuration files must be properly backed up and kept available to be able to re-create the guest VM when needed.

The output of `xl list` confirms that the DomU has been created.

```
xl list
Name ID Mem VCPUs State Time
 (s)
Domain-0 0 8192 4 r----- 1653.4
freebsd 1 1024 1 -b----- 663.9
```

To begin the installation of the base operating system, start the VNC client, directing it to the main network address of the host or to the IP address defined on the `vnclisten` line of `freebsd.cfg`. After the operating system has been installed, shut down the DomU and disconnect the VNC viewer. Edit `freebsd.cfg`, removing the line with the `cdrom` definition or commenting it out by inserting a `#` character at the beginning of the line. To load this new configuration, it is necessary to remove the old DomU with `xl destroy`, passing either the name or the id as the parameter. Afterwards, recreate it using the modified `freebsd.cfg`.

```
xl destroy freebsd
xl create freebsd.cfg
```

The machine can then be accessed again using the VNC viewer. This time, it will boot from the virtual disk where the operating system has been installed and can be used as a virtual machine.

---

21.8.4. 疑難排解

This section contains basic information in order to help troubleshoot issues found when using FreeBSD as a Xen™ host or guest.

21.8.4.1. 主端開機疑難排解

Please note that the following troubleshooting tips are intended for Xen™ 4.11 or newer. If you are still using Xen™ 4.7 and having issues consider migrating to a newer version of Xen™.

In order to troubleshoot host boot issues you will likely need a serial cable, or a debug USB cable. Verbose Xen™ boot output can be obtained by adding options to the `xen_cmdline` option found in `loader.conf`. A couple of relevant debug options are:

- `iommu=debug`: can be used to print additional diagnostic information about the iommu.
- `dom0=verbose`: can be used to print additional diagnostic information about the dom0 build.
process.

• **sync_console**: flag to force synchronous console output. Useful for debugging to avoid losing messages due to rate limiting. Never use this option in production environments since it can allow malicious guests to perform DoS attacks against Xen™ using the console.

FreeBSD should also be booted in verbose mode in order to identify any issues. To activate verbose booting, run this command:

```
sysrc -f /boot/loader.conf boot_verbose="YES"
```

If none of these options help solving the problem, please send the serial boot log to `freebsd-xen@FreeBSD.org` and `xen-devel@lists.xenproject.org` for further analysis.

### 21.8.4.2. 客端建立疑難排解

Issues can also arise when creating guests, the following attempts to provide some help for those trying to diagnose guest creation issues.

The most common cause of guest creation failures is the `xl` command spitting some error and exiting with a return code different than 0. If the error provided is not enough to help identify the issue, more verbose output can also be obtained from `xl` by using the `v` option repeatedly.

```
xl -vvv create freebsd.cfg
```

```
Parsing config from freebsd.cfg
libxl: debug: libxl_create.c:1693:do_domain_create: Domain 0:ao 0x800d750a0: create:
how = 0x0
callback = 0x0
poller = 0x800d6f0f0
libxl: debug: libxl_device.c:397:libxl__device_disk_set_backend: Disk vdev = xvda
spec.backend = unknown
libxl: debug: libxl_device.c:432:libxl__device_disk_set_backend: Disk vdev = xvda, using backend phy
libxl: debug: libxl_create.c:1018:initiate_domain_create: Domain 1:running bootloader
libxl: debug: libxl_bootloader.c:328:libxl__bootloader_run: Domain 1:not a PV/PVH domain, skipping bootloader
libxl: debug: libxl_event.c:689:libxl__ev_xswatch_deregister: watch w = 0x800d96b98:
deregister unregistered
domainbuilder: detail: xc_dom_allocate: cmdline = "", features = ""
domainbuilder: detail: xc_dom_kernel_file: filename = "/usr/local/lib/xen/boot/hvmloader"
domainbuilder: detail: xc_dom_malloc_filemap 326 kB
libxl: debug: libxl_dom.c:988:libxl__load_hvm_firmware_module: Loading BIOS: /usr/local/shared/seabios/bios.bin...
```

If the verbose output does not help diagnose the issue there are also QEMU and Xen™ toolstack logs in `/var/log/xen`. Note that the name of the domain is appended to the log name, so if the domain is named `freebsd` you should find a `/var/log/xen/xl-freebsd.log` and likely a `/var/log/xen/qemu-dm-freebsd.log`. Both log files can contain useful information for debugging. If none of this helps solve the issue, please send the description of the issue you are facing and as much information as possible to `freebsd-xen@FreeBSD.org` and `xen-devel@lists.xenproject.org` in order to get help.
22.1. 概述

FreeBSD的使用者及貢獻者分布在全球各地，也因此FreeBSD支援多語系，讓使用者可以使用非英文語言來檢視、輸入或處理資料。使用者可以選擇大多數主要語言，包含但不限於以下語言：中文、德文、日文、韓文、法文、俄文及越南文。

國際化（Internationalization）一詞可以縮寫為i18n，即第一個字母到最後一個字母間的字母數量。L10n也使用同樣的命名規則，但源自於在地化（Localization）。

i18n/L10n的方法、協定及應用程式讓使用者可以自己選擇使用的語言。

本章會討論FreeBSD的國際化及在地化功能。在閱讀本章之後，您會了解：

• 語系名稱如何組成。
• 如何設定登入Shell的語系。
• 如何設定Console給非英文語言的使用者。
• 如果設定Xorg使用不同語言。
• 如何找到支援i18n的應用程式。
• 那裡可以找到更多設定特定語言的資訊。

在開始閱讀這章之前，您需要：

• 了語系名稱如何安裝其他第三方應用程式。
某些语言，如中文或日文，无法使用ASCII字元表示，会需要使用宽(Wide)字元或多位元组(Multibyte)字元来扩充的言语编码。EUC与Big5即使用宽子元或多位元组字元的例子。旧的应有程式会误判这些字元为控制字元，新的应有程式则通常可辨识这些字元，依实际的需要，使用者可能需要开启宽字元或多位元组字元支援或者使用正确的字元设定来编译应有程式。

FreeBSD使用Xorg相容的系编码。

本节剩余的部份将说明各种在FreeBSD系统上设定语言的方法。下一节将会探讨如何寻找以及编译使用i18n支援的应有程式。

22.2.1. 設定登入Shell的语言

语言设定可在使用者的~/.login_conf或使用者的Shell的啟动档设定：~/.profile, ~/.bashrc, 或 ~/.cshrc。有两各环境变数需要设定：

• LANG 用来设定语言
• MM_CHARSET 用来设定应用程式所使用的MIME字元集

除了使用者的Shell设定外，这些变数也应针对特定应有程式设定以及Xorg设定。

两种可以完成所需变数设定的方法有：

登入类别(Login class)，建议使用的第一种方式，它可以对任何可能的Shell设定需要的语言及MIME字元集变数。此设定也可由每位使用者自行设定或者由超级管理者为所有使用者设定。

以下精简範例示範在使用者的家目录中的.login_conf设定Latin-1编码使用的两个环境变数：

```
me: charset=ISO-8859-1:
:lang=de_DE.ISO8859-1:
```

以下使用者的~/.login_conf範例设定了繁体中文於BIG-5编码使用到的环境变数。有一部份应用程式无法正确处理中文、日文及韩文的语言变数，因此需要额外多做一些设定：

```
#Users who do not wish to use monetary units or time formats
#of Taiwan can manually change each variable
me: charset=big5:
:lang=zh_TW.Big5:
:setenv=LC_ALL=zh_TW.Big5,LC_COLLATE=zh_TW.Big5,LC_CTYPE=zh_TW.Big5,
:LC_MESSAGES=zh_TW.Big5,LC_MONETARY=zh_TW.Big5,
:LC_NUMERIC=zh_TW.Big5,LC_TIME=zh_TW.Big5:
```

或者，超级使用者可以设定所有系统使用者的语言。以下在/etc/login.conf中的变数可用来设定语言及MIME字元集：

```
481
```
若套用之前的 Latin-1 编码例如下:

German Users Accounts:

请参考 login.conf(5) 以取得更多有关这些变量的详细资讯。请注意，它已经含有预定义的 russian class。

每编辑 /etc/login.conf 之后，请记得要执行以下指令来更新登录类别的能力数据库:

# cap_mkdb /etc/login.conf

变更登录类别的工具除了手动编辑 /etc/login.conf 之外,尚有多工具可用来自增立的使用者设定语言。

当使用 vipw 来新建使用者时,可指定 language 来设定语言:

user:password:1111:11:language:0:0:User Name:/home/user:/bin/sh

当使用 adduser 来新建使用者时,可对所有使用者或指定的使用者事先设定预设的语言。

若所有新的使用者都使用同样的语言,可在 /etc/adduser.conf 裡设定 defaultclass=language。

要在建立使用者时覆盖预设的设定,可在出现此提示时输入需要的语系:

Enter login class: default

或多执行 adduser 时指定语系:

# adduser -class language

若使用 pw 来新建使用者,则可指定语系如下:

# pw useradd user_name -L language

To change the login class of an existing user, chpass can be used. Invoke it as superuser and provide the username to edit as the argument.
22.2.1.2. Shell 启动档

第二种方法，较不建议使用，因为每一种使用的 Shell 需要手动设定，而每一种 Shell 都有不同的设定档及语法。

例如将一位使用者的 sh shell 設定為德語，需要将下列行加到 ~/.profile，若要設定给使用该 Shell 所有使用者则必须将下列行加到 /etc/profile 或 /usr/shared/skel/dot.profile:

```
LANG=de_DE.ISO8859-1; export LANG
MM_CHARSET=ISO-8859-1; export MM_CHARSET
```

然而，在 csh shell 所使用的设定档名称及语法不同。同样的设定需加入下列行至 ~/.csh.login，/etc/csh.login 或 /usr/shared/skel/dot.login:

```
setenv LANG de_DE.ISO8859-1
setenv MM_CHARSET ISO-8859-1
```

更复杂一点的情况，Xorg 的 ~/.xinitrc 系统设定会依使用的 Shell 而有所不同。第一个例子是针对 sh shell 而第二个则是针对 csh shell:

```
LANG=de_DE.ISO8859-1; export LANG
```

22.2.2. Console 設定

已有多种系字型可在 Console 使用，要查看可用的字型清单，可输入
```
ls /usr/shared/syscons/fonts
```

要設定 Console 的字型，可在 /etc/rc.conf 指定去掉.fnt 字尾的字型名称 font_name:

```
font8x16=font_name
font8x14=font_name
font8x8=font_name
```

键盘对应表 (Keymap) 及萤幕对应表 (Screenmap) 可加入以下到 /etc/rc.conf 来设定:

```
scrnmap=screenmap_name
keymap=keymap_name
keychange="fkey_number sequence"
```

要查看可用的萤幕对应表，可输入
```
ls /usr/shared/syscons/scrnmaps
```

在设定萤幕对应表 screenmap_name 时请去掉.scm 字尾。在 VGA Adapter 的字型字元矩阵扩充位元 8 到 位元 9 时会需要使用萤幕对应表与相关的字型对应来解决，因此若萤幕字型使用位元 8 的栏位，字母会移到虚拟绘画区 (Pseudographics area)。
要查看可用的鍵盤對應表，可輸入 `ls /usr/shared/syscons/keymaps`。

在設定鍵盤對應表 `keymap_name` 時請去掉 `.kbd` 尾。若要不重新開機測試鍵盤對應用可使用 `kbdmap(1)`。

`keychange` 項目用在當功能鍵序列無法定義在鍵盤對應表時, 可設定對應選擇終對機類型的功能鍵。

接下來，在 `/etc/ttys` 為所有虛擬終端機項目設定正確的Console終端機類型。

已定義供特定字元集使用的終端機類型摘要了可用的終端機類型:

<table>
<thead>
<tr>
<th>字元集</th>
<th>終端機類型</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO8859-1 or ISO8859-15</td>
<td>cons25l1</td>
</tr>
<tr>
<td>ISO8859-2</td>
<td>cons25l2</td>
</tr>
<tr>
<td>ISO8859-7</td>
<td>cons25l7</td>
</tr>
<tr>
<td>KOI8-R</td>
<td>cons25r</td>
</tr>
<tr>
<td>KOI8-U</td>
<td>cons25u</td>
</tr>
<tr>
<td>CP437 (VGA預設值)</td>
<td>cons25</td>
</tr>
<tr>
<td>US-ASCII</td>
<td>cons25w</td>
</tr>
</tbody>
</table>

對於使用寬字元或多位元組字元的語言, 需從Port套件集安裝支援該語言的Console。可用的Port摘要在Port套件集中可用的Console。

表 16. Port套件集中可用的Console

<table>
<thead>
<tr>
<th>位置</th>
</tr>
</thead>
<tbody>
<tr>
<td>繁體中文(BIG-5)</td>
</tr>
<tr>
<td>中文/日文/韓文</td>
</tr>
<tr>
<td>中文/日文/韓文</td>
</tr>
<tr>
<td>日文</td>
</tr>
<tr>
<td>日文</td>
</tr>
<tr>
<td>日文</td>
</tr>
</tbody>
</table>

若在 `/etc/rc.conf` 有開啟 `moused`, 可能會需要額外的設定。預設 `syscons(4)` 驅動程式的滑鼠游標會占用字元集 `0xd0`-`0xd3` 的範圍, 若語言有使用到此範圍, 可加入以下行到 `/etc/rc.conf` 來移動游標的範圍:

```
mousechar_start=3
```

22.2.3. Xorg

設定 X Window系統會說明如何安裝並設定 Xorg。當要設定 Xorg 在地化時, 可從 FreeBSD Port套件集中取得其他可用的字型及輸入法。

應用程式特定的i18n設定像是字型與選單, 可在 `~/.Xresources` 中調校且可允許使用者在圖型化應用程式選單檢視其所選擇的語言。

X輸入法(X Input Method, XIM)協定是 Xorg 針對輸入非英語字元的標準。

可用的輸入法摘要了在 FreeBSD 套件集中可用的輸入法應用程式。也可使用其他如 Fcitx 及 Uim 應用程式。

表 17. 可用的輸入法

<table>
<thead>
<tr>
<th>語言</th>
<th>輸入法</th>
</tr>
</thead>
<tbody>
<tr>
<td>中文</td>
<td>chinese/gcin</td>
</tr>
<tr>
<td>中文</td>
<td>chinese/ibus-chewing</td>
</tr>
</tbody>
</table>
尋找 i18n 應用程式

i18n 應用程式會使用 i18n 工具包 做為 程式庫 發展。這 讓開發人員 可以 寫 一個 簡單的 檔案 並 翻譯 显示 的 選單 及 文字 至 各種 語言。

FreeBSD Port 套件集 中 含 有 許多 建支援 寬字元 或 多位元 組字元 的 應用程式 可支援 各種 語言。該 類型 的 應用程式 在 名稱 上 會 註明 i18n 以 易於 辨識。雖然如此, 但 不一定 支援 您 所需要 的 語言。

有一部份 應用程式 可以 使用 指定 的 字元集來 編譯。通常 會 在 Port 的 Makefile 中 設定, 或者 傳送 參數 給 configure。請 參考 各 FreeBSD Port 原始碼 中 的 i18n 說明文件 以 取得 更多 有關 需要 的 設定 值 資訊 或 Port 的 Makefile 來解 在 編譯 時 那些 可以 使用 的 編譯 選項。
This section provides configuration examples for localizing a FreeBSD system for the Russian language. It then provides some additional resources for localizing other languages.

22.4.1. Russian (KOI8-R code)

This section shows the specific settings needed to localize a FreeBSD system for the Russian language. Refer to Using Localization for a more complete description of each type of setting.

To set this locale for the login shell, add the following lines to each user's ~/.login_conf:

```
me:My Account:
 :charset=KOI8-R:
 :lang=ru_RU.KOI8-R:
```

To configure the console, add the following lines to /etc/rc.conf:

```
keymap="ru.utf-8"
scrnmap="utf-82cp866"
font8x16="cp866b-8x16"
font8x14="cp866-8x14"
font8x8="cp866-8x8"
mousechar_start=3
```

For each ttyv entry in /etc/ttys, use cons25r as the terminal type.

To configure printing, a special output filter is needed to convert from KOI8-R to CP866 since most printers with Russian characters come with hardware code page CP866. FreeBSD includes a default filter for this purpose, /usr/libexec/lpr/ru/koi2alt. To use this filter, add this entry to /etc/printcap:

```
lp|Russian local line printer:
 :sh:of=/usr/libexec/lpr/ru/koi2alt:
 :lp=/dev/lpt0:
 sd=/var/spool/output/lpd:
 lf=/var/log/lpd-errs:
```

Refer to printcap(5) for a more detailed explanation.

To configure support for Russian filenames in mounted MS-DOS™ file systems, include -L and the locale name when adding an entry to /etc/fstab:

```
/dev/ad0s2 /dos/c msdos rw,-Lru_RU.KOI8-R 0 0
```

Refer to mount_msdosfs(8) for more details.

To configure Russian fonts for Xorg, install the x11-fonts/xorg-fonts-cyrillic package. Then, check the "Files" section in /etc/X11/xorg.conf. The following line must be added before any other FontPath entries:

```
```

```
To activate a Russian keyboard, add the following to the "Keyboard" section of /etc/xorg.conf:

```
Option "XkbLayout"   "us,ru"
```

Option "XkbOptions" "grp:toggle"

Make sure that XkbDisable is commented out in that file.

For grp:toggle use Right Alt, for grp:ctrl_shift_toggle use Ctrl+Shift. For grp:caps_toggle use CapsLock. The old CapsLock function is still available in LAT mode only using Shift+CapsLock.

grp:caps_toggle does not work in Xorg for some unknown reason.

If the keyboard has "Windows™" keys, and some non-alphabetical keys are mapped incorrectly, add the following line to /etc/xorg.conf:

```
Option "XkbVariant" ",winkeys"
```

The Russian XKB keyboard may not work with non-localized applications. Minimally localized applications should call a XtSetLanguageProc (NULL, NULL, NULL); function early in the program.

22.4.2. 其他特定语言资源

This section lists some additional resources for configuring other locales.

Traditional Chinese for Taiwan

The FreeBSD-Taiwan Project has a Chinese HOWTO for FreeBSD at http://netlab.cse.yzu.edu.tw/~statue/freebsd/zh-tut/.

Greek Language Localization

A complete article on Greek support in FreeBSD is available here, in Greek only, as part of the official FreeBSD Greek documentation.

Japanese and Korean Language Localization

Non-English FreeBSD Documentation

Some FreeBSD contributors have translated parts of the FreeBSD documentation to other languages. They are available through links on the FreeBSD web site or in /usr/shared/doc.
23.1. 概述

FreeBSD 在每次的發佈之間持續在開發。有些人偏好正式發佈的版本，也有另一群人喜歡使用最新的開發版本。然而，即使正式發佈的版本也時常會有安全性和緊急修復的更新，因此，無論使用哪種版本，FreeBSD 都提供所有必要的工具來讓系統能維持最新的版本，且讓各種版本都能簡單的升級。本章將說明如何追蹤開發版本的系統及讓 FreeBSD 系統維持最新版本的基本工具。

讀完這章，您將了解:

• 如何使用 freebsd-update, Subversion 來維持 FreeBSD 系統為最新版。
• 如何比對已安裝系統與已知原始複本間的狀態。
• 如何使用 Subversion 或說明文件 Port 來維持已安裝的文件為新版。
• 兩種開發分支間的差異: FreeBSD-STABLE 與 FreeBSD-CURRENT。
• 如何重新編譯及重新安裝整個基礎系統 (Base system)。

在開始閱讀這章之前，您需要:

• 正確的設定網路連線 (進階網路設定)。
• 了解如何安裝其他第三方軟體 (安裝應用程式: 套件與 Port)。

本章會經常使用 svnlite 來取得與更新 FreeBSD 原始碼。您也可以使用 devel/subversion Port 或套件。
要保持最新版本的部份。預設是更新整個基礎系統（Base system）和核心。

可指定個別元件，例如：src/base或src/sys。

雖然如此，最好的選項是維持預設值，因為更改指定特定項目時需列出每一個需要的項目。時間一久可能會因為原始碼和Binary檔案沒有更新而造成慘重的後果。

Paths which start with anything matching an entry in an IgnorePaths statement will be ignored.

```
IgnorePaths /boot/kernel/linker.hints
```

要保持特定的目錄在更新過程不被更動，例如/bin或/sbin, 可以將他們的路徑加到此敘述中。這個選項可以防止freebsd-update覆蓋本地的修改。

Paths which start with anything matching an entry in an UpdateIfUnmodified statement will only be updated if the contents of the file have not been modified by the user (unless changes are merged; see below).

```
UpdateIfUnmodified /etc/ /var/ /root/ /.cshrc /.profile
```

這個選項只會更新特定目錄中未修改的設定檔。任何使用者修改的檔案都不會自動更新。有一個選項

KeepModifiedMetadata 可讓freebsd-update在合併時儲存使用者做的變更。

When upgrading to a new FreeBSD release, files which match MergeChanges will have any local changes merged into the version from the new release.

```
MergeChanges /etc/ /var/named/etc/ /boot/device.hints
```

列出freebsd-update應嘗試合併的設定檔目錄。檔案合併程序是指一系列類似mergemaster(8)做diff(1)修補動作，但選擇項比較少。合併的動作包含接受、開啓編輯器, 或讓freebsd-update中止。如果有疑慮, 請先備份/etc, 然後再接受合併。更多關於mergemaster的資訊, 參見mergemaster(8)。

Directory in which to store downloaded updates and temporary files used by FreeBSD Update.

```
# WorkDir /var/db/freebsd-update
```

這個目錄是所有補充檔和暫存檔的存放處。當使用者進行版本升級時,這個位置應該要有至少1GB的可用磁碟空間。

When upgrading between releases, should the list of Components be read strictly (StrictComponents yes) or merely as a list of components which *might* be installed of which FreeBSD Update should figure out which actually are installed and upgrade those (StrictComponents no)?

```
# StrictComponents no
```

當這個選項設定為yes時,freebsd-update將會假設Components清單已完成,將不會對清單之外的項目做變更。實際上freebsd-update將嘗試更新每一個屬於Components清單中的檔案。
更提供種新都可以過兩。另到 FreeBSD 10.X 到主要版本 FreeBSD 9.X 升級如從一個主要版本例升級一個主要版本時，到 version) FreeBSD 9.1，一個版本，例另的次要版本 FreeBSD 到 FreeBSD 9.0 例從到如從叫升級作次要版行主要 23.2.3. 及新。特多個系統時這會報更的別個系統安裝的補準回系統讓目評估護版本。當快速有用，因其可前的維修確你每其他任自做變更可何，數字取得。編譯讓，沒檔新是便該重由有訂核心使 /

/usr/src/sys/conf/newvers.sh 不需要自雖修改則新然如此的。編譯重訂以始碼行會安裝核心原更與執新新安裝依核心的更新後的和其編譯餘重將重新，可除在非查安裝的檢指令。

核心為新安裝。 預的更完成安裝設重新後，需要重核心編譯名稱和新執次影 Binary 核心任任何受應重。如果有何，錯誤發生任該補複並手查修動使用者會收執到電子郵件通知動但如果有新的修動不會，該程式會會自補執行。下載，項目以下加入至動過來使用應影新版本。Binary 補的的修用程式響 Binary，受啟強調何核心模組或新，若再的新執次影動及行。啟強調何核心模組或新，若再的。
核心的複本在/boot/GENERIC。請參考在FreeBSD 9.X及之後版本自訂核心的說明。

在FreeBSD 9.0系統執行以下指令，將會把系統升級至FreeBSD 9.1:

```
# freebsd-update -r 9.1-RELEASE upgrade
```

收到這個指令後，freebsd-update會開始評估設定檔和目前的系統來收集升級所需的資訊。螢幕會顯示偵測到或沒偵測到的元件清單。例如:

```
Looking up update.FreeBSD.org mirrors... 1 mirrors found.
Fetching metadata signature for 9.0-RELEASE from update1.FreeBSD.org... done.
Fetching metadata index... done.
Inspecting system... done.
The following components of FreeBSD seem to be installed:
kernel/smp src/base src/bin src/contrib src/crypto src/etc src/games
src/gnu src/include src/krb5 src/lib src/libexec src/release src/rescue
src/sbin src/secure src/share src/sys src/tools src/ubin src/usbin
world/base world/info world/lib32 world/manpages
```

The following components of FreeBSD do not seem to be installed:

```
kernel/generic world/catpages world/dict world/doc world/games world/proflibs
```

Does this look reasonable (y/n)? y

此時，freebsd-update將會嘗試下載所有升級需要的檔案。在某些情況，會詢問使用者一些關於要安裝什麼或要如何繼續。當使用自訂核心，上述的步驟將會產生如下的警告:

```
WARNING: This system is running a "MYKERNEL" kernel, which is not a kernel configuration distributed as part of FreeBSD 9.0-RELEASE. This kernel will not be updated: you MUST update the kernel manually before running "/usr/sbin/freebsd-update install"
```

這時的警告可以安全地忽略，升級過程將會使用更新過的GENERIC核心來進行。

所有的修補都下載到本地系統之後，將會開始套用更新。這個過程可能會花點時間，取決於機器的速度和工作量。設定檔將會被合併。合併的過程中當檔案被合併或是手動合併畫面上出現編輯器時需要使用者操作。每一個成功合併的結果將會顯示給使用者並繼續程序，失敗或忽略合併將會使程序中斷。使用者可能想備份/etc並稍後手動合併重要檔案，例如: master.passwd或group。

所有的修補與合併動作會在另個目標進行，並不會直接修改。當成功套用所有修補，所有設定檔已合併且過程順利，使用者可使用以下指令將變更安裝到磁碟:

```
491
```
核心與核心模組會先修補，若系統正在執行自動訂的核心，使用 nextboot(8) 來設定下次開機使用更新過的 /boot/GENERIC:

```bash
# nextboot -k GENERIC
```

若機器在遠端進行更新，請在使用 GENERIC 核心重開機前，確定該核心含有所有系統所需的驅動程式以正常開機並連線至網路。特別是在執行的自訂核心有使用到由核心模組提供內建功能，請確定將這些模組已暫時使用 /boot/loader.conf 設定檔載入到 GENERIC 核心。

建議關閉非必須的服務和磁碟與網路掛載直到升級程序完成。

機器現在應使用更新過的核心重開機:

```bash
# shutdown -r now
```

一旦系統重新上線，使用以下指令繼續 freebsd-update。由於程序的狀態已被儲存，freebsd-update 不會重頭開始，但會進行下一個階段並移除所有舊的共用程式庫和目標檔。

```bash
# freebsd-update install
```

取決於是否有任何程式庫版本編號衝突，也可能只有兩個而不是三個安裝階段。

升級程序現在完成了。如果所做的是主要的版本升級，則需依照主要版本升級後的套件升級的說明重新安装所有的 Port 和套件。

23.2.3.1. 在 FreeBSD 9.X 及之後版本自訂核心在使用 freebsd-update 前，請確定已有 GENERIC 核心的複本於 /boot/GENERIC。若只編譯過一次自訂核心，那麼 /boot/kernel.old 就是 GENERIC 核心，只需要將該目錄重新命名為 /boot/kernel。

若有編譯自訂核心過超過一次，或已經不曉得編譯自訂核心的次數，則需取得與目前作業系統版本相符的 GENERIC 核心複本。若可直接操作實體系統，則可以直接操作實體系統:

```bash
# mount /cdrom
# cd /cdrom/usr/freebsd-dist
# tar -C/ -xvf kernel.txz boot/kernel/kernel
```

或者，可以從原始碼重新編譯 GENERIC 核心:

```bash
# cd /usr/src
# make kernel __MAKE_CONF=/dev/null SRCCONF=/dev/null
```

這個核心要被 freebsd-update 認定為 GENERIC 核心，GENERIC 設定檔必須不能做任何修改，也建議在編譯核心時不要使用其他特殊選項。
freebsd-update

僅需要/BOOT/Generic存便因此不須重新開機進入Generic。

23.2.3.2. 主要版號升級後的套件升級一般來說，已安裝的應用程式在次要版本升級仍可沒問題的正常執行。但主要版本升級會採用不同的應用程式Binary介面(Application Binary Interfaces, ABIs)，會導致大部份第三方應用程式無法正常執行。因此在主要版本升級後，需要升及所有已安裝的套件和Port，套件可以使用pkg upgrade來升級，而Port則需使用ports-mgmt/portmaster工具。

強制升級所有已安裝的套件會使用檔案庫中新版本的套件來取得目前套件，即使該版號沒有增加。

由於在升級FreeBSD主要版本時會變更ABI版本，因此這是必要動作。強制升級可以執行以下指令來完成：

```
# pkg-static upgrade -f
```

重新編譯所有已安裝的應用程式可以執行以下指令來完成：

```
# portmaster -af
```

這個指令會在安裝每個應用程式有可設定選項時顯示設定畫面，並會等待使用者操作該畫面，要避免這種情況並使用預設的設定選項，可在上述指令加上-G參數。

完成軟體升級後，最後需執行freebsd-update來完成最後的動作：

```
# freebsd-update install
```

若有使用臨時 GENERIC 核心，便應在此時依據設定FreeBSD核心的說明編譯並安裝新的自訂核心。

重新開機使用新的FreeBSD版本後，升級程序便正式完成。

23.2.4. 比對系統狀態

已安裝的FreeBSD版本狀態可以使用freebsd-update IDS與另一個已知良好的副本來做比對測試。

這個指令會評估目前版本的系統工具，程式庫和設定檔，可做為內建的入侵偵測系統來使用(Intrusion Detection System, IDS)。

 這個指令並非用來取代真正IDS，如security/snort。

由於freebsd-update儲存在磁碟上，被竄改的可能顯而易見的，雖然這個可能性會因使用kern.securelevel以及將freebsd-update在不使用時以唯讀儲存而降低，最好解決方案是能夠與安全的磁碟，如DVD或儲存在外部的USB磁碟裝置比對系統。代替的方式是使用內建工具的IDS功能，在Binary檢驗有詳細說明。

要開始比對，需指定輸出的檔案來儲存結果：

```
# freebsd-update IDS >> outfile.ids
```

系統將會開始檢查並且會產生相當長的檔案清單，內容包含發佈版本已知的與目前安裝版本的SHA256雜湊值會儲存到指定的輸出檔案。

清單中的項目會相當的多，但輸出的格式可以很簡單的用來分析。例如，要取得與發佈版本不同的檔案清單，可使用以下指令：

```
# freebsd-update IDS >> outfile.ids
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```
實際的檔案會更多，此範例的輸出已精簡。部份檔案可能本來就會被修改。例如 `/etc/passwd` 在新增使用者到系統時會被修改，核心模組也有可能因使用 `freebsd-update` 更新而有所不同。要排除特定的檔案或目錄可將這些檔案或目錄加入到 `/etc/freebsd-update.conf` 中的 `IDSIgnorePaths` 選項。

23.3. 更新文件集

說明文件是 FreeBSD 作業系統不可或缺的一部份。最新版本的 FreeBSD 文件除了可在 FreeBSD 網站 (https://www.freebsd.org/doc/) 取得, 也可很簡單的取得本地的 FreeBSD 網站、使用手冊、FAQ 及文章副本。

本節將說明如何使用原始碼與 FreeBSD Port 套件來取得最新版本 FreeBSD 文件副本。

有關於編輯與提出修正說明文件的資訊, 請參考 FreeBSD 文件計畫入門書 (FreeBSD Documentation Project Primer)。

23.3.1. 自原始碼更新說明文件

從原始碼重新編譯 FreeBSD 文件需要一些不屬於 FreeBSD 基礎系統的工具。需要的工具可安裝由 FreeBSD 文件計畫所開發的 `textproc/docproj` 套件或 `Port`。

安裝完成之後, 可使用 `svnlite` 來取得乾淨的文件原始碼副本:

```
# svnlite checkout https://svn.FreeBSD.org/doc/head /usr/doc
```

第一次下載文件原始碼需要一些時間, 請耐心等候執行完畢。

往後更新文件原始碼可執行:

```
# svnlite update /usr/doc
```

下載最新的文件原始碼到 `/usr/doc` 之後, 便完成要更新已安裝文件的準備動作。

完整更新所有可用的語言可以執行:

```
# cd /usr/doc
# make install clean
```

若只想要更新特定語言, 可對 `/usr/doc` 中特定語言的子目錄執行 `make`:

```
# cd /usr/doc/en_US.ISO8859-1
# make install clean
```
另一個更新文件的方式是在 `/usr/doc` 或特定的語言子目錄下執行此指令:

```
# make update
```

要指定安裝的輸出格式可使用 `FORMATS` 來設定:

```
# cd /usr/doc
# make FORMATS='html html-split' install clean
```

有數個選項可更新部份文件或只編譯特定翻譯來簡化更新程序。這些選項可在 `/etc/make.conf` 設為系統全域的預設選項，或是透過指令傳送給 `make`。

選項有:
- `DOC_LANG` 要編譯與安裝的語言及編碼清單，例如 `en_US.ISO8859-1` 代表英語文件。
- `FORMATS` 要編譯的輸出格式清單，目前支援 `html`, `html-split`, `txt`, `ps` 以及 `pdf`。
- `DOCDIR` 要安裝文件的位置，預設為 `/usr/shared/doc`。

要取得更多可做為 FreeBSD 系統全域選項的 `make` 變數，請參考 `make.conf(5)`。

23.3.2. 自 Port 更更新說明文件

前一節介紹了由原始碼更新 FreeBSD 文件的方法，本節將說明使用 Port 套件集的替代方法，可由以下方式達成:

- 安裝事先編譯好文件套件，無須在本地編譯任何東西或安裝文件工具。
- 使用 Port 框架來編譯文件原始碼，可讓取得與編譯文件的步驟更簡單。

這個更新 FreeBSD 文件的方法，會使用到一系列由文件工程團隊 `doceng@FreeBSD.org` 每月更新的文件 Port 與套件。這些套件列於 FreeBSD Port 套件集的 docs 分類下 (http://www.freshports.org/docs/)。

文件 Port 的組織方式如下:

- `misc/freebsd-doc-en` 套件或 Port 會安裝所有英語的文件。
- `misc/freebsd-doc-all` 套件或 Port 會安裝所有可用語言的文件。
- 每個翻譯語言都有套件與 Port，如 `misc/freebsd-doc-hu` 為匈牙利語文件。

當使用 Binary 套件時，會安裝指定語言 FreeBSD 文件的所有可用格式。例如以下指令會安裝最新的匈牙利語文件套件:

```
# pkg install hu-freebsd-doc
```

套件使用的名稱格式與 Port 的名稱不同: `lang-freebsd-doc`，其中 `lang` 是語言代碼的縮寫，例如 `hu` 代表匈牙利語，`zh_cn` 代表簡體中文。

要指定文件的格式，需以編譯 Port 來代替安裝套件。例如要編譯並安裝英語文件:

```
# make FORMATS='html' install clean
```
Port 提供設定選單來指定要編譯與安裝的格式，預設會選擇分頁的 HTML（類似 http://www.FreeBSD.org 使用的格式）以及 PDF。

此外，編譯文件 Port 時也可指定數個 make 選項，包括:

WITH_HTML 編譯一份文件使用一個 HTML 檔的 HTML 格式。格式化後的文件會儲存至名稱為 article.html 或 book.html 的檔案。

WITH_PDF 儲存至名稱為 article.pdf 或 book.pdf 的檔案。

DOCBASE 指定要安裝文件的位置，預設為 /usr/local/shared/doc/freebsd。

以下範例使用變數來安裝 PDF 的匈牙利語文件到特定目錄:

```bash
# cd /usr/ports/misc/freebsd-doc-hu
# make -DWITH_PDF DOCBASE=share/doc/freebsd/hu install clean
```

文件套件或 Port 可以依安裝應用程式：套件與 Port 的說明更新。例如以下指令會使用 ports-management/portmaster 更新已安裝的匈牙利語文件:

```bash
# portmaster -PP hu-freebsd-doc
```
要的是，因何特殊任务的未在 FreeBSD-CURRENT 人都不问现况。基应多，因此不可避免 FreeBSD-STABLE 比的人 FreeBSD-CURRENT 分於虽该法保。

23.4.2. FreeBSD-STABLE 使用问题的方式，因问新的修题。使用问题为当径功快速，因做途测发，很可能有

2.4.3. 1. FreeBSD-STABLE 系统，可安装在的步骤选择点始码原阅整操作。要往加入作用的记现的提相及关讯

stable-9 的使用者会 9-STABLE 加入加入的所相分邮递论坛，svn 告更改让使用者有何疑反有更新机议也会或注意的特复的。

附上代码相如果您在的使用者能或是发表常 FreeBSD-CURRENT，有时会的相行版的发来升级讯操作。阅读 FreeBSD-CURRENT 编译业须下载要从补有有兴趣或档案小始码库。然而，们对于镜像站的。通常会使用原阅，可 CURRENT，不只有依要订始码点追踪网页往svn-src-head 的要态们对于解目前目收论并接的 FreeBSD-CURRENT 项目生的次修改作用的相

http://lists.FreeBSD.org/mailman/listinfo

497
編譯 FreeBSD-STABLE 前，請仔細地閱讀 /usr/src/Makefile 並依照從原始碼更新 FreeBSD 的指示操作。閱讀 FreeBSD-STABLE 郵遞論壇以及 /usr/src/UPDATING 來了解升級的相關資訊，有時會含有升級下一個發行版的必要資訊。

使用編譯的程序來更新系統比起安裝 Binary 來更新會耗時許多，但能夠完整自訂一個量身定做版本的 FreeBSD。使用編譯的程序來更新系統比從原始碼編譯來更新有幾項優點，在編譯程式碼時可以自訂選項來充份運用特性，部份基礎系統可以使用非預設的設定值編譯，或是在不需要或不想要的時候跳過編譯。快速開始，這是從原始碼編譯來更新 FreeBSD 的標準步驟，稍後的章節會更詳細的說明這個程序。

1. 取得最新版本的原始碼，请参考更新原始碼來了解更多的取得與更新原始碼的資訊。
2. 檢查 /usr/src/UPDATING 看是否在原始碼編譯之前或之後需要手動操作的步驟。
3. 前往原始碼目錄。
4. 編譯世界（World），即除了核心（Kernel）外的所有東西。
5. 編譯並安裝核心，此動作等同於 make buildkernel installkernel。
6. 重新啟動系統以使用新的核心。
7. 前往原始碼目錄。
8. 安裝世界。
9. 更新與合併在 /etc/ 中的設定檔案。
10. 重新啟動系統以使用新編譯好的世界與核心。
更新原始碼 FreeBSD 的原始碼位於 `/usr/src/`, 较建议透过 Subversion 版本控制系统来更新这份原始码，要确认原始码已在版本控制系统的管控下：

```bash
# svnlite info /usr/src
```

```
Path: /usr/src
Working Copy Root Path: /usr/src...
```

此结果代表 `/usr/src/` 已在版本控制系统的管控下并且可以使用 `svnlite(1)` 来更新:

```bash
# svnlite update /usr/src
```

若该目录最近没有更新过，可能会需要一些时间来完成更新动作。在更新完成之后，原始码便为最新版本，并可开始依下一章节的说明来编译程序。

若输出结果显示 `/usr/src` is not a working copy 代表有缺少档案或原始码是采用其他方式安装，若是如此，便需重新取出 (checkout) 原始码。

表18. FreeBSD 版本与档案库路径

<table>
<thead>
<tr>
<th>uname -r</th>
<th>路径</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.Y-RELEASE</td>
<td>base/releng/X.Y</td>
<td>发布版本加上关健的安全性与错误修正，较建议大多数使用者使用这个分支。</td>
</tr>
<tr>
<td>X.Y-STABLE</td>
<td>base/stable/X</td>
<td>发布版本加上所有在该分支上其他开发中的程式，STABLE 代表不会更改应用程序 Binary 介面 (Applications Binary Interface, ABI)，所以在先前版本所编译的软体仍可以正常运作，举例来说，被编译在 FreeBSD 10.1 可执行的软体在编译完 FreeBSD 10-STABLE 之后仍可以执行。</td>
</tr>
<tr>
<td>X-CURRENT</td>
<td>base/head/</td>
<td>最新未发布的 FreeBSD 开发版本, CURRENT 分支可能会有重大错误或不相容的问题, 只建议进阶的使用者使用。</td>
</tr>
</tbody>
</table>
根據 FreeBSD 版本與 檔案庫路徑，要更新 10.3-RELEASE 需使用的原始碼案庫路徑為 base/releng/10.3，在取出 (checkout) 原始碼案庫路徑之後。第三個參數用來存放本地系統原始碼的目標目錄。

23.5.4. 從原始碼編譯

編譯世界 (world) 即編譯整個作業系統除了核心 (Kernel)；要先做這個動作以便提供最新的工具來編譯核心，接著便可編譯核心:

```bash
# cd /usr/src
# make buildworld
# make buildkernel
```

編譯完的程式會寫入至 /usr/obj。

以上這些均為基本的步驟，用來控制編譯的其他選項在以下章節會說明。

23.5.4.1. 行清除

編譯部份FreeBSD編譯系統版本會保留先前編譯的程式於暫存的物件目錄 /usr/obj，避免重新編譯那些尚未更動過的程式碼可加速後續的編譯動作，若要強制重新編譯所有東西可在開始編譯前使用 `cleanworld`:

```bash
# make cleanworld
```

23.5.4.2. 設定工作數量

在多核處理器上增加編譯工作的數量可增加編譯速度，可使用 `sysctl hw.ncpu` 來查看有多少核心，不同處理器使用不同版本的 FreeBSD 編譯系統，所以唯一能了解不同工作數量對編譯速度影響的方式便是測試。在一開始可考慮選擇一個介於 1/2 到 2 倍核心數之間的數值，工作的數量可使用 `-j` 來指定。

例 44. 增加編譯工作數使用四個工作來編譯世界與核心:

```bash
# make -j4 buildworld buildkernel
```
若原始碼有更動，便須執行 `buildworld`，完成之後，便可隨時執行 `buildkernel` 来編譯核心。若要只編譯核心可:

```
# cd /usr/src
# make buildkernel
```

23.5.4.4. 編譯自訂核心

標準的 FreeBSD 核心是以一個名為 GENERIC 的核心設定檔（Kernel config file）為基礎，GENERIC 核心中含了所有最常用的裝置驅動程式與選項，有時這個檔案對於編譯自訂核心也非常有用，可根据其來加入或移除裝置驅動程式或選項來滿足特殊需求。

例如，要開發一個 RAM 受到嚴重限制的小型嵌入式電腦，便可移除不需要的裝置驅動程式或選項來縮小核心。

核心設定檔位於 `/usr/src/sys/arch/conf/`，其中使用的 arch 即為 `uname -m` 輸出的結果，大部份的電腦為 amd64，那其設定檔目錄則為 `/usr/src/sys/amd64/conf/`。

自訂設定檔可由複製 GENERIC 設定檔來建立，在此範例，新的自訂核心要用在儲存伺服器，所以將其命名為 STORAGESERVER:

```
# cp /usr/src/sys/amd64/conf/GENERIC /root/STORAGESERVER
# cd /usr/src/sys/amd64/conf
# ln -s /root/STORAGESERVER .
```

接著編譯 `/root/STORAGESERVER`，要加入或移除裝置或選項可見 `config(5)`。

自訂核心要在指令列設定 `KERNCONF` 為核心設定檔來編譯:

```
# make buildkernel KERNCONF=STORAGESERVER
```

23.5.5. 安裝編譯好的程式

在完成 `buildworld` 與 `buildkernel` 兩個步驟之後，便可安裝新的核心與世界:

```
# cd /usr/src
# make installkernel
# shutdown -r now
# cd /usr/src
# make installworld
# shutdown -r now
```

若使用自訂核心，則同樣須設定 `KERNCONF` 來使用新的自訂核心:
cd /usr/src
make installkernel KERNCONF=STORAGESERVER
shutdown -r now
cd /usr/src
make installworld
shutdown -r now

23.5.6.
完成
更新
還有最後一些的工作要做來完成更新, 任
何修改過的設定檔要與新版本的設定檔
合併、移
除
找到過時程式庫, 然後
重
新
啟
動
系統。

23.5.6.1.
使用mergemaster(8)
mergemaster(8)可簡單的將修改過的系統設定檔與新版設定檔合併。
使用-Ui, mergemaster(8)會自動更新那些未被使用者修改過的設定檔並安裝尚不
存的檔案:
mergemaster -U
若檔案需要手動合併, 會有互動式介面可讓使用者選擇要保留那一邊的檔案, 請參
考mergemaster(8)取得更多資訊。

23.5.6.2.
檢查過時的檔案與程式庫部份廢棄的檔案或目錄可以在更新之後保留, 可使用以下
指令找出這些檔案:
make check-old
並用以下指令刪除:
make delete-old
部份廢棄的程式庫也可以保留下來, 可使用以下指令來偵測這些程式庫:
make check-old-libs
並使用以下指令刪除:
make delete-old-libs
那些仍使用舊程式庫的程式將在刪除程式庫之後無法正常運作, 而這些程式
須要在刪除舊程式庫之後重新編譯或更換。

當確認所有舊檔案或目錄可安全的刪除時, 要避免删除每一個檔案時均需按
下y与Enter鍵可在指令設定BATCH_DELETE_OLD_FILES, 例如:
502
到一個類機置。或者，若建集中的主編譯可在置地系統佈套要在本編譯件到上設定建並置散系統要每機應設定台。目錄享主可寫入的通用共等文件
/etc/make.conf透的方是樣共樹，第一個步同享也可用在法Port驟NFS過機機上置果安裝到在正常之後，使用相同的程序作試主結將檢的集中的其他主在完所有東西建好皆運測執往並如同行常載過NFS測，好的測機主置安裝到所述編譯核心機上機但編譯的東西，而是要，在將建安裝所有主好試如機上編譯核心置主與建，
/usr/src/sys/arch/conf設定主編譯列出所有要機應名稱，且名稱在的建核心核心置建每置建機應給所有一部安裝。此外，主集中的主機在與必須編譯整由個基礎系統主，這是於建主機置機致一置的機建在集中的所有主確保建集時，在有多個置透主建機上機掛集中的主置過載在建需要置的主定建但，置不是一部也可是同時是機要。系統試作的運更環境新，這部主前正機上機做為挑選再一部主定建，但有速度夠執足夠能(Kernel)一部，理快行集中需binary挑選。置做為建一部set)，作主行同一的一機群稱主確群首又執機先，要先組認要Binary置。要取得完的成果。本節會介紹如編譯請參使用NFS的資更考事何做關這件訊掛工機題的方，要機上做這個運過解透算決作，而其餘問的主完大部份的NFS與路寬空頻間CPU、網磁碟少費機始碼每不新一部主當有多部主編譯需要所有的東西會追蹤原樹與耗，要在始碼原重追蹤機多部23.6.器變更生效:啟電所有的新之後的最後一個步動，但部主己執訂核心可以有自Userland的自會機每行相同的。

DISTDIR的己每把也有，並且必須核心放要用的自主核心設定檔建機機置在其。
Chapter 24. DTrace

DTrace is an advanced dynamic tracing technology designed for monitoring and analyzing system behavior in real-time. It allows system administrators, developers, and users to instrument applications and system components with fine-grained probes to track, monitor, and analyze system performance and behavior.

In FreeBSD, DTrace is supported as an alternative to traditional debugging tools like `dtrace` and `kldload` for performance monitoring and troubleshooting.

Software Components

DTrace consists of several software components:

- **`dtraceall`**: This is a core component responsible for enabling DTrace on system startup.
- **`dev/dtrace/dtrace`**: This is the main DTrace executable that manages the runtime environment and executes DTrace probes.
- **`kldload`**: This command is used to load kernel modules.
- **`DTrace Guide`**: This is a comprehensive documentation for beginners and advanced users who want to leverage DTrace's powerful features.

DTrace Providers

In FreeBSD, DTrace supports various providers to facilitate debugging and monitoring tasks. Providers are plugins that extend the DTrace API with additional functionality.

- **Standard Providers**: These include `malloc()`, `printf()`, and `vprintf()`.
- **Static Providers**: These are providers that can be statically linked into applications.
- **Dynamic Providers**: These are providers loaded at runtime.

Using DTrace

To enable DTrace in FreeBSD, the following command is typically executed:

```
# kldload dtraceall
```

DTrace Features

DTrace offers a wide range of features to facilitate dynamic tracing:

- **Dynamic Tracing**: DTrace allows the execution of probes at runtime without recompiling applications.
- **Real-time Monitoring**: DTrace provides real-time monitoring capabilities, enabling system administrators to track performance and diagnose issues promptly.
- **Performance Analysis**: DTrace provides tools to analyze system performance, identify bottlenecks, and optimize code.
- **Support for Multiple Systems**: DTrace supports a variety of Unix-like systems including FreeBSD, OpenBSD, Solaris, and more.

DTrace Tools

DTrace includes several tools to aid in monitoring and analysis:

- **`ctfmerge`**: This command merges CTF (Compact Type Format) files.
- **`ctfconvert`**: This command converts ELF (Executable and Linkable Format) debugging data.
- **`ctfmerge`**: This command merges CTF files.

These tools are useful for managing and converting debugging data across different environments.

Conclusion

DTrace is a powerful tool for FreeBSD system administration and development. It offers an advanced dynamic tracing capability that complements and extends traditional debugging methods. With DTrace, users and administrators can gain deep insights into system behavior, enabling effective troubleshooting and performance optimization.

This document is licensed under the CDDL-1.0 license. Please refer to the CDDL documentation for full license terms and conditions.
24.3. 开启 DTrace 支援

在 FreeBSD 9.2 和 10.0 中，DTrace 内建于 GENERIC 核心里。FreeBSD 早期版本的使用者或喜欢在 DTrace 支援下静态编译的使用者应加入下列几行到客製化核心配置文件，并根据 Configuring the FreeBSD Kernel 中的说明重新编译核心:

```
options         KDTRACE_HOOKS
options         DDB_CTF
makeoptions DEBUG=-g
makeoptions WITH_CTF=1
```

AMD64 架构的使用者应加入下列几行:

```
options         KDTRACE_FRAME
```

此选项提供对 FBT 的支援，虽然 DTrace 可以在没有此选项的情况下运作，但对函数边界追踪的支援有限。

一旦 FreeBSD 系统使用新的核心重新启动，或者使用 kldload dtraceall 载入 DTrace 核心模组后，系统需要支援 Korn shell，因为 DTrace 工具箱有一些用 ksh 拓写工具。确保已经安装 shells/ksh93 套件或者 port， 也可以在 shells/pdksh 或者 shells/mksh 下执行这些工具。

最后，安装目前的 DTrace 工具箱，这是一组用於收集系统资讯的脚本，有一些脚本可以检查打开的文件、记忆体、CPU 使用情况等等。FreeBSD 10 将其中一些脚本安装在 /usr/share/dtrace 中。 在其他 FreeBSD 的版本中，要安装 DTrace 工具箱，请使用 sysutils/dtrace-toolkit 套件或者 port。

```
505
```
```
# cd /usr/local/share/dtrace-toolkit
# ./hotkernel
Sampling... Hit Ctrl-C to end.
```

按照说明，使用 Ctrl+C 组合键停止行程，停止后，脚本将显示一整列的核心函数和时间资讯，按照时间递增排序:

<table>
<thead>
<tr>
<th>MODULE</th>
<th>COUNT</th>
<th>PCNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xc107882e</td>
<td>1</td>
<td>0.0%</td>
</tr>
<tr>
<td>0xc10e6aa4</td>
<td>1</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

此脚本也是用于核心模组，要使用此功能，请使用 -m 执行脚本:
```
# ./hotkernel -m
Sampling... Hit Ctrl-C to end.
```
进程系统时间，给进程ID (PID) 或进程名的进程。在以下的例子中，生成了/bin/csh 新物件，然后，procsystime 被执行并一直等待，同时在 csh 的另一个化身上输入一些指令，以下是本次测试的结果:

```
# ./procsystime -n csh
Tracing... Hit Ctrl-C to end...
^C
```

<table>
<thead>
<tr>
<th>SYSCALL</th>
<th>TIME (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>getpid</td>
<td>6131</td>
</tr>
<tr>
<td>sigreturn</td>
<td>8121</td>
</tr>
<tr>
<td>close</td>
<td>19127</td>
</tr>
<tr>
<td>fcntl</td>
<td>19959</td>
</tr>
<tr>
<td>dup</td>
<td>26955</td>
</tr>
<tr>
<td>setpgid</td>
<td>28070</td>
</tr>
<tr>
<td>stat</td>
<td>31899</td>
</tr>
<tr>
<td>setitimer</td>
<td>40938</td>
</tr>
<tr>
<td>wait4</td>
<td>62717</td>
</tr>
<tr>
<td>sigaction</td>
<td>67372</td>
</tr>
<tr>
<td>sigprocmask</td>
<td>119091</td>
</tr>
<tr>
<td>gettimeofday</td>
<td>183710</td>
</tr>
<tr>
<td>write</td>
<td>263242</td>
</tr>
<tr>
<td>execve</td>
<td>492547</td>
</tr>
<tr>
<td>ioctl</td>
<td>770073</td>
</tr>
<tr>
<td>vfork</td>
<td>3258923</td>
</tr>
<tr>
<td>sigsuspend</td>
<td>6985124</td>
</tr>
</tbody>
</table>

如图所示，read() 系统调用使用的时最多 (以纳秒为单位)，而 getpid() 系统调用使用的时最少。
25. USB Device Mode / USB OTG

25.1. 概述

This chapter covers the use of USB Device Mode and USB On The Go (USB OTG) in FreeBSD. This includes virtual serial consoles, virtual network interfaces, and virtual USB drives.

When running on hardware that supports USB device mode or USB OTG, like that built into many embedded boards, the FreeBSD USB stack can run in device mode. Device mode makes it possible for the computer to present itself as different kinds of USB device classes, including serial ports, network adapters, and mass storage, or a combination thereof. A USB host like a laptop or desktop computer is able to access them just like physical USB devices. Device mode is sometimes called the "USB gadget mode".

There are two basic ways the hardware can provide the device mode functionality: with a separate "client port", which only supports the device mode, and with a USB OTG port, which can provide both device and host mode. For USB OTG ports, the USB stack switches between host-side and device-side automatically, depending on what is connected to the port. Connecting a USB device like a memory stick to the port causes FreeBSD to switch to host mode. Connecting a USB host like a computer causes FreeBSD to switch to device mode. Single purpose "client ports" always work in device mode.

What FreeBSD presents to the USB host depends on the `hw.usb.template` sysctl. Some templates provide a single device, such as a serial terminal; others provide multiple ones, which can all be used at the same time. An example is the template 10, which provides a mass storage device, a serial console, and a network interface. See `usb_template(4)` for the list of available values.

Note that in some cases, depending on the hardware and the host's operating system, for the host to notice the configuration change, it must be either physically disconnected and reconnected, or forced to rescan the USB bus in a system-specific way. When FreeBSD is running on the host, `usbconfig(8)` reset can be used. This also must be done after loading `usb_template.ko` if the USB host was already connected to the USBOTG socket.

25.2. USB 虛擬序列埠

25.2.1. 設定 USB 裝置模式序列埠

Virtual serial port support is provided by templates number 3, 8, and 10. Note that template 3 works with Microsoft Windows 10 without the need for special drivers and INF files. Other host operating systems work with all three templates. Both `usb_template(4)` and `umodem(4)` kernel modules must be loaded.

To enable USB device mode serial ports, add those lines to `/etc/ttys`:

```
ttyU0  /usr/libexec/getty 3wire
tv100   onifconsole secure
```
Reload the configuration if `devd(8)` is already running:

```bash
# service devd restart
```

Make sure the necessary modules are loaded and the correct template is set at boot by adding those lines to `/boot/loader.conf`, creating it if it does not already exist:

```bash
umodem_load = "YES"
hw.usb.template = 3
```

To load the module and set the template without rebooting use:

```bash
# kldload umodem
# sysctl hw.usb.template=3
```

To connect to a board configured to provide USB device mode serial ports, connect the USB host, such as a laptop, to the board's USB OTG or USB client port. Use `pstat -t` on the host to list the terminal lines. Near the end of the list you should see a USB serial port, e.g. `ttyU0`. To open the connection, use:

```bash
# cu -l /dev/ttyU0
```

After pressing the Enter key a few times you will see a login prompt.

To connect to a board configured to provide USB device mode serial ports, connect the USB host, such as a laptop, to the board's USB OTG or USB client port. To open the connection, use:

```bash
# cu -l /dev/cu.usbmodemFreeBSD1
```

To connect to a board configured to provide USB device mode serial ports, connect the USB host, such as a laptop, to the board's USB OTG or USB client port. To open the connection, use:
To connect to a board configured to provide USB device mode serial ports, connect the USB host, such as a laptop, to the board's USB OTG or USB client port. To open a connection, you will need a serial terminal program, such as PuTTY. To check the COM port name used by Windows, run Device Manager, expand "Ports (COM & LPT)". You will see a name similar to "USB Serial Device (COM4)". Run a serial terminal program of your choice, for example PuTTY. In the PuTTY dialog, set "Connection type" to "Serial", type the COMx obtained from Device Manager in the "Serial line" dialog box, and click Open.

25.3. USB Installations via Virtual Networking

Virtual network interfaces support is provided by templates number 1, 8, and 10. Note that none of them works with Microsoft Windows. Other host operating systems work with all three templates. Both `usb_template(4)` and `if_cdce(4)` kernel modules must be loaded.

Make sure the necessary modules are loaded and the correct template is set at boot by adding these lines to `/boot/loader.conf`, creating it if it does not already exist:

```
if_cdce_load = "YES"
hw.usb.template = 1
```

To load the module and set the template without rebooting, use:

```
# kldload if_cdce
# sysctl hw.usb.template=1
```

25.4. USB Mass Storage

Mass Storage target is provided by templates 0 and 10. Both `usb_template(4)` and `cfumass(4)` kernel modules must be loaded. `cfumass(4)` interfaces to the CTL subsystem, the same one that is used for iSCSI or Fibre Channel targets. On the host side, USB Mass Storage initiators can only access a single LUN, LUN 0.

25.4.1. Using cfumass Scripts

The simplest way to set up a read-only USB storage target is to use the `cfumass` script. To configure it this way, copy the files to be presented to the USB host machine into the `/var/cfumass` directory, and add this line to `/etc/rc.conf`:

```
.cfumass_enable="YES"
```

To configure the target without restarting, run this command:

```
# service cfumass start
```
Differently from serial and network functionality, the template should not be set to 0 or 10 in /boot/loader.conf. This is because the LUN must be set up before setting the template. The cfumass startup script sets the correct template number automatically when started.

25.4.2. 使用其他方式設定USB大量存儲目標

The rest of this chapter provides detailed description of setting the target without using the cfumass rc file. This is necessary if eg one wants to provide a writeable LUN.

USB Mass Storage does not require the ctld(8) daemon to be running, although it can be used if desired. This is different from iSCSI. Thus, there are two ways to configure the target: ctladm(8), or ctld(8). Both require the cfumass.ko kernel module to be loaded. The module can be loaded manually:

```
# kldload cfumass
```

If cfumass.ko has not been built into the kernel, /boot/loader.conf can be set to load the module at boot:

```
ctumass_load="YES"
```

A LUN can be created without the ctld(8) daemon:

```
# ctladm create -b block -o file=/data/target0
```

This presents the contents of the image file /data/target0 as a LUN to the USB host. The file must exist before executing the command. To configure the LUN at system startup, add the command to /etc/rc.local.

ctld(8) can also be used to manage LUNs. Create /etc/ctl.conf, add a line to /etc/rc.conf to make sure ctld(8) is automatically started at boot, and then start the daemon.

This is an example of a simple /etc/ctl.conf configuration file. Refer to ctl.conf(5) for a more complete description of the options.

```
target naa.50015178f369f092 {
    lun 0 {
        path /data/target0
        size 4G
    }
}
```

The example creates a single target with a single LUN. The naa.50015178f369f092 is a device identifier composed of 32 random hexadecimal digits. The path line defines the full path to a file or zvol backing the LUN. That file must exist before starting ctld(8). The second line is optional and specifies the size of the LUN.

To make sure the ctld(8) daemon is started at boot, add this line to /etc/rc.conf:

```
ctld_enable="YES"
```
To start `ctld(8)` now, run this command:

```bash
# service ctld start
```

When `ctld(8)` Daemon is started, it will read `/etc/ctl.conf`. If this file is modified after the Daemon is started, you need to run:

```bash
# service ctld reload
```
網路通訊
FreeBSD 是一種廣泛被使用在高效率的網路伺服器中的作業系統，這些章節包含了：
• 總線通訊
• PPP 和在乙太網路使用 PPP
• 郵件
• 號行網路伺服器
• 防火牆
• 其他的進階網路主題
這些章節是讓您在需要查資料的時候翻閱用的。
您不需要依照特定的順序來讀，也不需要將這些章節全部讀過之後才將 FreeBSD 用在網路環境下。
Chapter 26.

26.1. Overview

UNIX™ has relied on serial lines for input and output since its early days. Although the terminal was a byte-per-second serial printer and keyboard combination in its infancy, much has changed since then. This chapter will describe several serial communication methods available on FreeBSD.

After reading this chapter, you will learn:

- How to connect a serial terminal to a FreeBSD system.
- How to use a modem to dial into a remote host.
- How to allow remote users to access FreeBSD using a modem.
- How to boot FreeBSD from a serial console.

Before starting to read this chapter, you will need:

- Understanding of how to configure and install a custom kernel.
- Knowledge of FreeBSD permissions and programs.
- Ability to obtain the technical manual for the serial hardware you are using.

26.2. Serial Terminology and Hardware

The following terms are often used in serial communications:

- **bps**: Bits per Second is the rate at which data is transmitted.
- **DTE**: Data Terminal Equipment is one of the endpoints in a serial communication. An example would be a computer.
- **DCE**: Data Communications Equipment is the other endpoint in a serial communication. Typically, it is a modem or serial terminal.
- **RS-232**: The original standard which defined hardware serial communications. It has since been renamed to TIA-232.

When referring to communication data rates, this section does not use the term **baud**. Baud refers to the number of electrical state transitions made in a period of time, while **bps** is the correct term to use.

To connect a serial terminal to a FreeBSD system, a serial port on the computer and the proper cable to connect to the serial device are needed. Users who are already familiar with serial hardware and cabling can safely skip this section.

26.2.1. Serial Cables

There are several different kinds of serial cables. The two most common types are null-modem cables and standard RS-232 cables. The documentation for the hardware should describe the type of cable required.

These two types of cables differ in how the wires are connected to the connector. Each wire represents a signal, with the defined signals summarized in **RS-232C Signalling Names**. A standard serial cable uses 9 wires:

- **TXD**: Transmit Data
- **RXD**: Receive Data
- **RTS**: Request To Send
- **CTS**: Clear To Send
- **DSR**: Data Set Ready
- **DTR**: Data Terminal Ready
- **DCE**: Data Circuit-Exchange
- **GND**: Ground
- **5V**: 5 Volts

These signals are present on the DCE side of the connection, while the DTE side typically only has **TXD** and **RXD** pins.

When connecting the serial terminal to the computer, the wiring on the computer should be the same as the wiring on the terminal. This means that the **RXD** pin on the computer should connect to the **TXD** pin of the terminal, and so on.

Once the cable is connected, power must be turned on to the terminal. This will ensure that the terminal is ready to receive data from the computer.

After power has been turned on, the computer can then send data to the terminal. The terminal should display this data as it is received.

For more information on serial communication, refer to the relevant sections of the FreeBSD documentation.
A null-modem cable switches the "Transmitted Data" pin of the connector on one end with the "Received Data" pin on the other end. The connector can be either a DB-25 or a DB-9. A null-modem cable can be constructed using the pin connections summarized in Table 20.

Table 19. RS-232C Signal Names

<table>
<thead>
<tr>
<th>Signal</th>
<th>Pin #</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD</td>
<td>2</td>
</tr>
<tr>
<td>TD</td>
<td>3</td>
</tr>
<tr>
<td>DTR</td>
<td>4</td>
</tr>
<tr>
<td>DSR</td>
<td>6</td>
</tr>
<tr>
<td>DCD</td>
<td>8</td>
</tr>
<tr>
<td>SG</td>
<td>7</td>
</tr>
<tr>
<td>RTS</td>
<td>5</td>
</tr>
<tr>
<td>CTS</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 20. DB-25 to DB-25 Null-Modem Line

<table>
<thead>
<tr>
<th>Signal</th>
<th>DB-25 Pin #</th>
<th>DB-25 Pin #</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>TD</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>RD</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>RTS</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>CTS</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>DTR</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>DSR</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>DCD</td>
<td>8</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 21. DB-9 to DB-9 Null-Modem Line

<table>
<thead>
<tr>
<th>Signal</th>
<th>DB-9 Pin #</th>
<th>DB-9 Pin #</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>RD</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>DTR</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>DSR</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>DCD</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>SG</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>RTS</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>CTS</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

While the standard calls for a straight-through pin 1 to pin 1 "Protective Ground" line, it is often omitted. Some terminals work using only pins 2, 3, and 7, while others require different configurations. When in doubt, refer to the documentation for the hardware.
When one pin at one end connects to a pair of pins at the other end, it is usually implemented with one short wire between the pair of pins in their connector and a long wire to the other single pin.

Serial ports are the devices through which data is transferred between the FreeBSD host computer and the terminal. Several kinds of serial ports exist. Before purchasing or constructing a cable, make sure it will fit the ports on the terminal and on the FreeBSD system.

Most terminals have DB-25 ports. Personal computers may have DB-25 or DB-9 ports. A multiport serial card may have RJ-12 or RJ-45/ ports. See the documentation that accompanied the hardware for specifications on the kind of port or visually verify the type of port.

In FreeBSD, each serial port is accessed through an entry in /dev/. There are two different kinds of entries:

- **Call-in ports** are named /dev/ttyuN where N is the port number, starting from zero. If a terminal is connected to the first serial port (COM1), use /dev/ttyu0 to refer to the terminal. If the terminal is on the second serial port (COM2), use /dev/ttyu1, and so forth. Generally, the call-in port is used for terminals. Call-in ports require that the serial line assert the “Data Carrier Detect” signal to work correctly.

- **Call-out ports** are named /dev/cuauN on FreeBSD versions 8.X and higher and /dev/cuadN on FreeBSD versions 7.X and lower. Call-out ports are usually not used for terminals, but are used for modems. The call-out port can be used if the serial cable or the terminal does not support the “Data Carrier Detect” signal.

FreeBSD also provides initialization devices (/dev/ttyuN.init and /dev/cuauN.init or /dev/cuadN.init) and locking devices (/dev/ttyuN.lock and /dev/cuauN.lock or /dev/cuadN.lock). The initialization devices are used to initialize communications port parameters each time a port is opened, such as crtscts for modems which use RTS/CTS signaling for flow control. The locking devices are used to lock flags on ports to prevent users or programs changing certain parameters. Refer to termios(4), sio(4), and stty(1) for information on terminal settings, locking and initializing devices, and setting terminal options, respectively.

By default, FreeBSD supports four serial ports which are commonly known as COM1, COM2, COM3, and COM4. FreeBSD also supports dumb multi-port serial interface cards, such as the BocaBoard 1008 and 2016, as well as more intelligent multi-port cards such as those made by Digiboard. However, the default kernel only looks for the standard COM ports.

To see if the system recognizes the serial ports, look for system boot messages that start with uart:
If the system does not recognize all of the needed serial ports, additional entries can be added to /boot/device.hints. This file already contains hint.uart.0.* entries for COM1 and hint.uart.1.* entries for COM2. When adding a port entry for COM3 use 0x3E8, and for COM4 use 0x2E8. Common IRQ addresses are 5 for COM3 and 9 for COM4.

To determine the default set of terminal I/O settings used by the port, specify its device name. This example determines the settings for the call-in port on COM2:

```
# stty -a -f /dev/ttyu1
```

System-wide initialization of serial devices is controlled by /etc/rc.d/serial. This file affects the default settings of serial devices. To change the settings for a device, use stty. By default, the changed settings are in effect until the device is closed and when the device is reopened, it goes back to the default set. To permanently change the default set, open and adjust the settings of the initialization device. For example, to turn on CLOCAL mode, 8 bit communication, and XON/XOFF flow control for ttyu5, type:

```
# stty -f /dev/ttyu5.init clocal cs8 ixon ixoff
```

To prevent certain settings from being changed by an application, make adjustments to the locking device. For example, to lock the speed of ttyu5 to 57600 bps, type:

```
# stty -f /dev/ttyu5.lock 57600
```

Now, any application that opens ttyu5 and tries to change the speed of the port will be stuck with 57600 bps.

26.3. 终端机

Terminals provide a convenient and low-cost way to access a FreeBSD system when not at the computer's console or on a connected network. This section describes how to use terminals with FreeBSD.

The original UNIX™ systems did not have consoles. Instead, users logged in and ran programs through terminals that were connected to the computer's serial ports.

The ability to establish a login session on a serial port still exists in nearly every UNIX™-like operating system today, including FreeBSD. By using a terminal attached to an unused serial port, a user can log in and run any text program that can normally be run on the console or in an xterm window.

Many terminals can be attached to a FreeBSD system. An older spare computer can be used as a terminal wired into a more powerful computer running FreeBSD. This can turn what might otherwise be a single-user computer into a powerful multiple-user system.

FreeBSD supports three types of terminals:

- Dumb terminals
 Dumb terminals are specialized hardware that connect to computers over serial lines. They are called “dumb” because they have only enough computational power to display, send, and receive text. No programs can be run on these devices. Instead, dumb terminals connect to a computer that runs the needed programs.
There are hundreds of kinds of dumb terminals made by many manufacturers, and just about any kind will work with FreeBSD. Some high-end terminals can even display graphics, but only certain software packages can take advantage of these advanced features. Dumb terminals are popular in work environments where workers do not need access to graphical applications.

Computers Acting as Terminals

Since a dumb terminal has just enough ability to display, send, and receive text, any spare computer can be a dumb terminal. All that is needed is the proper cable and some terminal emulation software to run on the computer. This configuration can be useful. For example, if one user is busy working at the FreeBSD system’s console, another user can do some text-only work at the same time from a less powerful personal computer hooked up as a terminal to the FreeBSD system.

There are at least two utilities in the base-system of FreeBSD that can be used to work through a serial connection: \texttt{cu(1)} and \texttt{tip(1)}.

For example, to connect from a client system that runs FreeBSD to the serial connection of another system:

\begin{verbatim}
cu -l /dev/cuauN
\end{verbatim}

Ports are numbered starting from zero. This means that \texttt{COM1} is \texttt{/dev/cuau0}.

Additional programs are available through the Ports Collection, such as \texttt{comms/minicom}.

\section*{X Terminals}

X terminals are the most sophisticated kind of terminal available. Instead of connecting to a serial port, they usually connect to a network like Ethernet. Instead of being relegated to text-only applications, they can display any Xorg application. This chapter does not cover the setup, configuration, or use of X terminals.

\subsection*{終端機設定}

This section describes how to configure a FreeBSD system to enable a login session on a serial terminal. It assumes that the system recognizes the serial port to which the terminal is connected and that the terminal is connected with the correct cable.

In FreeBSD, \texttt{init} reads \texttt{/etc/ttys} and starts a \texttt{getty} process on the available terminals. The \texttt{getty} process is responsible for reading a login name and starting the \texttt{login} program. The ports on the FreeBSD system which allow logins are listed in \texttt{/etc/ttys}. For example, the first virtual console, \texttt{ttyv0}, has an entry in this file, allowing logins on the console. This file also contains entries for the other virtual consoles, serial ports, and pseudo-\texttt{ttys}. For a hardwired terminal, the serial port’s \texttt{/dev} entry is listed without the \texttt{/dev} part. For example, \texttt{/dev/ttyv0} is listed as \texttt{ttyv0}.

The default \texttt{/etc/ttys} configures support for the first four serial ports, \texttt{ttyu0} through \texttt{ttyu3}:

\begin{verbatim}
ttyu0 \texttt{}/usr/libexec/getty std.9600\texttt{}/dialup\texttt{}/off\texttt{}/secure
ttyu1 \texttt{}/usr/libexec/getty std.9600\texttt{}/dialup\texttt{}/off\texttt{}/secure
ttyu2 \texttt{}/usr/libexec/getty std.9600\texttt{}/dialup\texttt{}/off\texttt{}/secure
ttyu3 \texttt{}/usr/libexec/getty std.9600\texttt{}/dialup\texttt{}/off\texttt{}/secure
\end{verbatim}

When attaching a terminal to one of those ports, modify the default entry to set the required speed and terminal type, to turn the device on and, if needed, to change the port’s secure setting. If the ...
terminal is connected to another port, add an entry for the port.

設定 終端機項目

configures two terminals in /etc/ttys. The first entry configures a Wyse-50 connected to COM2. The second entry configures an old computer running Procomm terminal software emulating a VT-100 terminal. The computer is connected to the sixth serial port on a multi-port serial card.

例

ttyu1 /usr/libexec/getty std.38400 wy50 on insecure
ttyu5 /usr/libexec/getty std.19200 vt100 on insecure

• The first field specifies the device name of the serial terminal.
• The second field tells getty to initialize and open the line, set the line speed, prompt for a user name, and then execute the login program. The optional getty type configures characteristics on the terminal line, like bps rate and parity. The available getty types are listed in /etc/gettytab. In almost all cases, the getty types that start with std will work for hardwired terminals as these entries ignore parity. There is a std entry for each bps rate from 110 to 115200. Refer to gettytab(5) for more information. When setting the getty type, make sure to match the communications settings used by the terminal. For this example, the Wyse-50 uses no parity and connects at 38400 bps. The computer uses no parity and connects at 19200 bps.

• The third field is the type of terminal. For dial-up ports, unknown or dialup is typically used since users may dial up with practically any type of terminal or software. Since the terminal type does not change for hardwired terminals, a real terminal type from /etc/termcap can be specified. For this example, the Wyse-50 uses the real terminal type while the computer running Procomm is set to emulate a VT-100.

• The fourth field specifies if the port should be enabled. To enable logins on this port, this field must be set to on.
• The final field is used to specify whether the port is secure. Marking a port as secure means that it is trusted enough to allow root to login from that port. In insecure ports do not allow root logins. On an insecure port, users must login from unprivileged accounts and then use su or a similar mechanism to gain superuser privileges, as described in 超級使用者帳號. For security reasons, it is recommended to change this setting to insecure.

After making any changes to /etc/ttys, send a SIGHUP (hangup) signal to the init process to force it to re-read its configuration file:

kill -HUP 1

Since init is always the first process run on a system, it always has a process ID of 1.

If everything is set up correctly, all cables are in place, and the terminals are powered up, a getty process should now be running on each terminal and login prompts should be available on each terminal.

26.3.2. 連線疑難排解

Even with the most meticulous attention to detail, something could still go wrong while setting up a terminal. Here is a list of common symptoms and some suggested fixes.

If no login prompt appears, make sure the terminal is plugged in and powered up. If it is a personal computer acting as a terminal, make sure it is running terminal emulation software on the correct serial port.
Make sure the cable is connected firmly to both the terminal and the FreeBSD computer. Make sure it is the right kind of cable.

Make sure the terminal and FreeBSD agree on the bps rate and parity settings. For a video display terminal, make sure the contrast and brightness controls are turned up. If it is a printing terminal, make sure paper and ink are in good supply.

Use `ps` to make sure that a `getty` process is running and serving the terminal. For example, the following listing shows that a `getty` is running on the second serial port, `ttyu1`, and is using the `std.38400` entry in `/etc/gettytab`:

```bash
# ps -axww|grep ttyu
22189  d1  Is+    0:00.03 /usr/libexec/getty std.38400 ttyu1
```

If no `getty` process is running, make sure the port is enabled in `/etc/ttys`. Remember to run `kill -HUP 1` after modifying `/etc/ttys`.

If the `getty` process is running but the terminal still does not display a login prompt, or if it displays a prompt but will not accept typed input, the terminal or cable may not support hardware handshaking. Try changing the entry in `/etc/ttys` from `std.38400` to `3wire.38400`, then run `kill -HUP 1` after modifying `/etc/ttys`. The `3wire` entry is similar to `std`, but ignores hardware handshaking. The baud rate may need to be reduced or software flow control enabled when using `3wire` to prevent buffer overflows.

If garbage appears instead of a login prompt, make sure the terminal and FreeBSD agree on the bps rate and parity settings. Check the `getty` processes to make sure the correct `getty` type is in use. If not, edit `/etc/ttys` and run `kill -HUP 1`.

If characters appear doubled and the password appears when typed, switch the terminal, or the terminal emulation software, from "half duplex" or "local echo" to "full duplex."

26.4. 撥入服務

Configuring a FreeBSD system for dial-in service is similar to configuring terminals, except that modems are used instead of terminal devices. FreeBSD supports both external and internal modems.

External modems are more convenient because they often can be configured via parameters stored in non-volatile RAM and they usually provide lighted indicators that display the state of important RS-232 signals, indicating whether the modem is operating properly.

Internal modems usually lack non-volatile RAM, so their configuration may be limited to setting DIP switches. If the internal modem has any signal indicator lights, they are difficult to view when the system's cover is in place.

When using an external modem, a proper cable is needed. A standard RS-232C serial cable should suffice.

FreeBSD needs the RTS and CTS signals for flow control at speeds above 2400 bps, the CD signal to detect when a call has been answered or the line has been hung up, and the DTR signal to reset the modem after a session is complete. Some cables are wired without all of the needed signals, so if a login session does not go away when the line hangs up, there may be a problem with the cable. Refer to 序列線與埠 for more information about these signals.

Like other UNIX™-like operating systems, FreeBSD uses the hardware signals to find out when a call has been answered or a line has been hung up and to hangup and reset the modem after a call. FreeBSD avoids sending commands to the modem or watching for status reports from the modem.
The device provides a 16-character buffer, which allows for better system performance. Bugs in plain 16550 devices prevent the use of the 16-character buffer, so use 16550A devices if possible. Because single-character-buffer devices require more work by the operating system than the 16-character-buffer devices, 16550A-based serial interface cards are preferred. If the system has many active serial ports or will have a heavy load, 16550A-based cards are better for low-error-rate communications.

The rest of this section demonstrates how to configure a modem to receive incoming connections, how to communicate with the modem, and offers some troubleshooting tips.

26.4.1. 数据機設定
As with terminals, init spawns a getty process for each configured serial port used for dial-in connections. When a user dials the modem's line and the modems connect, the "Carrier Detect" signal is reported by the modem. The kernel notices that the carrier has been detected and instructs getty to open the port and display a login: prompt at the specified initial line speed. In a typical configuration, if garbage characters are received, usually due to the modem's connection speed being different than the configured speed, getty tries adjusting the line speeds until it receives reasonable characters. After the user enters their login name, getty executes login, which completes the login process by asking for the user's password and then starting the user's shell.

There are two schools of thought regarding dial-up modems. One configuration method is to set the modems and systems so that no matter at what speed a remote user dials in, the dial-in RS-232 interface runs at a locked speed. The benefit of this configuration is that the remote user always sees a system login prompt immediately. The downside is that the system does not know what a user's true data rate is, so full-screen programs like Emacs will not adjust their screen-painting methods to make their response better for slower connections.

The second method is to configure the RS-232 interface to vary its speed based on the remote user's connection speed. Because getty does not understand any particular modem's connection speed reporting, it gives a login: message at an initial speed and watches the characters that come back in response. If the user sees junk, they should press Enter until they see a recognizable prompt. If the data rates do not match, getty sees anything the user types as junk, tries the next speed, and gives the login: prompt again. This procedure normally only takes a keystroke or two before the user sees a good prompt. This login sequence does not look as clean as the locked-speed method, but a user on a low-speed connection should receive better interactive response from full-screen programs.

When locking a modem's data communications rate at a particular speed, no changes to /etc/gettytab should be needed. However, for a matching-speed configuration, additional entries may be required in order to define the speeds to use for the modem. This example configures a 14.4 Kbps modem with a top interface speed of 19.2 Kbps using 8-bit, no parity connections. It configures getty to start the communications rate for a V.32bis connection at 19.2 Kbps, then cycles through 9600 bps, 2400 bps, 1200 bps, 300 bps, and back to 19.2 Kbps. Communications rate cycling is implemented with the \texttt{nx=}(next table) capability. Each line uses a \texttt{tc=}(table continuation) entry to pick up the rest of the settings for a particular data rate.

\begin{verbatim}
Additions for a V.32bis Modem
#
um|V300|High Speed Modem at 300, 8-bit:
:nx=V19200:tc=std.300:
un|V1200|High Speed Modem at 1200, 8-bit:
:nx=V300:tc=std.1200:
uo|V2400|High Speed Modem at 2400, 8-bit:
:nx=V1200:tc=std.2400:
up|V9600|High Speed Modem at 9600, 8-bit:

521
\end{verbatim}
For a 28.8 Kbps modem, or to take advantage of compression on a 14.4 Kbps modem, use a higher communications rate, as seen in this example:

```
# Additions for a V.32bis or V.34 Modem
# Starting at 57.6 Kbps
```

For a slow CPU or a heavily loaded system without 16550A-based serial ports, this configuration may produce "sio" errors at 57.6 Kbps.

The configuration of `/etc/ttys` is similar to設定終端機項目, but a different argument is passed to `getty` and `dialup` is used for the terminal type. Replace `xxx` with the process `init` will run on the device:

```
ttyu0  "/usr/libexec/getty xxx"  dialup on
```

The `dialup` terminal type can be changed. For example, setting `vt102` as the default terminal type allows users to use VT102 emulation on their remote systems.

For a locked-speed configuration, specify the speed with a valid type listed in `/etc/gettytab`. This example is for a modem whose port speed is locked at 19.2 Kbps:

```
ttyu0  "/usr/libexec/getty std.19200"  dialup on
```

In a matching-speed configuration, the entry needs to reference the appropriate beginning "auto-baud" entry in `/etc/gettytab`. To continue the example for a matching-speed modem that starts at 19.2 Kbps, use this entry:

```
ttyu0  "/usr/libexec/getty V19200"  dialup on
```

After editing `/etc/ttys`, wait until the modem is properly configured and connected before signaling `init`:

```
522
```
26.4.2. Troubleshooting Dial-Up Modem

This section provides a few tips for troubleshooting a dial-up modem that will not connect to a FreeBSD system.

Hook up the modem to the FreeBSD system and boot the system. If the modem has status indication lights, watch to see whether the modem's DTR indicator lights when the login prompt appears on the system's console. If it lights up, that should mean that FreeBSD has started a getty process on the appropriate communications port and is waiting for the modem to accept a call. If the DTR indicator does not light, login to the FreeBSD system through the console and type ps ax to see if FreeBSD is running a getty process on the correct port:

```
114 ??  I      0:00.10 /usr/libexec/getty V19200 ttyu0
```

If the second column contains a d0 instead of a ?? and the modem has not accepted a call yet, this means that getty has completed its open on the communications port. This could indicate a problem with the cabling or a misconfigured modem because getty should not be able to open the communications port until the carrier detect signal has been asserted by the modem. If no getty processes are waiting to open the port, double-check that the entry for the port is correct in /etc/ttys. Also, check /var/log/messages to see if there are any log messages from init or getty.

Next, try dialing into the system. Be sure to use 8 bits, no parity, and 1 stop bit on the remote system. If a prompt does not appear right away, or the prompt shows garbage, try pressing Enter about once per second. If there is still no login prompt, try sending a BREAK. When using a high-speed modem, try dialing again after locking the dialing modem's interface speed. If there is still no login prompt, check /etc/gettytab again and double-check that:

- The initial capability name specified in the entry in /etc/ttys matches the name of a capability in /etc/gettytab.
- Each nx= entry matches another gettytab capability name.
- Each tc= entry matches another gettytab capability name.

If the modem on the FreeBSD system will not answer, make sure that the modem is configured to answer the phone when DTR is asserted. If the modem seems to be configured correctly, verify that the DTR line is asserted by checking the modem's indicator lights. If it still does not work, try sending an email to the FreeBSD general questions mailing list describing the modem and the problem.

26.5. Dialing Out Service

The following are tips for getting the host to connect over the modem to another computer. This is
appropriate for establishing a terminal session with a remote host. This kind of connection can be helpful to get a file on the Internet if there are problems using PPP. If PPP is not working, use the terminal session to FTP the needed file. Then use zmodem to transfer it to the machine.

26.5.1. 使用 Stock Hayes 数据机

A generic Hayes dialer is built into `tip`. Use `at=hayes` in `/etc/remote`.

The Hayes driver is not smart enough to recognize some of the advanced features of newer modems messages like `BUSY`, `NO DIALTONE`, or `CONNECT 115200`. Turn those messages off when using `tip` with `ATX0&W`.

The dial timeout for `tip` is 60 seconds. The modem should use something less, or else `tip` will think there is a communication problem. Try `ATS7=45&W`.

26.5.2. 使用 AT 指令

Create a “direct” entry in `/etc/remote`. For example, if the modem is hooked up to the first serial port, `/dev/cuau0`, use the following line:

```
cuau0:dv=/dev/cuau0:br#19200:pa=none
```

Use the highest bps rate the modem supports in the `br` capability. Then, type `tip cuau0` to connect to the modem.

Or, use `cu` as root with the following command:

```
# cu -lline -sspeed
```

`line` is the serial port, such as `/dev/cuau0`, and `speed` is the speed, such as 57600. When finished entering the AT commands, type `~` to exit.

26.5.3. @ 符号无法运作

The `@` sign in the phone number capability tells `tip` to look in `/etc/phones` for a phone number. But, the `@` sign is also a special character in capability files like `/etc/remote`, so it needs to be escaped with a backslash:

```
pn=\@
```

26.5.4. 从指令列拨号

Put a “generic” entry in `/etc/remote`. For example:

```
tip115200|Dial any phone number at 115200 bps:
:dv=/dev/cuau0:br#115200:at=hayes:pa=none:du:
tip57600|Dial any phone number at 57600 bps:
:dv=/dev/cuau0:br#57600:at=hayes:pa=none:du:
```

This should now work:
Users who prefer cu over tip, can use a generic cu entry:

cu115200|Use cu to dial any number at 115200bps:
:dv=/dev/cuau1:br#57600:at=hayes:pa=none:du:

and type:
cu 5551234 -s 115200

Put in an entry for tip1200 or cu1200, but go ahead and use whatever bps rate is appropriate with the br capability. tip thinks a good default is 1200 bps which is why it looks for a tip1200 entry. 1200 bps does not have to be used, though.

Rather than waiting until connected and typing CONNECT host each time, use tip’s cm capability. For example, these entries in /etc/remote will let you type tip pain or tip muffin to connect to the hosts pain or muffin, and tip deep13 to connect to the terminal server.

pain|pain.deep13.com|Forrester’s machine:
:cm=CONNECT pain
:tc=deep13:
muffin|muffin.deep13.com|Frank’s machine:
:cm=CONNECT muffin
:tc=deep13:
depth13:Gizmonics Institute terminal server:
:dv=/dev/cuau2:br#38400:at=hayes:du:pa=none:pn=5551234:

This is often a problem where a university has several modem lines and several thousand students trying to use them. Make an entry in /etc/remote and use @ for the pn capability:

big-university:
:pn=@:tc=dialout
dialout:
:dv=/dev/cuau3:br#9600:at=courier:du:pa=none:

Then, list the phone numbers in /etc/phones:

big-university 5551111
dialout 5551112
will try each number in the listed order, then give up. To keep retrying, run `tip` in a `while` loop.

26.5.8. 使用強制字元 `Ctrl` + `P` is the default "force" character, used to tell `tip` that the next character is literal data. The force character can be set to any other character with the `~s` escape, which means "set a variable."

Type `~sforce= single-char` followed by a newline. `single-char` is any single character. If `single-char` is left out, then the force character is the null character, which is accessed by typing `Ctrl` + `2` or `Ctrl` + `Space`. A pretty good value for `single-char` is `Shift` + `Ctrl` + `6`, which is only used on some terminal servers.

To change the force character, specify the following in `~/.tiprc`:

```
force=single-char
```

26.5.9. 大寫字元 This happens when `Ctrl` + `A` is pressed, which is `tip`'s "raise character", specially designed for people with broken caps-lock keys. Use `~s` to set `raisechar` to something reasonable. It can be set to be the same as the force character, if neither feature is used.

Here is a sample `~/.tiprc` for Emacs users who need to type `Ctrl` + `2` and `Ctrl` + `A`:

```
force=^^
raisechar=^^
```

The `^^` is `Shift` + `Ctrl` + `6`.

26.5.10. 使用 `tip` 傳輸檔 When talking to another UNIX™-like operating system, files can be sent and received using `~p` (put) and `~t` (take). These commands run `cat` and `echo` on the remote system to accept and send files.

The syntax is:

```
~p local-file [ remote-file ]
~t remote-file [ local-file ]
```

There is no error checking, so another protocol, like zmodem, should probably be used.

26.5.11. 在 zmodem 使用 `tip`? To receive files, start the sending program on the remote end. Then, type `~C rz` to begin receiving them locally.

To send files, start the receiving program on the remote end. Then, type `~C sz files` to send them to the remote system.
FreeBSD has the ability to boot a system with a dumb terminal on a serial port as a console. This configuration is useful for system administrators who wish to install FreeBSD on machines that have no keyboard or monitor attached, and developers who want to debug the kernel or device drivers.

As described in the FreeBSD manual, FreeBSD employs a three stage bootstrap. The first two stages are in the boot block code which is stored at the beginning of the FreeBSD slice on the boot disk. The boot block then loads and runs the boot loader as the third stage code.

In order to set up booting from a serial console, the boot block code, the boot loader code, and the kernel need to be configured.

26.6.1. Quick Serial Console Setup

This section provides a fast overview of setting up the serial console. This procedure can be used when the dumb terminal is connected to COM1.

Procedure: Configuring a Serial Console on COM1

1. Connect the serial cable to COM1 and the controlling terminal.

2. To configure boot messages to display on the serial console, issue the following command as the superuser:

   ```
   sysrc -f /boot/loader.conf
   console = comconsole
   ```

3. Edit /etc/ttys and change off to on and dialup to vt100 for the ttyu0 entry. Otherwise, a password will not be required to connect via the serial console, resulting in a potential security hole.

4. Reboot the system to see if the changes took effect.

If a different configuration is required, see the next section for a more in-depth configuration explanation.

26.6.2. Deep Serial Console Setup

This section provides a more detailed explanation of the steps needed to setup a serial console in FreeBSD.

Procedure: Configuring a Serial Console

1. Prepare a serial cable.

 Use either a null-modem cable or a standard serial cable and a null-modem adapter. See serial line and port for a discussion on serial cables.

2. Unplug the keyboard.

 Many systems probe for the keyboard during the Power-On Self-Test (POST) and will generate an error if the keyboard is not detected. Some machines will refuse to boot until the keyboard is plugged in.

 If the computer complains about the error, but boots anyway, no further configuration is needed.
If the computer refuses to boot without a keyboard attached, configure the BIOS so that it ignores this error. Consult the motherboard's manual for details on how to do this.

Try setting the keyboard to "Not installed" in the BIOS. This setting tells the BIOS not to probe for a keyboard at power-on so it should not complain if the keyboard is absent. If that option is not present in the BIOS, look for an "Halt on Error" option instead. Setting this to "All but Keyboard" or to "No Errors" will have the same effect.

If the system has a PS/2™ mouse, unplug it as well. PS/2™ mice share some hardware with the keyboard and leaving the mouse plugged in can fool the keyboard probe into thinking the keyboard is still there.

While most systems will boot without a keyboard, quite a few will not boot without a graphics adapter. Some systems can be configured to boot with no graphics adapter by changing the "graphics adapter" setting in the BIOS configuration to "Not installed". Other systems do not support this option and will refuse to boot if there is no display hardware in the system. With these machines, leave some kind of graphics card plugged in, even if it is just a junky mono board. A monitor does not need to be attached.

3. Plug a dumb terminal, an old computer with a modem program, or the serial port on another UNIX™ box into the serial port.

4. Add the appropriate hint.sio.* entries to /boot/device.hints for the serial port. Some multi-port cards also require kernel configuration options. Refer to sio(4) for the required options and device hints for each supported serial port.

5. Create boot.config in the root directory of the a partition on the boot drive. This file instructs the boot block code how to boot the system. In order to activate the serial console, one or more of the following options are needed. When using multiple options, include them all on the same line:

- **h** Toggles between the internal and serial consoles. Use this to switch console devices. For instance, to boot from the internal (video) console, use **h** to direct the boot loader and the kernel to use the serial port as its console device. Alternatively, to boot from the serial port, use **h** to tell the boot loader and the kernel to use the video display as the console instead.

- **D** Toggles between the single and dual console configurations. In the single configuration, the console will be either the internal console (video display) or the serial port, depending on the state of **h**. In the dual console configuration, both the video display and the serial port will become the console at the same time, regardless of the state of **h**. However, the dual console configuration takes effect only while the boot block is running. Once the boot loader gets control, the console specified by **h** becomes the only console.

- **P** Makes the boot block probe the keyboard. If no keyboard is found, the **D** and **h** options are automatically set. Due to space constraints in the current version of the boot blocks, **P** is capable of detecting extended keyboards only. Keyboards with less than 101 keys and without F11 and F12 keys may not be detected. Keyboards on some laptops may not be properly found because of this limitation. If this is the case, do not use **P**.
Use either `-P` to select the console automatically or `-h` to activate the serial console. Refer to `boot(8)` and `boot.config(5)` for more details.

The options, except for `-P`, are passed to the boot loader. The boot loader will determine whether the internal video or the serial port should become the console by examining `-h`. This means that if `-D` is specified but `-h` is not specified in `/boot.config`, the serial port can be used as the console only during the boot block as the boot loader will use the internal video display as the console.

6. Boot the machine. When FreeBSD starts, the boot blocks echo the contents of `/boot.config` to the console. For example:

```
/boot.config:
-P
```

The second line appears only if `-P` is in `/boot.config` and indicates the presence or absence of the keyboard. These messages go to either the serial or internal console, or both, depending on the option in `/boot.config`:

<table>
<thead>
<tr>
<th>Options</th>
<th>Message goes to</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>internal console</td>
</tr>
<tr>
<td>-h</td>
<td>serial console</td>
</tr>
<tr>
<td>-D</td>
<td>serial and internal consoles</td>
</tr>
<tr>
<td>-Dh</td>
<td>serial and internal consoles</td>
</tr>
<tr>
<td>-P</td>
<td>keyboard present</td>
</tr>
<tr>
<td>-P</td>
<td>keyboard absent</td>
</tr>
</tbody>
</table>

After the message, there will be a small pause before the boot blocks continue loading the boot loader and before any further messages are printed to the console. Under normal circumstances, there is no need to interrupt the boot blocks, but one can do so in order to make sure things are set up correctly.

Press any key, other than `Enter`, at the console to interrupt the boot process. The boot blocks will then prompt for further action:

```
> FreeBSD/i386 BOOT
Default: 0:ad
(0,a)/boot/loader
```

boot:

Verify that the above message appears on either the serial or internal console, or both, according to the options in `/boot.config`. If the message appears in the correct console, press `Enter` to continue the boot process.

If there is no prompt on the serial terminal, something is wrong with the settings. Enter `-h` then `Enter` or `Return` to tell the boot block (and then the boot loader and the kernel) to choose the serial port for the console. Once the system is up, go back and check what went wrong.

During the third stage of the boot process, one can still switch between the internal console and the serial console by setting appropriate environment variables in the boot loader. See `loader(8)` for more information.
This line in /boot/loader.conf or /boot/loader.conf.local configures the boot loader and the kernel to send their boot messages to the serial console, regardless of the options in /boot.config:

```
console="comconsole"
```

That line should be the first line of /boot/loader.conf so that boot messages are displayed on the serial console as early as possible. If that line does not exist, or if it is set to `console="vidconsole"`, the boot loader and the kernel will use whichever console is indicated by `-h` in the boot block. See `loader.conf(5)` for more information.

At the moment, the boot loader has no option equivalent to `-P` in the boot block, and there is no provision to automatically select the internal console and the serial console based on the presence of the keyboard.

While it is not required, it is possible to provide a login prompt over the serial line. To configure this, edit the entry for the serial port in /etc/ttys using the instructions in 終端機設定. If the speed of the serial port has been changed, change `std.9600` to match the new setting.

26.6.3. 設定使用更快的序列埠速度

By default, the serial port settings are 9600 baud, 8 bits, no parity, and 1 stop bit. To change the default console speed, use one of the following options:

- Edit /etc/make.conf and set `BOOT_COMCONSOLE_SPEED` to the new console speed. Then, recompile and install the boot blocks and the boot loader:

```
# cd /sys/boot
# make clean
# make
# make install
```

- If the serial console is configured in some other way than by booting with `-h`, or if the serial console used by the kernel is different from the one used by the boot blocks, add the following option, with the desired speed, to a custom kernel configuration file and compile a new kernel:

```
options CONSPEED=19200
```

- Add the `-S_19200_` boot option to /boot.config, replacing 19200 with the speed to use.

- Add the following options to /boot/loader.conf. Replace 115200 with the speed to use.

```
boot_multicons="YES"
boot_serial="YES"
comconsole_speed="115200"
console="comconsole,vidconsole"
```
To configure the ability to drop into the kernel debugger from the serial console, add the following options to a custom kernel configuration file and compile the kernel using the instructions in FreeBSD. Note that while this is useful for remote diagnostics, it is also dangerous if a spurious BREAK is generated on the serial port. Refer to `ddb(4)` and `ddb(8)` for more information about the kernel debugger.

```
options BREAK_TO_DEBUGGER
options DDB
```
Chapter 27. PPP

27.1. 概述
FreeBSD支援點對點(Point-to-Point, PPP)通訊協定，可透過撥號數據機用來建立網路或網際網路連線。本章將說明如何設定在FreeBSD中以數據機為基礎的通訊服務。

讀完這章，您將了解:
• 如何設定、使用PPP連線及排除問題。
• 如何設定在乙太網路(Ethernet)上的PPP (PPPoE)。
• 如何設定在ATM上的PPP (PPPoA)。

在開始閱讀這章之前，您需要:
• 熟悉基本網路術語。
• 了解撥號連線及PPP的基礎及目的。

27.2. 設定PPP
FreeBSD provides built-in support for managing dial-up PPP connections using `ppp(8)`. The default FreeBSD kernel provides support for `tun` which is used to interact with a modem hardware.

Configuration is performed by editing at least one configuration file, and configuration files containing examples are provided. Finally, `ppp` is used to start and manage connections.

In order to use a PPP connection, the following items are needed:
• A dial-up account with an Internet Service Provider (ISP).
• A dial-up modem.
• The dial-up number for the ISP.
• The login name and password assigned by the ISP.
• The IP address of one or more DNS servers. Normally, the ISP provides these addresses. If it did not, FreeBSD can be configured to use DNS negotiation.

If any of the required information is missing, contact the ISP.

The following information may be supplied by the ISP, but is not necessary:
• The IP address of the default gateway. If this information is unknown, the ISP will automatically provide the correct value during connection setup. When configuring PPP on FreeBSD, this address is referred to as `HISADDR`.
• The subnet mask. If the ISP has not provided one, `255.255.255.255` will be used in the `ppp(8)` configuration file. *If the ISP has assigned a static IP address and hostname, it should be input into the configuration file. Otherwise, this information will be automatically provided during connection setup.

The rest of this section demonstrates how to configure FreeBSD for common PPP connection scenarios. The required configuration file is `/etc/ppp/ppp.conf` and additional files and examples are available in `/usr/shared/examples/ppp/`.

Throughout this section, many of the file examples display line numbers. These line numbers have been added to make it easier to follow the discussion and are not meant to be placed in the actual file.
When editing a configuration file, proper indentation is important. Lines that end in a colon start in the first column (beginning of the line) while all other lines should be indented as shown using spaces or tabs.

27.2.1. 基礎設定

In order to configure a PPP connection, first edit /etc/ppp/ppp.conf with the dial-in information for the ISP. This file is described as follows:

```
1     default:
2       set log Phase Chat LCP IPCP CCP tun command
3       ident user-ppp VERSION
4       set device /dev/cuau0
5       set speed 115200
6       set dial "ABORT BUSY ABORT NO\sCARRIER TIMEOUT 5 
7                 "" AT OK-AT-OK ATE1Q0 OK \dATDT\T TIMEOUT 40 CONNECT"
8       set timeout 180
9       enable dns
10
11    provider:
12      set phone "(123) 456 7890"
13      set authname foo
14      set authkey bar
15      set timeout 300
16      set ifaddr x.x.x.x/0 y.y.y.y/0 255.255.255.255 0.0.0.0
17      add default HISADDR
```

Line 1 identifies the default entry. Commands in this entry (lines 2 through 9) are executed automatically when ppp is run.

Line 2 enables verbose logging parameters for testing the connection. Once the configuration is working satisfactorily, this line should be reduced to:
```
set log phase tun
```

Line 3 displays the version of ppp(8) to the PPP software running on the other side of the connection.

Line 4 identifies the device to which the modem is connected, where COM1 is /dev/cuau0 and COM2 is /dev/cuau1.

Line 5 sets the connection speed. If 115200 does not work on an older modem, try 38400 instead.

Lines 6 & 7 The dial string written as an expect-send syntax. Refer to chat(8) for more information.
Note that this command continues onto the next line for readability. Any command in `ppp.conf` may do this if the last character on the line is `\`.

Line 8
Sets the idle timeout for the link in seconds.

Line 9
Instructs the peer to confirm the DNS settings. If the local network is running its own DNS server, this line should be commented out, by adding a `#` at the beginning of the line, or removed.

Line 10
A blank line for readability. Blank lines are ignored by `ppp(8)`.

Line 11
Identifies an entry called `provider`. This could be changed to the name of the ISP so that `ISP` can be used to start the connection.

Line 12
Use the phone number for the ISP. Multiple phone numbers may be specified using the colon (`:`) or pipe character (`|`). To rotate through the numbers, use a colon. To always attempt to dial the first number first and only use the other numbers if the first number fails, use the pipe character. Always enclose the entire set of phone numbers between quotation marks (`"`).

Lines 13 & 14
Use the user name and password for the ISP.

Line 15
Sets the default idle timeout in seconds for the connection. In this example, the connection will be closed automatically after 300 seconds of inactivity. To prevent a timeout, set this value to zero.

Line 16
Sets the interface addresses. The values used depend upon whether a static IP address has been obtained from the ISP or if it instead negotiates a dynamic IP address during connection. If the ISP has allocated a static IP address and default gateway, replace `x.x.x.x` with the static IP address and replace `y.y.y.y` with the IP address of the default gateway. If the ISP has only provided a static IP address without a gateway address, replace `y.y.y.y` with `10.0.0.2/0`. If the IP address changes whenever a connection is made, change this line to the following value. This tells `ppp(8)` to use the IP Configuration Protocol (IPCP) to negotiate a dynamic IP address:

```
set ifaddr 10.0.0.1/0 10.0.0.2/0 255.255.255.255 0.0.0.0
```

Line 17
Keep this line as-is as it adds a default route to the gateway. The `HISADDR` will automatically be replaced with the gateway address specified on line 16. It is important that this line appears after line 16.

Depending upon whether `ppp(8)` is started manually or automatically, a `/etc/ppp/ppp.linkup` may also need to be created which contains the following lines. This file is required when running `ppp` in `-auto` mode. This file is used after the connection has been established. At this point, the IP address will have been assigned and it is now be possible to add the routing table entries. When creating this file, make sure that `provider` matches the value demonstrated in line 11 of `ppp.conf`.

```
provider: 534
```
This file is also needed when the default gateway address is "guessed" in a static IP address configuration. In this case, remove line 17 from /etc/ppp/ppp.conf and create /etc/ppp/ppp.linkup with the above two lines. More examples for this file can be found in /usr/shared/examples/ppp/.

By default, ppp must be run as root. To change this default, add the account of the user who should run ppp to the network group in /etc/group. Then, give the user access to one or more entries in /etc/ppp/ppp.conf with allow. For example, to give fred and mary permission to only the provider: entry, add this line to the provider: section:

```
allow users fred mary
```

To give the specified users access to all entries, put that line in the default section instead.

27.2.2. 高级设定
It is possible to configure PPP to supply DNS and NetBIOS nameserver addresses on demand. To enable these extensions with PPP version 1.x, the following lines might be added to the relevant section of /etc/ppp/ppp.conf.

```
enable msext
set ns 203.14.100.1 203.14.100.2
set nbns 203.14.100.5
```

And for PPP version 2 and above:

```
accept dns
set dns 203.14.100.1 203.14.100.2
set nbns 203.14.100.5
```

This will tell the clients the primary and secondary name server addresses, and a NetBIOS nameserver host.

In version 2 and above, if the set dns line is omitted, PPP will use the values found in /etc/resolv.conf.

27.2.2.1. PAP 与 CHAP 认证
Some ISPs set their system up so that the authentication part of the connection is done using either of the PAP or CHAP authentication mechanisms. If this is the case, the ISP will not give a login: prompt at connection, but will start talking PPP immediately.

PAP is less secure than CHAP, but security is not normally an issue here as passwords, although being sent as plain text with PAP, are being transmitted down a serial line only. There is not much room for crackers to "eavesdrop".

The following alterations must be made:

```
13      set authname MyUserName
```

535
14 set authkey MyPassword
15 set login

This line specifies the PAP/CHAP user name. Insert the correct value for MyUserName.

14 set authkey MyPassword

This line specifies the PAP/CHAP password. Insert the correct value for MyPassword. You may want to add an additional line, such as:

16 accept PAP

或

16 accept CHAP
to make it obvious that this is the intention, but PAP and CHAP are both accepted by default.

15 set login

The ISP will not normally require a login to the server when using PAP or CHAP. Therefore, disable the "set login" string.

27.2.2.2. 使用 PPP 路由地址转译功能

PPP has ability to use internal NAT without kernel diverting capabilities. This functionality may be enabled by the following line in /etc/ppp/ppp.conf:

```
nat enable yes
```

Alternatively, NAT may be enabled by command-line option -nat. There is also /etc/rc.conf knob named ppp_nat, which is enabled by default.

When using this feature, it may be useful to include the following /etc/ppp/ppp.conf options to enable incoming connections forwarding:

```
nat port tcp 10.0.0.2:ftp ftp
nat port tcp 10.0.0.2:http http
```
or do not trust the outside at all

```
nat deny_incoming yes
```

27.2.3. 最终系统设定

While ppp is now configured, some edits still need to be made to /etc/rc.conf.

Working from the top down in this file, make sure the hostname= line is set:
If the ISP has supplied a static IP address and name, use this name as the host name. Look for the `network_interfaces` variable. To configure the system to dial the ISP on demand, make sure the `tun0` device is added to the list, otherwise remove it.

```
network_interfaces="lo0 tun0"
```

The `ifconfig_tun0` variable should be empty, and a file called `/etc/start_if.tun0` should be created. This file should contain the line:

```
ppp -auto mysystem
```

This script is executed at network configuration time, starting the ppp daemon in automatic mode. If this machine acts as a gateway, consider including `-alias`. Refer to the manual page for further details.

Make sure that the router program is set to `NO` with the following line in `/etc/rc.conf`:

```
router_enable="NO"
```

It is important that the `routed` daemon is not started, as `routed` tends to delete the default routing table entries created by `ppp`.

It is probably a good idea to ensure that the `sendmail_flags` line does not include the `-q` option, otherwise `sendmail` will attempt to do a network lookup every now and then, possibly causing your machine to dial out. You may try:

```
sendmail_flags="-bd"
```

The downside is that `sendmail` is forced to re-examine the mail queue whenever the ppp link. To automate this, include `!bg` in `ppp.linkup`:

```
1     provider:
2       delete ALL
3       add 0 0 HISADDR
4       !bg sendmail -bd -q30m
```

An alternative is to set up a "dfilter" to block SMTP traffic. Refer to the sample files for further details.

27.2.4.

All that is left is to reboot the machine. After rebooting, either type:
and then dial provider to start the PPP session, or, to configure ppp to establish sessions automatically when there is outbound traffic and start_if.tun0 does not exist, type:

```
# ppp -auto provider
```

It is possible to talk to the ppp program while it is running in the background, but only if a suitable diagnostic port has been set up. To do this, add the following line to the configuration:

```
set server /var/run/ppp-tun%d DiagnosticPassword 0177
```

This will tell PPP to listen to the specified UNIX™ domain socket, asking clients for the specified password before allowing access. The %d in the name is replaced with the tun device number that is in use.

Once a socket has been set up, the pppctl(8) program may be used in scripts that wish to manipulate the running program.

27.2.5. 設定撥入服務

provides a good description on enabling dial-up services using getty(8).

An alternative to getty is comms/mgetty+sendfax port), a smarter version of getty designed with dial-up lines in mind.

The advantages of using mgetty is that it actively talks to modems, meaning if port is turned off in /etc/ttys then the modem will not answer the phone.

Later versions of mgetty (from 0.99beta onwards) also support the automatic detection of PPP streams, allowing clients scriptless access to the server.

Refer to http://mgetty.greenie.net/doc/mgetty_toc.html for more information on mgetty.

By default the comms/mgetty+sendfax port comes with the AUTO_PPP option enabled allowing mgetty to detect the LCP phase of PPP connections and automatically spawn off a ppp shell.

However, since the default login/password sequence does not occur it is necessary to authenticate users using either PAP or CHAP.

This section assumes the user has successfully compiled, and installed the comms/mgetty+sendfax port on his system.

Ensure that /usr/local/etc/mgetty+sendfax/login.config has the following:

```
/AutoPPP/ -     - /etc/ppp/ppp-pap-dialup
```

This tells mgetty to run ppp-pap-dialup for detected PPP connections.

Create an executable file called /etc/ppp/ppp-pap-dialup containing the following:

```
#!/bin/sh
exec /usr/sbin/ppp -direct pap$IDENT
```
For each dial-up line enabled in `/etc/ttys`, create a corresponding entry in `/etc/ppp/ppp.conf`. This will happily co-exist with the definitions we created above.

```
pap:
enable pap
set ifaddr 203.14.100.1 203.14.100.20-203.14.100.40
enable proxy
```

Each user logging in with this method will need to have a username/password in `/etc/ppp/ppp.secret`, or alternatively add the following option to authenticate users via PAP from `/etc/passwd`.

```
enable passwdauth
```

To assign some users a static IP number, specify the number as the third argument in `/etc/ppp/ppp.secret`. See `/usr/shared/examples/ppp/ppp.secret.sample` for examples.

27.3. PPP 連線難排解

This section covers a few issues which may arise when using PPP over a modem connection. Some ISPs present the `ssword` prompt while others present `password`. If the `ppp` script is not written accordingly, the login attempt will fail. The most common way to debug `ppp` connections is by connecting manually as described in this section.

27.3.1. 檢查裝置節點

When using a custom kernel, make sure to include the following line in the kernel configuration file:

```
device   uart
```

The `uart` device is already included in the `GENERIC` kernel, so no additional steps are necessary in this case. Just check the `dmesg` output for the modem device with:

```
# dmesg | grep uart
```

This should display some pertinent output about the `uart` devices. These are the COM ports we need. If the modem acts like a standard serial port, it should be listed on `uart1`, or `COM2`. If so, a kernel rebuild is not required. When matching up, if the modem is on `uart1`, the modem device would be `/dev/cuau1`.

27.3.2. 手動連線

Connecting to the Internet by manually controlling `ppp` is quick, easy, and a great way to debug a connection or just get information on how the ISP treats `ppp` client connections. Let's start PPP from the command line. Note that in all of our examples we will use `example` as the hostname of the machine running PPP. To start `ppp`:

```
# ppp
```

539
This second command sets the modem device to /dev/cuau1.

This sets the connection speed to 115,200 kbps.

This tells ppp to configure the resolver and add the nameserver lines to /etc/resolv.conf. If ppp cannot determine the hostname, it can manually be set later.

This switches to “terminal” mode in order to manually control the modem.

at

Use at to initialize the modem, then use atdt and the number for the ISP to begin the dial in process.

CONNECT

Confirmation of the connection, if we are going to have any connection problems, unrelated to hardware, here is where we will attempt to resolve them.

ISP Login: myusername

At this prompt, return the prompt with the username that was provided by the ISP.

ISP Pass: mypassword

At this prompt, reply with the password that was provided by the ISP. Just like logging into FreeBSD, the password will not echo.
Depending on the ISP, this prompt might not appear. If it does, it is asking whether to use a shell on the provider or to start `ppp`. In this example, `ppp` was selected in order to establish an Internet connection.

We have successfully authenticated with our ISP and are waiting for the assigned IP address.

We have made an agreement on an IP address and successfully completed our connection.

Here we add our default route, we need to do this before we can talk to the outside world as currently the only established connection is with the peer. If this fails due to existing routes, put a bang character `!` in front of the `add`. Alternatively, set this before making the actual connection and it will negotiate a new route accordingly.

If everything went good we should now have an active connection to the Internet, which could be thrown into the background using `CTRL + z`.

If `PPP` returns to `ppp` then the connection has been lost. This is good to know because it shows the connection status. Capital P's represent a connection to the ISP and lowercase p's show that the connection has been lost.

27.3.3. 除錯
If a connection cannot be established, turn hardware flow CTS/RTS to off using `set ctsrts off`. This is mainly the case when connected to some PPP-capable terminal servers, where PPP hangs when it tries to write data to the communication link, and waits for a Clear To Send (CTS) signal which may never come. When using this option, include `set accmap` as it may be required to defeat hardware dependent on passing certain characters from end to end, most of the time XON/XOFF. Refer to `ppp(8)` for more information on this option and how it is used.

An older modem may need `set parity even`. Parity is set at none by default, but is used for error checking with a large increase in traffic, on older modems.

PPP may not return to the command mode, which is usually a negotiation error where the ISP is waiting for negotiating to begin. At this point, using `~p` will force `ppp` to start sending the configuration information.

If a login prompt never appears, PAP or CHAP authentication is most likely required. To use PAP or CHAP, add the following options to PPP before going into terminal mode:

```
set authname myusername
```

Where `myusername` should be replaced with the username that was assigned by the ISP.
Where `mypassword` should be replaced with the password that was assigned by the ISP.

If a connection is established, but cannot seem to find any domain name, try to ping(8) an IP address. If there is 100 percent (100%) packet loss, it is likely that a default route was not assigned. Double check that `add default HISADDR` was set during the connection. If a connection can be made to a remote IP address, it is possible that a resolver address has not been added to `/etc/resolv.conf`. This file should look like:

```
domain example.com
nameserver x.x.x.x
nameserver y.y.y.y
```

Where `x.x.x.x` and `y.y.y.y` should be replaced with the IP address of the ISP's DNS servers.

To configure syslog(3) to provide logging for the PPP connection, make sure this line exists in `/etc/syslog.conf`:

```
!ppp
*.* /var/log/ppp.log
```

27.4.

In this section, we will introduce how to use PPP (PPPoE) in the Internet. There is a available `ppp.conf` example:

```
default:
    set log Phase tun command # you can add more detailed logging if you wish
    set ifaddr 10.0.0.1/0 10.0.0.2/0
    set device PPPoE:xl1 # replace xl1 with your Ethernet device
    set authname YOURLOGINNAME
    set authkey YOURPASSWORD
    set dial
    set login
    add default HISADDR
```

To execute as root:

```
# ppp -ddial name_of_service_provider
```

Add the following parameters to `/etc/rc.conf`:
27.4.1. 使用 PPPoE 服务标志时，有时需要使用服务标志（Service Tag）才能建立连接，服务标志用来区别不同网络要各自建立的 PPPoE 服务器。所需的服务标志资讯应该会在 ISP 提供的文件中说明。最后的步骤是尝试安装 net/rr-pppoe 套件或 Port。但是请注意，这可能会解除安装数据机中的程式并使其无法运作，所以请三思而行。只需要安装数据机所提供的程式，然后由该程式进入 System 选单，基本资料（Profile name）的名称应该列出来，通常是 ISP 的名称。基本资料名称（Profile Name）即服务标志，会被用在 ppp.conf 中的 PPPoE 设定项目，set device 的提供商（Provider）部份。请参阅 ppp(8) 以取得详细说明，结果应该如下：

```
set device PPPoE:xl1:ISP
```
别忘记更改 xl1 为乙太网路卡的装置名称。
别忘记更改 ISP 为基本资料名称。
要取得更进一步资讯，请参阅 Renaud Waldura 所著的 Cheaper Broadband with FreeBSD on DSL。

27.4.2. 在 3Com™HomeConnect™ ADSL Modem Dual Link 使用 PPPoE 这台数据机并不采用 RFC 2516 所定义的规格。为了要让 FreeBSD 能够与这台装置通讯，必须设定 sysctl，这可以透过更新 /etc/sysctl.conf 来让开机时自动设定。

```
net.graph.nonstandard_pppoe=1
```
或可以执行以下指令立即使更改:

```
# sysctl net.graph.nonstandard_pppoe=1
```
不幸的是，由于这是一个全系统的设定，这可能会导致一般 PPPoE 客户端或服务器无法与 3Com™HomeConnect™ ADSL 数据机同时使用。

27.5. 在 ATM 使用 PPP (PPPoA) 以下是如何设定 PPP over ATM (PPPoA)。PPPoA 是在欧洲 DSL 提供者中流行的选项。
The mpd application can be used to connect to a variety of services, in particular PPTP services. It can be installed using the `net/mpd5` package or port. Many ADSL modems require that a PPTP tunnel is created between the modem and computer.

Once installed, configure mpd to suit the provider's settings. The port places a set of sample configuration files which are well documented in `/usr/local/etc/mpd/`. A complete guide to configure mpd is available in HTML format in `/usr/ports/shared/doc/mpd/`. Here is a sample configuration for connecting to an ADSL service with mpd. The configuration is spread over two files, first the `mpd.conf`:

```
default:
  load adsl
adsl:
  new -i ng0 adsl adsl
  set bundle authname username
  set bundle password password
  set bundle disable multilink
  set link no pap acfcomp protocomp
  set link disable chap
  set link accept chap
  set link keep-alive 30 10
  set ipcp no vjcomp
  set ipcp ranges 0.0.0.0/0 0.0.0.0/0
  set iface route default
  set iface disable on-demand
  set iface enable proxy-arp
  set iface idle 0
open
```

1. The username used to authenticate with your ISP.
2. The password used to authenticate with your ISP.

Information about the link, or links, to establish is found in `mpd.links`. An example `mpd.links` to accompany the above example is given beneath:

```
adsl:
  set link type pptp
  set pptp mode active
```

544
The IP address of FreeBSD computer running mpd.
The IP address of the ADSL modem. The Alcatel SpeedTouch™ Home defaults to 10.0.0.138.

It is possible to initialize the connection easily by issuing the following command as root:
```
# mpd -b adsl
```

To view the status of the connection:
```
% ifconfig ng0
ng0: flags=88d1<UP,POINTOPOINT,RUNNING,NOARP,SIMPLEX,MULTICAST> mtu 1500
inet 216.136.204.117 --
          204.152.186.171 netmask 0xffffffff
```

Using mpd is the recommended way to connect to an ADSL service with FreeBSD.

It is also possible to use FreeBSD to connect to other PPPoA services using `net/pptpclient`.

To use `net/pptpclient` to connect to a DSL service, install the port or package, then edit `/etc/ppp/ppp.conf`. An example section of `ppp.conf` is given below. For further information on `ppp.conf` options consult `ppp(8)`.

```
adsl:
set log phase chat lcp ipcp ccp tun command
set timeout 0
enable dns
set authname username
set authkey password
set ifaddr 0 0
add default HISADDR
```

The username for the DSL provider.
The password for your account.

Since the account's password is added to `ppp.conf` in plain text form, make sure nobody can read the contents of this file:
```
# chown root:wheel /etc/ppp/ppp.conf
# chmod 600 /etc/ppp/ppp.conf
```

This will open a tunnel for a PPP session to the DSL router. Ethernet DSL modems have a preconfigured LAN IP address to connect to. In the case of the Alcatel SpeedTouch™ Home, this

545
The router's documentation should list the address the device uses. To open the tunnel and start a PPP session:

```
# pptp address adsl
```

If an ampersand ("&") is added to the end of this command, `pptp` will return the prompt.

A `tun` virtual tunnel device will be created for interaction between the `pptp` and `ppp` processes. Once the prompt is returned, or the `pptp` process has confirmed a connection, examine the tunnel:

```
% ifconfig tun0
```

```
tun0: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> mtu 1500
      inet 216.136.204.21 -- 204.152.186.171 netmask 0xffffff00
      Opened by PID 918
```

If the connection fails, check the configuration of the router, which is usually accessible using a web browser. Also, examine the output of `pptp` and the contents of the log file, `/var/log/ppp.log` for clues.
Chapter 28.

28.1

"電子郵件" or "email", is currently one of the most widely used communication methods. This chapter primarily introduces how to execute a mail server on FreeBSD, as well as how to use FreeBSD to receive messages. For more detailed information, please refer to the references within the book.

After reading this chapter, you will be able to:

- Understand which software components are related to sending and receiving email.
- Find the configuration files of Sendmail in FreeBSD.
- Understand the differences between remote and local mailboxes.
- Learn how to block spam senders from using the mail server as a relay.
- Learn how to install and configure other mail transfer agents (Mail Transfer Agent) to replace Sendmail.
- Learn how to remove common mail server issues.
- Learn how to set up the system to only send email.
- Learn how to use dial-up online email.
- Learn how to set up SMTP authentication to increase security.
- Learn how to install and use mail user agents (Mail User Agent) such as mutt to send and receive mail.
- Learn how to download mail from remote or local POP or IMAP servers.
- Learn how to automatically apply filters and rules to incoming email.

Before starting this chapter, you need:

- Correct network settings (advanced network configuration).
- Correct DNS configuration for the mail host.
- Understanding how to install other third-party software (package: port).

28.2

Mail Exchange Components

There are five major parts involved in an email exchange: the Mail User Agent (MUA), the Mail Transfer Agent (MTA), a mail host, a remote or local mailbox, and DNS. This section provides an overview of these components.

Mail User Agent (MUA)

The Mail User Agent (MUA) is an application used to compose, send, and receive emails. This application can be a command line program, such as the built-in `mail` utility or a third-party application from the Ports Collection, such as mutt, alpine, or elm. Dozens of graphical programs are also available in the Ports Collection, including Claws Mail, Evolution, and Thunderbird. Some organizations provide a web mail program which can be accessed through a web browser. More information about installing and using a MUA on FreeBSD can be found in the `mail` manual page.

Mail Transfer Agent (MTA)

The Mail Transfer Agent (MTA) is responsible for receiving incoming mail and delivering outgoing mail. FreeBSD ships with Sendmail as the default MTA, but it also supports numerous other mail server daemons, including Exim, Postfix, and qmail. Sendmail configuration is described in the `sendmail` manual page. If another MTA is installed using the Ports Collection, refer to its post-installation message for FreeBSD-specific configuration details and the application's website for more general configuration instructions.

Mail Host

The mail host is a server responsible for delivering and receiving mail for a host or a domain. This section provides an overview of mail hosts on FreeBSD.
The mail host collects all mail sent to the domain and stores it either in the default mbox or the alternative Maildir format, depending on the configuration. Once mail has been stored, it may either be read locally using a MUA or remotely accessed and collected using protocols such as POP or IMAP. If mail is read locally, a POP or IMAP server does not need to be installed.

To access mailboxes remotely, a POP or IMAP server is required as these protocols allow users to connect to their mailboxes from remote locations. IMAP offers several advantages over POP. These include the ability to store a copy of messages on a remote server after they are downloaded and concurrent updates. IMAP can be useful over low-speed links as it allows users to fetch the structure of messages without downloading them. It can also perform tasks such as searching on the server in order to minimize data transfer between clients and servers.

Several POP and IMAP servers are available in the Ports Collection. These include `mail/qpopper`, `mail/imap-uw`, `mail/courier-imap`, and `mail/dovecot2`.

It should be noted that both POP and IMAP transmit information, including username and password credentials, in clear-text. To secure the transmission of information across these protocols, consider tunneling sessions over `ssh(1)` (SSH通道) or using SSL (OpenSSL).

The Domain Name System (DNS) and its daemon `named` play a large role in the delivery of email. In order to deliver mail from one site to another, the MTA will look up the remote site in DNS to determine which host will receive mail for the destination. This process also occurs when mail is sent from a remote host to the MTA.

In addition to mapping hostnames to IP addresses, DNS is responsible for storing information specific to mail delivery, known as Mail eXchanger MX records. The MX record specifies which hosts will receive mail for a particular domain.

To view the MX records for a domain, specify the type of record. Refer to `host(1)` for more details:

```bash
% host -t mx FreeBSD.org
FreeBSD.org mail is handled by 10 mx1.FreeBSD.org
```

Refer to the DNS for more information about DNS and its configuration.

28.3. Sendmail

Sendmail is the default MTA installed with FreeBSD. It accepts mail from MUAs and delivers it to the appropriate mail host, as defined by its configuration. Sendmail can also accept network connections and deliver mail to local mailboxes or to another program.

The configuration files for Sendmail are located in `/etc/mail`. This section describes these files in more detail.

`/etc/mail/access` This access database file defines which hosts or IP addresses have access to the local mail server and what kind of access they have. Hosts listed as `OK`, which is the default option, are allowed to send mail to this host as long as the mail's final destination is the local machine. Hosts listed as `REJECT` are rejected for all mail connections. Hosts listed as `RELAY` are allowed to send mail for any destination using this mail server. Hosts listed as `ERROR` will have their mail returned with the specified mail error. If a host is listed as `SKIP`, Sendmail will abort the current search for this entry without accepting or rejecting the mail. Hosts listed as `QUARANTINE` will have their messages held and will receive the specified text as the reason for the hold.
Examples of using these options for both IPv4 and IPv6 addresses can be found in the FreeBSD sample configuration, /etc/mail/access.sample:

$FreeBSD: head/zh_TW.UTF-8/books/handbook/book.xml 53653 2019-12-03 17:05:41Z rcyu $
#
Mail relay access control list. Default is to reject mail unless the destination is local, or listed in /etc/mail/local-host-names
#
Examples (commented out for safety)
#From:cyberspammer.com ERROR:"550 We don't accept mail from spammers"
#From:okay.cyberspammer.com OK
#Connect:sendmail.org RELAY
#To:sendmail.org RELAY
#Connect:128.32 RELAY
#Connect:128.32.2 SKIP
#Connect:suspicious.example.com QUARANTINE:Mail from suspicious host

To configure the access database, use the format shown in the sample to make entries in /etc/mail/access, but do not put a comment symbol (#) in front of the entries. Create an entry for each host or network whose access should be configured. Mail senders that match the left side of the table are affected by the action on the right side of the table. Whenever this file is updated, update its database and restart Sendmail:

makemap hash /etc/mail/access < /etc/mail/access
service sendmail restart

/etc/mail/aliases

This database file contains a list of virtual mailboxes that are expanded to users, files, programs, or other aliases. Here are a few entries to illustrate the file format:

root: localuser
ftp-bugs: joe,eric,paul
bit.bucket: /dev/null
procmail: "/usr/local/bin/procmail"

The mailbox name on the left side of the colon is expanded to the target(s) on the right. The first entry expands the root mailbox to the localuser mailbox, which is then looked up in the /etc/mail/aliases database. If no match is found, the message is delivered to localuser. The second entry shows a mail list. Mail to ftp-bugs is expanded to the three local mailboxes joe, eric, and paul. A remote mailbox could be specified as user@example.com. The third entry shows how to write mail to a file, in this case /dev/null. The last entry demonstrates how to send mail to a program, /usr/local/bin/procmail, through a UNIX™ pipe. Refer to aliases(5) for more information about the format of this file.
Whenever this file is updated, run `newaliases` to update and initialize the aliases database.

/etc/mail/sendmail.cf

This is the master configuration file for Sendmail. It controls the overall behavior of Sendmail, including everything from rewriting email addresses to printing rejection messages to remote mail servers. Accordingly, this configuration file is quite complex. Fortunately, this file rarely needs to be changed for standard mail servers.

The master Sendmail configuration file can be built from `m4(1)` macros that define the features and behavior of Sendmail. Refer to `/usr/src/contrib/sendmail/cf/README` for some of the details.

Whenever changes to this file are made, Sendmail needs to be restarted for the changes to take effect.

/etc/mail/virtusertable

This database file maps mail addresses for virtual domains and users to real mailboxes. These mailboxes can be local, remote, aliases defined in `/etc/mail/aliases`, or files. This allows multiple virtual domains to be hosted on one machine.

FreeBSD provides a sample configuration file in `/etc/mail/virtusertable.sample` to further demonstrate its format. The following example demonstrates how to create custom entries using that format:

```
root@example.com                root
postmaster@example.com          postmaster@noc.example.net
@example.com                    joe
```

This file is processed in a first match order. When an email address matches the address on the left, it is mapped to the local mailbox listed on the right. The format of the first entry in this example maps a specific email address to a local mailbox, whereas the format of the second entry maps a specific email address to a remote mailbox. Finally, any email address from example.com which has not matched any of the previous entries will match the last mapping and be sent to the local mailbox `joe`. When creating custom entries, use this format and add them to `/etc/mail/virtusertable`. Whenever this file is edited, update its database and restart Sendmail:

```
# makemap hash /etc/mail/virtusertable < /etc/mail/virtusertable
# service sendmail restart
```

/etc/mail/relay-domains

In a default FreeBSD installation, Sendmail is configured to only send mail from the host it is running on. For example, if a POP server is available, users will be able to check mail from remote locations but they will not be able to send outgoing emails from outside locations. Typically, a few moments after the attempt, an email will be sent from `MAILER-DAEMON` with a 5.7 Relaying Denied message.

The most straightforward solution is to add the ISP's FQDN to `/etc/mail/relay-domains`. If multiple addresses are needed, add them one per line:

```
your.isp.example.com
other.isp.example.net
users-isp.example.org
www.example.org
```

550
After creating or editing this file, restart Sendmail with `service sendmail restart`.

Now any mail sent through the system by any host in this list, provided the user has an account on the system, will succeed. This allows users to send mail from the system remotely without opening the system up to relaying SPAM from the Internet.

28.4.1.
If Sendmail's outgoing mail service is disabled, it is important that it is replaced with an alternative mail delivery system. Otherwise, system functions such as `periodic(8)` will be unable to deliver their results by email. Many parts of the system expect a functional MTA. If applications continue to use Sendmail's binaries to try to send email after they are disabled, mail could go into an inactive Sendmail queue and never be delivered.

In order to completely disable Sendmail, add or edit the following lines in `/etc/rc.conf`:

```conf
sendmail_enable="NO"
sendmail_submit_enable="NO"
sendmail_outbound_enable="NO"
sendmail_msp_queue_enable="NO"
```

To only disable Sendmail's incoming mail service, use only this entry in `/etc/rc.conf`:

```conf
sendmail_enable="NO"
```

More information on Sendmail's startup options is available in `rc.sendmail(8)`.

28.4.2.
When a new MTA is installed using the Ports Collection, its startup script is also installed and startup instructions are mentioned in its package message. Before starting the new MTA, stop the running Sendmail processes. This example stops all of these services, then starts the Postfix service:

```bash
# service sendmail stop
# service postfix start
```

To start the replacement MTA at system boot, add its configuration line to `/etc/rc.conf`. This entry enables the Postfix MTA:

```conf
```
Some extra configuration is needed as Sendmail is so ubiquitous that some software assumes it is already installed and configured. Check /etc/periodic.conf and make sure that these values are set to NO. If this file does not exist, create it with these entries:

- daily_clean_hoststat_enable="NO"
- daily_status_mail_rejects_enable="NO"
- daily_status_include_submit_mailq="NO"
- daily_submit_queuerun="NO"

Some alternative MTAs provide their own compatible implementations of the Sendmail command-line interface in order to facilitate using them as drop-in replacements for Sendmail. However, some MUAs may try to execute standard Sendmail binaries instead of the new MTA's binaries. FreeBSD uses /etc/mail/mailer.conf to map the expected Sendmail binaries to the location of the new binaries. More information about this mapping can be found in mailwrapper(8).

The default /etc/mail/mailer.conf looks like this:

```
# $FreeBSD: head/zh_TW.UTF-8/books/handbook/book.xml 53653 2019-12-03 17:05:41Z
rcyu $
#
# Execute the "real" sendmail program, named /usr/libexec/sendmail/sendmail
#
sendmail        /usr/libexec/sendmail/sendmail
send-mail       /usr/libexec/sendmail/sendmail
mailq           /usr/libexec/sendmail/sendmail
newaliases      /usr/libexec/sendmail/sendmail
hoststat        /usr/libexec/sendmail/sendmail
purgestat       /usr/libexec/sendmail/sendmail
```

When any of the commands listed on the left are run, the system actually executes the associated command shown on the right. This system makes it easy to change what binaries are executed when these default binaries are invoked.

Some MTAs, when installed using the Ports Collection, will prompt to update this file for the new binaries. For example, Postfix will update the file like this:

```
# Execute the Postfix sendmail program, named /usr/local/sbin/sendmail
#
sendmail        /usr/local/sbin/sendmail
send-mail       /usr/local/sbin/sendmail
mailq           /usr/local/sbin/sendmail
newaliases      /usr/local/sbin/sendmail
```
If the installation of the MTA does not automatically update `/etc/mail/mailer.conf`, edit this file in a text editor so that it points to the new binaries. This example points to the binaries installed by `mail/ssmtp`:

- `sendmail` /usr/local/sbin/ssmtp
- `send-mail` /usr/local/sbin/ssmtp
- `mailq` /usr/local/sbin/ssmtp
- `newaliases` /usr/local/sbin/ssmtp
- `hoststat` /usr/bin/true
- `purgestat` /usr/bin/true

Once everything is configured, it is recommended to reboot the system. Rebooting provides the opportunity to ensure that the system is correctly configured to start the new MTA automatically on boot.

28.5.2. How can I run a mail server on a dial-up PPP host?

Connect to a FreeBSD mail gateway on the LAN. The PPP connection is non-dedicated. One way to do this is to get a full-time Internet server to provide secondary MX services for the domain. In this example, the domain is `example.com` and the ISP has configured `example.net` to provide secondary MX services to the domain:

```
example.com.          MX        10      example.com.
example.com.          MX        20      example.net.
```

This is because the version of BIND which ships with FreeBSD no longer provides default abbreviations for non-FQDNs other than the local domain. An unqualified host such as `mumble` must either be found as `mumble.foo.bar.edu`, or it will be searched for in the root domain. In older versions of BIND, the search continued across `mumble.bar.edu` and `mumble.edu`. RFC 1535 details why this is considered bad practice or even a security hole.

As a good workaround, place the line:

```
search foo.bar.edu bar.edu
```

instead of the previous:

```
domain foo.bar.edu
```

into `/etc/resolv.conf`. However, make sure that the search order does not go beyond the "boundary between local and public administration", as RFC 1535 calls it.
Only one host should be specified as the final recipient. For Sendmail, add `Cw example.com` in `/etc/mail/sendmail.cf` on `example.com`. When the sending MTA attempts to deliver mail, it will try to connect to the system, `example.com`, over the PPP link. This will time out if the destination is offline. The MTA will automatically deliver it to the secondary MX site at the Internet Service Provider (ISP), `example.net`. The secondary MX site will periodically try to connect to the primary MX host, `example.com`.

Use something like this as a login script:

```bash
#!/bin/sh
# Put me in /usr/local/bin/pppmyisp
(sleep 60; /usr/sbin/sendmail -q) &
/usr/sbin/ppp -direct pppmyisp
```

When creating a separate login script for users, instead use `sendmail -qRexample.com` in the script above. This will force all mail in the queue for `example.com` to be processed immediately.

A further refinement of the situation can be seen from this example from the FreeBSD Internet service provider's mailing list:

```
> we provide the secondary MX for a customer. The customer connects to our services several times a day automatically to get the mails to his primary MX (We do not call his site when a mail for his domains arrived). Our sendmail sends the mailqueue every 30 minutes. At the moment he has to stay 30 minutes online to be sure that all mail is gone to the primary MX.
>
> Is there a command that would initiate sendmail to send all the mails now? The user has not root-privileges on our machine of course.
```

In the privacy flags section of sendmail.cf, there is a definition `Opgoaway,restrictqrun`. Remove `restrictqrun` to allow non-root users to start the queue processing.

You might also like to rearrange the MXs. We are the 1st MX for our customers like this, and we have defined:

```bash
# If we are the best MX for a host, try directly instead of generating local config error.
OwTrue
```

That way a remote site will deliver straight to you, without trying the customer connection. You then send to your customer. Only works for hosts, so you need to get your customer to name their mail machine `customer.com` as well as...
hostname.customer.com in the DNS. Just put an A record in the DNS for customer.com.

28.6.

進

階

主題

This section covers more involved topics such as mail configuration and setting up mail for an entire domain.

28.6.1.

基礎

設定

Out of the box, one can send email to external hosts as long as /etc/resolv.conf is configured or the network has access to a configured DNS server. To have email delivered to the MTA on the FreeBSD host, do one of the following:

• Run a DNS server for the domain.
• Get mail delivered directly to the FQDN for the machine.

In order to have mail delivered directly to a host, it must have a permanent static IP address, not a dynamic IP address. If the system is behind a firewall, it must be configured to allow SMTP traffic.

To receive mail directly at a host, one of these two must be configured:

• Make sure that the lowest-numbered MX record in DNS points to the host’s static IP address.
• Make sure there is no MX entry in the DNS for the host.

Either of the above will allow mail to be received directly at the host.

Try this:

hostname
example.FreeBSD.org

host example.FreeBSD.org
example.FreeBSD.org has address 204.216.27.XX

In this example, mail sent directly to yourlogin@example.FreeBSD.org should work without problems, assuming Sendmail is running correctly on example.FreeBSD.org.

For this example:

host example.FreeBSD.org
example.FreeBSD.org has address 204.216.27.XX
example.FreeBSD.org mail is handled (pri=10) by nevdull.FreeBSD.org

All mail sent to example.FreeBSD.org will be collected on hub instead of being sent directly to your host.

The above information is handled by the DNS server. The DNS record that carries mail routing information is the MX entry. If no MX record exists, mail will be delivered directly to the host by way of its IP address.

The MX entry for freefall.FreeBSD.org at one time looked like this:

freefall MX 30 mail.crl.net
had many MX entries. The lowest MX number is the host that receives mail directly, if available. If it is not accessible for some reason, the next lower-numbered host will accept messages temporarily, and pass it along when a lower-numbered host becomes available.

Alternate MX sites should have separate Internet connections in order to be most useful. Your ISP can provide this service.

28.6.2.

When configuring a MTA for a network, any mail sent to hosts in its domain should be diverted to the MTA so that users can receive their mail on the master mail server. To make life easiest, a user account with the same username should exist on both the MTA and the system with the MUA. Use adduser(8) to create the user accounts.

The MTA must be the designated mail exchanger for each workstation on the network. This is done in the DNS configuration with an MX record:

```
example.FreeBSD.org A 204.216.27.XX ; Workstation
MX 10 nevdull.FreeBSD.org ; Mailhost
```

This will redirect mail for the workstation to the MTA no matter where the A record points. The mail is sent to the MX host.

This must be configured on a DNS server. If the network does not run its own DNS server, talk to the ISP or DNS provider.

The following is an example of virtual email hosting. Consider a customer with the domain customer1.org, where all the mail for customer1.org should be sent to mail.myhost.com. The DNS entry should look like this:

```
customer1.org MX 10 mail.myhost.com
```

An A record is not needed for customer1.org in order to only handle email for that domain. However, running ping against customer1.org will not work unless an A record exists for it.

Tell the MTA which domains and/or hostnames it should accept mail for. Either of the following will work for Sendmail:

- Add the hosts to /etc/mail/local-host-names when using the FEATURE(use_cw_file).
- Add a Cwyour.host.com line to /etc/sendmail.cf.

28.7.

There are many instances where one may only want to send mail through a relay. Some examples are:

- The computer is a desktop machine that needs to use programs such as mail(1), using the ISP's mail relay.
- The computer is a server that does not handle mail locally, but needs to pass off all mail to a

...
While any MTA is capable of filling this particular niche, it can be difficult to properly configure a full-featured MTA just to handle offloading mail. Programs such as Sendmail and Postfix are overkill for this use. Additionally, a typical Internet access service agreement may forbid one from running a "mail server".

The easiest way to fulfill those needs is to install the mail/ssmtp port:

```
# cd /usr/ports/mail/ssmtp
# make install replace clean
```

Once installed, mail/ssmtp can be configured with /usr/local/etc/ssmtp/ssmtp.conf:

```
root=yourrealemail@example.com
mailhub=mail.example.com
rewriteDomain=example.com
hostname=_HOSTNAME_
```

Use the real email address for root. Enter the ISP's outgoing mail relay in place of mail.example.com. Some ISPs call this the "outgoing mail server" or "SMTP server". Make sure to disable Sendmail, including the outgoing mail service. See 关闭 Sendmail for details.

mail/ssmtp has some other options available. Refer to the examples in /usr/local/etc/ssmtp or the manual page of ssmtp for more information.

Setting up ssmtp in this manner allows any software on the computer that needs to send mail to function properly, while not violating the ISP's usage policy or allowing the computer to be hijacked for spamming.

28.8. 在拨号连线使用邮件

When using a static IP address, one should not need to adjust the default configuration. Set the hostname to the assigned Internet name and Sendmail will do the rest.

When using a dynamically assigned IP address and a dialup PPP connection to the Internet, one usually has a mailbox on the ISP's mail server. In this example, the ISP's domain is example.net, the user name is user, the hostname is bsd.home, and the ISP has allowed relay.example.net as a mail relay.

In order to retrieve mail from the ISP's mailbox, install a retrieval agent from the Ports Collection. mail/fetchmail is a good choice as it supports many different protocols. Usually, the ISP will provide POP. When using user PPP, email can be automatically fetched when an Internet connection is established with the following entry in /etc/ppp/ppp.linkup:

```
MYADDR:
!bg su user -c fetchmail
```

When using Sendmail to deliver mail to non-local accounts, configure Sendmail to process the mail queue as soon as the Internet connection is established. To do this, add this line after the above fetchmail entry in /etc/ppp/ppp.linkup:

```
557
```
In this example, there is an account for user on bsd.home. In the home directory of user on bsd.home, create a .fetchmailrc which contains this line:

```
poll example.net protocol pop3 fetchall pass MySecret
```

This file should not be readable by anyone except user as it contains the password MySecret.

In order to send mail with the correct from: header, configure Sendmail to use user@example.net rather than user@bsd.home and to send all mail via relay.example.net, allowing quicker mail transmission.

The following .mc should suffice:

```
VERSIONID(`bsd.home.mc version 1.0')
OSTYPE(bsd4.4)dnl
FEATURE(nouucp)dnl
MAILER(local)dnl
MAILER(smtp)dnl
Cwlocalhost
Cwbsd.home
MASQUERADE_AS(`example.net')dnl
FEATURE(allmasquerade)dnl
FEATURE(masquerade_envelope)dnl
FEATURE(nocanonify)dnl
FEATURE(nodns)dnl
define(`SMART_HOST', `relay.example.net')
Dmbsd.home
define(`confDOMAIN_NAME',`bsd.home')dnl
define(`confDELIVERY_MODE',`deferred')dnl
```

Refer to the previous section for details of how to convert this file into the sendmail.cf format. Do not forget to restart Sendmail after updating sendmail.cf.

28.9. SMTP 認証

Configuring SMTP authentication on the MTA provides a number of benefits. SMTP authentication adds a layer of security to Sendmail, and provides mobile users who switch hosts the ability to use the same MTA without the need to reconfigure their mail client's settings each time.

1. Install security/cyrus-sasl2 from the Ports Collection. This port supports a number of compile-time options. For the SMTP authentication method demonstrated in this example, make sure that LOGIN is not disabled.

2. After installing security/cyrus-sasl2, edit /usr/local/lib/sasl2/Sendmail.conf, or create it if it does not exist, and add the following line:
3. Next, install `security/cyrus-sasl2-saslauthd` and add the following line to `/etc/rc.conf`:

```
saslauthd_enable="YES"
```

Finally, start the saslauthd daemon:

```
# service saslauthd start
```

This daemon serves as a broker for Sendmail to authenticate against the FreeBSD `passwd(5)` database. This saves the trouble of creating a new set of usernames and passwords for each user that needs to use SMTP authentication, and keeps the login and mail password the same.

4. Next, edit `/etc/make.conf` and add the following lines:

```
SENDMAIL_CFLAGS=-I/usr/local/include/sasl -DSASL
SENDMAIL_LDFLAGS=-L/usr/local/lib
SENDMAIL_LDADD=-lsasl2
```

These lines provide Sendmail the proper configuration options for linking to `cyrus-sasl2` at compile time. Make sure that `cyrus-sasl2` has been installed before recompiling Sendmail.

5. Recompile Sendmail by executing the following commands:

```
# cd /usr/src/lib/libsmutil
# make cleandir && make obj && make
# cd /usr/src/lib/libsm
# make cleandir && make obj && make
# cd /usr/src/usr.sbin/sendmail
# make cleandir && make obj && make && make install
```

This compile should not have any problems if `/usr/src` has not changed extensively and the shared libraries it needs are available.

6. After Sendmail has been compiled and reinstalled, edit `/etc/mail/freebsd.mc` or the local `.mc`. Many administrators choose to use the output from `hostname(1)` as the name of `.mc` for uniqueness. Add these lines:

```
dnl set SASL options
TRUST_AUTH_MECH(`GSSAPI DIGEST-MD5 CRAM-MD5 LOGIN')
dnl
define(`confAUTH_MECHANISMS', `GSSAPI DIGEST-MD5 CRAM-MD5 LOGIN')
```

These options configure the different methods available to Sendmail for authenticating users. To use a method other than `pwcheck`, refer to the Sendmail documentation.
Finally, run `make(1)` while in `/etc/mail`. That will run the new `.mc` and create a `.cf` named either `freebsd.cf` or the name used for the local `.mc`. Then, run `make install restart`, which will copy the file to `sendmail.cf`, and properly restart Sendmail. For more information about this process, refer to `/etc/mail/Makefile`.

To test the configuration, use a MUA to send a test message. For further investigation, set the `LogLevel` of Sendmail to 13 and watch `/var/log/maillog` for any errors. For more information, refer to SMTP authentication.

28.10. 邮件使用者代程式

A MUA is an application that is used to send and receive email. As email “evolves” and becomes more complex, MUAs are becoming increasingly powerful and provide users increased functionality and flexibility. The `mail` category of the FreeBSD Ports Collection contains numerous MUAs. These include graphical email clients such as Evolution or Balsa and console based clients such as mutt or alpine.

28.10.1. mail

`mail(1)` is the default MUA installed with FreeBSD. It is a console based MUA that offers the basic functionality required to send and receive text-based email. It provides limited attachment support and can only access local mailboxes.

Although `mail` does not natively support interaction with POP or IMAP servers, these mailboxes may be downloaded to a local `mbox` using an application such as fetchmail.

In order to send and receive email, run `mail`:

```
% mail
```

The contents of the user’s mailbox in `/var/mail` are automatically read by `mail`. Should the mailbox be empty, the utility exits with a message indicating that no mail could be found. If mail exists, the application interface starts, and a list of messages will be displayed. Messages are automatically numbered, as can be seen in the following example:

```
/var/mail/marcs": 3 messages 3 new
>
N  1 root@localhost  Mon Mar  8 14:05  14/510 "test"
N  2 root@localhost  Mon Mar  8 14:05  14/509 "user account"
N  3 root@localhost  Mon Mar  8 14:05  14/509 "sample"
```

Messages can now be read by typing `t` followed by the message number. This example reads the first email:

```
&t 1
Message 1:
From root@localhost  Mon Mar  8 14:05:52 2004
X-Original-To: marcs@localhost
Delivered-To: marcs@localhost
To: marcs@localhost
```

This is a test message, please reply if you receive it.

As seen in this example, the message will be displayed with full headers. To display the list of messages again, press h.

If the email requires a reply, press either R or r mail keys. R instructs mail to reply only to the sender of the email, while r replies to all other recipients of the message. These commands can be suffixed with the mail number of the message to reply to. After typing the response, the end of the message should be marked by a single . on its own line. An example can be seen below:

& R 1
To: root@localhost
Subject: Re: test
Thank you, I did get your email.
.
EOT

In order to send a new email, press m, followed by the recipient email address. Multiple recipients may be specified by separating each address with the , delimiter. The subject of the message may then be entered, followed by the message contents. The end of the message should be specified by putting a single . on its own line.

& mail root@localhost
Subject: I mastered mail
Now I can send and receive email using mail ...
.
EOT

While using mail, press ? to display help at any time. Refer to mail(1) for more help on how to use mail.

mail(1) was not designed to handle attachments and thus deals with them poorly. Newer MUAs handle attachments in a more intelligent way. Users who prefer to use mail may find the converters/mpack port to be of considerable use.

28.10.2. mutt
mutt is a powerful MUA, with many features, including:
• The ability to thread messages.
• PGP support for digital signing and encryption of email.
• MIME support.
Maildir support.
Highly customizable.
Refer to http://www.mutt.org for more information on mutt.
mutt may be installed using the mail/mutt port. After the port has been installed, mutt can be started by issuing the following command:

```
% mutt
```

mutt will automatically read and display the contents of the user mailbox in /var/mail. If no mails are found, mutt will wait for commands from the user. The example below shows mutt displaying a list of messages:

```
1 M Mar 09 Super-User ( 1) test
2 M Mar 09 Super-User ( 1) user account
3 M Mar 09 Super-User ( 1) sample
```
Similar to `mail(1)`, mutt can be used to reply only to the sender of the message as well as to all recipients. To reply only to the sender of the email, press `r`. To send a group reply to the original sender as well as all the message recipients, press `g`.

By default, mutt uses the `vi(1)` editor for creating and replying to emails. Each user can customize this by creating or editing the `.muttrc` in their home directory and setting the `editor` variable or by setting the `EDITOR` environment variable. Refer to http://www.mutt.org/ for more information about configuring mutt.

To compose a new mail message, press `m`. After a valid subject has been given, mutt will start `vi(1)` so the email can be written. Once the contents of the email are complete, save and quit from `vi`. mutt will resume, displaying a summary screen of the mail that is to be delivered. In order to send the mail, press `y`. An example of the summary screen can be seen below:

```
X-Original-To: marcs@localhost
Delivered-To: marcs@localhost
To: marcs@localhost
Subject: test
Date: Tue, 9 Mar 2004 10:28:36 +0200 (SAST)
From: Super-User <root@localhost>

This is a test message, please reply if you receive it.
```

```
-1/1: Super-User test
```
Mutt contains extensive help which can be accessed from most of the menus by pressing `?`. The top line also displays the keyboard shortcuts where appropriate.

28.10.3. alpine

Alpine is aimed at a beginner user, but also includes some advanced features. Alpine has had several remote vulnerabilities discovered in the past, which allowed remote attackers to execute arbitrary code as users on the local system, by the action of sending a specially-prepared email. While known problems have been fixed, Alpine code is written in an insecure style and the FreeBSD Security Officer believes there are likely to be other undiscovered vulnerabilities. Users install Alpine at their own risk.

The current version of Alpine may be installed using the `mail/alpine` port. Once the port has installed, Alpine can be started by issuing the following command:

```
% alpine
```

The first time Alpine runs, it displays a greeting page with a brief introduction, as well as a request from the Alpine development team to send an anonymous email message allowing them to judge how many users are using their client. To send this anonymous message, press `Enter`. Alternatively, press `E` to exit the greeting without sending an anonymous message. An example of the greeting page is shown below:

```
From: Marc Silver <marcs@localhost>
To: Super-User <root@localhost>
Cc:
Bcc:
Subject: Re: test
Reply-To:
Fcc:
Security: Clear

-- Attachments
- I  1 /tmp/mutt-bsd-c0hobscQ  [text/plain, 7bit, us-ascii, 1.1K]
```

--- Mutt: Compose [Approx. msg size: 1.1K Atts: 1]---

⚠️
The main menu is then presented, which can be navigated using the cursor keys. This main menu provides shortcuts for the composing new mails, browsing mail directories, and administering address book entries. Below the main menu, relevant keyboard shortcuts to perform functions specific to the task at hand are shown.

The default directory opened by alpine is inbox. To view the message index, press I, or select the MESSAGE INDEX option shown below:

The message index shows messages in the current directory and can be navigated by using the cursor keys. Highlighted messages can be read by pressing Enter.
In the screenshot below, a sample message is displayed by alpine. Contextual keyboard shortcuts are displayed at the bottom of the screen. An example of one of a shortcut is \texttt{r}, which tells the MUA to reply to the current message being displayed.

Replying to an email in alpine is done using the pico editor, which is installed by default with alpine. pico makes it easy to navigate the message and is easier for novice users to use than \texttt{vi(1)} or \texttt{mail(1)}. Once the reply is complete, the message can be sent by pressing \texttt{Ctrl}+\texttt{X}. alpine will ask for confirmation before sending the message.

Date: Tue, 9 Mar 2004 10:28:36 +0200 (CST)
From: Super-User \texttt{<root@localhost>}
To: marcs@localhost
Subject: test

This is a test message, please reply if you receive it.
alpine can be customized using the SETUP option from the main menu. Consult http://www.washington.edu/alpine/ for more information.

28.11. 使用 fetchmail

fetchmail is a full-featured IMAP and POP client. It allows users to automatically download mail from remote IMAP and POP servers and save it into local mailboxes where it can be accessed more easily. fetchmail can be installed using the mail/fetchmail port, and offers various features, including:

• Support for the POP3, APOP, KPOP, IMAP, ETRN and ODMR protocols.
• Ability to forward mail using SMTP, which allows filtering, forwarding, and aliasing to function normally.
• May be run in daemon mode to check periodically for new messages.
• Can retrieve multiple mailboxes and forward them, based on configuration, to different local users.

This section explains some of the basic features of fetchmail. This utility requires a .fetchmailrc configuration in the user's home directory in order to run correctly. This file includes server information as well as login credentials. Due to the sensitive nature of the contents of this file, it is advisable to make it readable only by the user, with the following command:

```
chmod 600 .fetchmailrc
```

The following .fetchmailrc serves as an example for downloading a single user mailbox using POP. It tells fetchmail to connect to example.com using a username of joesoap and a password of XXX.

```
poll example.com protocol pop3 username "joesoap" password "XXX"
```

This example assumes that the user joesoap exists on the local system.

----- Message Text -----
I did receive your message...
The next example connects to multiple POP and IMAP servers and redirects to different local usernames where applicable:

poll example.com proto pop3:
user "joesoap", with password "XXX", is "jsoap" here;
user "andrea", with password "XXXX";

poll example2.net proto imap:
user "john", with password "XXXXX", is "myth" here;

fetchmail can be run in daemon mode by running it with `-d`, followed by the interval (in seconds) that fetchmail should poll servers listed in `.fetchmailrc`. The following example configures fetchmail to poll every 600 seconds:

% fetchmail -d 600

More information on fetchmail can be found at http://www.fetchmail.info/.

28.12.

使用 procmail

procmail is a powerful application used to filter incoming mail. It allows users to define "rules" which can be matched to incoming mails to perform specific functions or to reroute mail to alternative mailboxes or email addresses. procmail can be installed using the `mail/procmail` port.

Once installed, it can be directly integrated into most MTAs. Consult the MTA documentation for more information. Alternatively, procmail can be integrated by adding the following line to a `.forward` in the home directory of the user:

"|exec /usr/local/bin/procmail || exit 75"

The following section displays some basic procmail rules, as well as brief descriptions of what they do. Rules must be inserted into a `.procmailrc`, which must reside in the user's home directory.

The majority of these rules can be found in `procmailex(5)`.

To forward all mail from `user@example.com` to an external address of `goodmail@example2.com`:

`:0
* ^From.*user@example.com
! goodmail@example2.com`

To forward all mails shorter than 1000 bytes to an external address of `goodmail@example2.com`:

`:0
* < 1000
! goodmail@example2.com`

To send all mail sent to `alternate@example.com` to a mailbox called `alternate`:
To send all mail with a subject of "Spam" to /dev/null:

```bash
^Subject:.*Spam
/dev/null
```

A useful recipe that parses incoming FreeBSD.org mailing lists and places each list in its own mailbox:

```bash
^Sender:.owner-freebsd-[^@]+@FreeBSD.ORG

LISTNAME=${MATCH}
LISTNAME??^/[^@]+FreeBSD-${MATCH}
```
Chapter 29.

29.1. Overview

This chapter covers some commonly used network services in UNIX™ systems, including installation, configuration, testing, and maintenance of various types of network services. This chapter also provides example configuration files for reference.

After reading this chapter, you will understand:

• How to manage inetd Daemon.
• How to configure network files systems (Network File System, NFS).
• How to configure network information servers (Network Information Server, NIS) to centrally manage and share user accounts.
• How to configure FreeBSD as an LDAP server or client.
• How to configure using DHCP to automatically configure network settings.
• How to configure DNS domain name servers.
• How to configure Apache HTTP servers.
• How to configure file transfer protocol (File Transfer Protocol, FTP) servers.
• How to configure Samba file and print servers for Windows™ clients.
• How to synchronize time and dates, and use network time protocols (Network Time Protocol, NTP) to set time servers.
• How to configure iSCSI.

This chapter assumes you have the following基础知识:

• /etc/rc Script.
• Network terminology.
• Installing third-party software (application programs: packages and Ports).

29.2. inetd

The inetd(8) daemon is sometimes referred to as a Super-Server because it manages connections for many services. Instead of starting multiple applications, only the inetd service needs to be started. When a connection is received for a service managed by inetd, it determines which program the connection is destined for, spawns a process for that program, and delegates the program a socket. Using inetd for services that are not heavily used can reduce system load, when compared to running each daemon individually in stand-alone mode.

Primarily, inetd is used to spawn other daemons, but several trivial protocols are handled internally, such as chargen, auth, time, echo, discard, and daytime.

This section covers the basics of configuring inetd.

29.2.1. Configuration

Configuration of inetd is done by editing /etc/inetd.conf. Each line of this configuration file represents an application that can be started by inetd. By default, every line starts with a comment (), meaning that inetd is not listening for any applications. To configure inetd to listen for an application's connections, remove the at the beginning of the line for that application.

After saving your edits, configure inetd to start at system boot by editing /etc/rc.conf:

```
inetd_enable="YES"
```
To start inetd now, so that it listens for the service you configured, type:

```
# service inetd start
```

Once inetd is started, it needs to be notified whenever a modification is made to `/etc/inetd.conf`:

```
# service inetd reload
```

Typically, the default entry for an application does not need to be edited beyond removing the `#`. In some situations, it may be appropriate to edit the default entry.

As an example, this is the default entry for `ftpd(8)` over IPv4:

```
ftp     stream  tcp     nowait  root    /usr/libexec/ftpd       ftpd -l
```

The seven columns in an entry are as follows:

- **service-name**: The service name of the daemon to start. It must correspond to a service listed in `/etc/services`. This determines which port inetd listens on for incoming connections to that service. When using a custom service, it must first be added to `/etc/services`.

- **socket-type**: Either `stream`, `dgram`, `raw`, or `seqpacket`. Use `stream` for TCP connections and `dgram` for UDP services.

- **protocol**: Use one of the following protocol names:

<table>
<thead>
<tr>
<th>Protocol Name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp or tcp4</td>
<td>TCP IPv4</td>
</tr>
<tr>
<td>udp or udp4</td>
<td>UDP IPv4</td>
</tr>
<tr>
<td>tcp6</td>
<td>TCP IPv6</td>
</tr>
<tr>
<td>udp6</td>
<td>UDP IPv6</td>
</tr>
<tr>
<td>tcp46</td>
<td>Both TCP IPv4 and IPv6</td>
</tr>
</tbody>
</table>

- **{wait|nowait}[/max-child[/max-connections-per-ip-per-minute[/max-child-per-ip]]]**: Specifies if the service should be started immediately (`wait`) or lazier (`nowait`). Additional options specify max number of children and connections per IP.

- **user[:group]**: Specifies the user and group for the daemon.

- **login-class**: Specifies the login class for the daemon.

- **server-program**: The path to the program that will be started by inetd.

- **server-program-arguments**: Arguments passed to the server program.

Where:

- **service-name**: The service name of the daemon to start. It must correspond to a service listed in `/etc/services`.

- **socket-type**: Either `stream`, `dgram`, `raw`, or `seqpacket`. Use `stream` for TCP connections and `dgram` for UDP services.

- **protocol**: Use one of the following protocol names:

<table>
<thead>
<tr>
<th>Protocol Name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp or tcp4</td>
<td>TCP IPv4</td>
</tr>
<tr>
<td>udp or udp4</td>
<td>UDP IPv4</td>
</tr>
<tr>
<td>tcp6</td>
<td>TCP IPv6</td>
</tr>
<tr>
<td>udp6</td>
<td>UDP IPv6</td>
</tr>
<tr>
<td>tcp46</td>
<td>Both TCP IPv4 and IPv6</td>
</tr>
</tbody>
</table>

- **{wait|nowait}[/max-child[/max-connections-per-ip-per-minute[/max-child-per-ip]]]**: Specifies if the service should be started immediately (`wait`) or lazier (`nowait`). Additional options specify max number of children and connections per IP.

- **user[:group]**: Specifies the user and group for the daemon.

- **login-class**: Specifies the login class for the daemon.

- **server-program**: The path to the program that will be started by inetd.

- **server-program-arguments**: Arguments passed to the server program.
Protocol Name

Explanation

udp46
Both UDP IPv4 and IPv6

{wait|nowait}[/max-child[/max-connections-per-ip-per-minute[/max-child-per-ip]}

In this field, wait or nowait must be specified.

max-child, max-connections-per-ip-per-minute and max-child-per-ip are optional.

wait|nowait indicates whether or not the service is able to handle its own socket.

dgram socket types must use wait while stream daemons, which are usually multi-threaded, should use nowait.

wait usually hands off multiple sockets to a single daemon, while nowait spawns a child daemon for each new socket.

The maximum number of child daemons inetd may spawn is set by max-child. For example, to limit ten instances of the daemon, place a /10 after nowait. Specifying /0 allows an unlimited number of children.

max-connections-per-ip-per-minute limits the number of connections from any particular IP address per minute. Once the limit is reached, further connections from this IP address will be dropped until the end of the minute. For example, a value of /10 would limit any particular IP address to ten connection attempts per minute.

max-child-per-ip limits the number of child processes that can be started on behalf on any single IP address at any moment. These options can limit excessive resource consumption and help to prevent Denial of Service attacks.

An example can be seen in the default settings for fingerd(8):

```
finger stream tcp nowait/3/10 nobody /usr/libexec/fingerd
```

user
The username the daemon will run as. Daemons typically run as root, daemon, or nobody.

server-program
The full path to the daemon. If the daemon is a service provided by inetd internally, use internal.

server-program-arguments
Used to specify any command arguments to be passed to the daemon on invocation. If the daemon is an internal service, use internal.

Like most server daemons, inetd has a number of options that can be used to modify its behavior.

By default, inetd is started with -wW -C 60. These options enable TCP wrappers for all services, including internal services, and prevent any IP address from requesting any service more than 60 times per minute.

To change the default options which are passed to inetd, add an entry for inetd_flags in /etc/rc.conf. If inetd is already running, restart it with service inetd restart.

The available rate limiting options are:

- `-c maximum`
 Specify the default maximum number of simultaneous invocations of each service, where the default is unlimited. May be overridden on a per-service basis by using max-child in /etc/inetd.conf.

- `-C rate`
 Specify the default maximum number of times a service can be invoked from a single IP address per minute. May be overridden on a per-service basis by using max-connections-per-ip-per-minute in /etc/inetd.conf.
Specify the maximum number of times a service can be invoked in one minute, where the default is 256. A rate of 0 allows an unlimited number.

Specify the maximum number of times a service can be invoked from a single IP address at any one time, where the default is unlimited. May be overridden on a per-service basis by using `max-child-per-ip` in `/etc/inetd.conf`.

Additional options are available. Refer to `inetd(8)` for the full list of options.

29.2.3. 安全注意事項
Many of the daemons which can be managed by inetd are not security-conscious. Some daemons, such as fingerd, can provide information that may be useful to an attacker. Only enable the services which are needed and monitor the system for excessive connection attempts.

`max-connections-per-ip`, `max-child` and `max-child-per-ip` can be used to limit such attacks.

By default, TCP wrappers is enabled. Consult `hosts_access(5)` for more information on placing TCP restrictions on various inetd invoked daemons.

29.3. 網路檔案系統 (NFS)
FreeBSD supports the Network File System (NFS), which allows a server to share directories and files with clients over a network. With NFS, users and programs can access files on remote systems as if they were stored locally.

NFS has many practical uses. Some of the more common uses include:

- Data that would otherwise be duplicated on each client can be kept in a single location and accessed by clients on the network.
- Several clients may need access to the `/usr/ports/distfiles` directory. Sharing that directory allows for quick access to the source files without having to download them to each client.
- On large networks, it is often more convenient to configure a central NFS server on which all user home directories are stored. Users can log into a client anywhere on the network and have access to their home directories.
- Administration of NFS exports is simplified. For example, there is only one file system where security or backup policies must be set.
- Removable media storage devices can be used by other machines on the network. This reduces the number of devices throughout the network and provides a centralized location to manage their security. It is often more convenient to install software on multiple machines from a centralized installation media.

NFS consists of a server and one or more clients. The client remotely accesses the data that is stored on the server machine. In order for this to function properly, a few processes have to be configured and running.

These daemons must be running on the server:

- **nfsd**: The NFS daemon which services requests from NFS clients.
- **mountd**: The NFS mount daemon which carries out requests received from nfsd.
- **rpcbind**: This daemon allows NFS clients to discover which port the NFS server is using.
Running `nfsiod(8)` on the client can improve performance, but is not required.

29.3.1. **設定**

The file systems which the NFS server will share are specified in `/etc/exports`. Each line in this file specifies a file system to be exported, which clients have access to that file system, and any access options. When adding entries to this file, each exported file system, its properties, and allowed hosts must occur on a single line. If no clients are listed in the entry, then any client on the network can mount that file system.

The following `/etc/exports` entries demonstrate how to export file systems. The examples can be modified to match the file systems and client names on the reader's network. There are many options that can be used in this file, but only a few will be mentioned here. See `exports(5)` for the full list of options.

This example shows how to export `/cdrom` to three hosts named `alpha`, `bravo`, and `charlie`:

```
/cdrom -ro alpha bravo charlie
```

The `-ro` flag makes the file system read-only, preventing clients from making any changes to the exported file system. This example assumes that the host names are either in DNS or in `/etc/hosts`.

Refer to `hosts(5)` if the network does not have a DNS server.

The next example exports `/home` to three clients by IP address. This can be useful for networks without DNS or `/etc/hosts` entries. The `-alldirs` flag allows subdirectories to be mount points. In other words, it will not automatically mount the subdirectories, but will permit the client to mount the directories that are required as needed.

```
/usr/home  -alldirs  10.0.0.2 10.0.0.3 10.0.0.4
```

This next example exports `/a` so that two clients from different domains may access that file system. The `-maproot=root` allows root on the remote system to write data on the exported file system as root. If `-maproot=root` is not specified, the client's root user will be mapped to the server's nobody account and will be subject to the access limitations defined for nobody.

```
/a  -maproot=root  host.example.com box.example.org
```

A client can only be specified once per file system. For example, if `/usr` is a single file system, these entries would be invalid as both entries specify the same host:

```
# Invalid when /usr is one file system
/usr/src   client
/usr/ports client
```

The correct format for this situation is to use one entry:

```
/usr/src /usr/ports  client
```

The following is an example of a valid export list, where `/usr` and `/exports` are local file systems:
Export src and ports to client01 and client02, but only client01 has root privileges on it

```
/usr/src /usr/ports -maproot=root    client01
/usr/src /usr/ports               client02
```

The client machines have root and can mount anywhere on /exports. Anyone in the world can mount /exports/obj read-only

```
/exports -alldirs -maproot=root      client01 client02
/exports/obj -ro
```

To enable the processes required by the NFS server at boot time, add these options to `/etc/rc.conf`:

```
rpcbind_enable="YES"
nfs_server_enable="YES"
mountd_flags="-r"
```

The server can be started now by running this command:

```
# service nfsd start
```

Whenever the NFS server is started, mountd also starts automatically. However, mountd only reads `/etc/exports` when it is started. To make subsequent `/etc/exports` edits take effect immediately, force mountd to reread it:

```
# service mountd reload
```

To enable NFS clients, set this option in each client's `/etc/rc.conf`:

```
nfs_client_enable="YES"
```

Then, run this command on each NFS client:

```
# service nfsclient start
```

The client now has everything it needs to mount a remote file system. In these examples, the server's name is `server` and the client's name is `client`. To mount `/home` on `server` to the `/mnt` mount point on `client`:

```
# mount server:/home /mnt
```

The files and directories in `/home` will now be available on `client`, in the `/mnt` directory.

To mount a remote file system each time the client boots, add it to `/etc/fstab`:
Some applications require file locking to operate correctly. To enable locking, add these lines to /etc/rc.conf on both the client and server:

```
rpc_lockd_enable="YES"
rpc_statd_enable="YES"
```

Then start the applications:

```
# service lockd start
# service statd start
```

If locking is not required on the server, the NFS client can be configured to lock locally by including `-L` when running `mount`. Refer to `mount_nfs(8)` for further details.

29.3.3. 锁定

29.3.4. 使用 amd(8) 自動掛載

The automatic mounter daemon, `amd`, automatically mounts a remote file system whenever a file or directory within that file system is accessed. File systems that are inactive for a period of time will be automatically unmounted by `amd`.

This daemon provides an alternative to modifying `/etc/fstab` to list every client. It operates by attaching itself as an NFS server to the `/host` and `/net` directories. When a file is accessed within one of these directories, `amd` looks up the corresponding remote mount and automatically mounts it.

 `/net` is used to mount an exported file system from an IP address while `/host` is used to mount an export from a remote hostname. For instance, an attempt to access a file within `/host/foobar/usr` would tell `amd` to mount the `/usr` export on the host `foobar`.

Example.

Export

In this example, `showmount -e` shows the exported file systems that can be mounted from the NFS server, `foobar`:

```
% showmount -e foobar
Exports list on foobar:
/usr                               10.10.10.0
/a                                 10.10.10.0
%
```

cd /host/foobar/usr

The output from `showmount` shows `/usr` as an export. When changing directories to `/host/foobar/usr`, `amd` intercepts the request and attempts to resolve the hostname `foobar`. If successful, `amd` automatically mounts the desired export.

To enable `amd` at boot time, add this line to `/etc/rc.conf`:

```
amd_enable="YES"
```
To start `amd` now:

```bash
# service amd start
```

Custom flags can be passed to `amd` from the `amd_flags` environment variable. By default, `amd_flags` is set to:

```bash
amd_flags=-a /.amd_mnt -l syslog /host /etc/amd.map /net /etc/amd.map
```

The default options with which exports are mounted are defined in `/etc/amd.map`. Some of the more advanced features of `amd` are defined in `/etc/amd.conf`.

Consult `amd(8)` and `amd.conf(5)` for more information.

29.3.5. 使用 `autofs(5)` 自動掛載

The `autofs(5)` automount facility is supported starting with FreeBSD 10.1-RELEASE. To use the automounter functionality in older versions of FreeBSD, use `amd(8)` instead. This chapter only describes the `autofs(5)` automounter.

The `autofs(5)` facility is a common name for several components that, together, allow for automatic mounting of remote and local filesystems whenever a file or directory within that filesystem is accessed. It consists of the kernel component, `autofs(5)`, and several userspace applications: `automount(8)`, `automountd(8)` and `autounmountd(8)`. It serves as an alternative for `amd(8)` from previous FreeBSD releases. `Amd` is still provided for backward compatibility purposes, as the two use different map format; the one used by `autofs` is the same as with other SVR4 automounters, such as the ones in Solaris, MacOS X, and Linux.

The `autofs(5)` virtual filesystem is mounted on specified mountpoints by `automount(8)`, usually invoked during boot.

Whenever a process attempts to access file within the `autofs(5)` mountpoint, the kernel will notify `automountd(8)` daemon and pause the triggering process. The `automountd(8)` daemon will handle kernel requests by finding the proper map and mounting the filesystem according to it, then signal the kernel to release blocked process. The `autounmountd(8)` daemon automatically unmounts automounted filesystems after some time, unless they are still being used.

The primary autofs configuration file is `/etc/auto_master`. It assigns individual maps to top-level mounts. For an explanation of `auto_master` and the map syntax, refer to `auto_master(5)`.

There is a special automounter map mounted on `/net`. When a file is accessed within this directory, `autofs(5)` looks up the corresponding remote mount and automatically mounts it. For instance, an attempt to access a file within `/net/foobar/usr` would tell `automountd(8)` to mount the `/usr` export from the host `foobar`.

例 48. 使用 `autofs(5)` 挂载 Export

In this example, `showmount -e` shows the exported file systems that can be mounted from the NFS server, `foobar`:

```bash
% showmount -e foobar
Exports list on foobar:
```

```bash
577
```
The output from `showmount` shows `/usr` as an export. When changing directories to `/host/foobar/usr`, `automountd(8)` intercepts the request and attempts to resolve the hostname `foobar`. If successful, `automountd(8)` automatically mounts the source export.

To enable `autofs(5)` at boot time, add this line to `/etc/rc.conf`:

```
autofs_enable="YES"
```

Then `autofs(5)` can be started by running:

```
# service automount start
# service automountd start
# service autounmountd start
```

The `autofs(5)` map format is the same as in other operating systems. Information about this format from other sources can be useful, like the Mac OS X document.

Consult the `automount(8)`, `automountd(8)`, `autounmountd(8)`, and `auto_master(5)` manual pages for more information.

29.4. 網路資訊系統 (NIS)

Network Information System (NIS) is designed to centralize administration of UNIX™-like systems such as Solaris™, HP-UX, AIX™, Linux, NetBSD, OpenBSD, and FreeBSD. NIS was originally known as Yellow Pages but the name was changed due to trademark issues. This is the reason why NIS commands begin with `yp`.

NIS is a Remote Procedure Call (RPC)-based client/server system that allows a group of machines within an NIS domain to share a common set of configuration files. This permits a system administrator to set up NIS client systems with only minimal configuration data and to add, remove, or modify configuration data from a single location.

FreeBSD uses version 2 of the NIS protocol.

29.4.1. NIS 譜語與程序

Table 28.1 summarizes the terms and important processes used by NIS:

<table>
<thead>
<tr>
<th>譜語</th>
<th>說明</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIS domain name</td>
<td>NIS servers and clients share an NIS domain name. Typically, this name does not have anything to do with DNS.</td>
</tr>
<tr>
<td>rpcbind(8)</td>
<td>This service enables RPC and must be running in order to run an NIS server or act as an NIS client.</td>
</tr>
</tbody>
</table>
This service binds an NIS client to its NIS server. It will take the NIS domain name and use RPC to connect to the server. It is the core of client/server communication in an NIS environment. If this service is not running on a client machine, it will not be able to access the NIS server.

This is the process for the NIS server. If this service stops running, the server will no longer be able to respond to NIS requests so hopefully, there is a slave server to take over. Some non-FreeBSD clients will not try to reconnect using a slave server and the ypbind process may need to be restarted on these clients.

This process only runs on NIS master servers. This daemon allows NIS clients to change their NIS passwords. If this daemon is not running, users will have to login to the NIS master server and change their passwords there.

There are three types of hosts in an NIS environment:

- **NIS master server**
 This server acts as a central repository for host configuration information and maintains the authoritative copy of the files used by all of the NIS clients. The passwd, group, and other various files used by NIS clients are stored on the master server. While it is possible for one machine to be an NIS master server for more than one NIS domain, this type of configuration will not be covered in this chapter as it assumes a relatively small-scale NIS environment.

- **NIS slave servers**
 NIS slave servers maintain copies of the NIS master's data files in order to provide redundancy. Slave servers also help to balance the load of the master server as NIS clients always attach to the NIS server which responds first.

- **NIS clients**
 NIS clients authenticate against the NIS server during log on.

Information in many files can be shared using NIS. The master.passwd, group, and hosts files are commonly shared via NIS. Whenever a process on a client needs information that would normally be found in these files locally, it makes a query to the NIS server that it is bound to instead.

This section describes a sample NIS environment which consists of 15 FreeBSD machines with no centralized point of administration. Each machine has its own /etc/passwd and /etc/master.passwd. These files are kept in sync with each other only through manual intervention. Currently, when a user is added to the lab, the process must be repeated on all 15 machines.

The configuration of the lab will be as follows:

<table>
<thead>
<tr>
<th>Machine name</th>
<th>IP Address</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>ellington</td>
<td>10.0.0.2</td>
<td>NIS master</td>
</tr>
</tbody>
</table>
If this is the first time an NIS scheme is being developed, it should be thoroughly planned ahead of time. Regardless of network size, several decisions need to be made as part of the planning process.

29.4.3.1. **Choosing the NIS domain name**

When a client broadcasts its requests for info, it includes the name of the NIS domain that it is part of. This is how multiple servers on one network can tell which server should answer which request. Think of the NIS domain name as the name for a group of hosts.

Some organizations choose to use their Internet domain name for their NIS domain name. This is not recommended as it can cause confusion when trying to debug network problems. The NIS domain name should be unique within the network and it is helpful if it describes the group of machines it represents. For example, the Art department at Acme Inc. might be in the "acme-art" NIS domain. This example will use the domain name `test-domain`.

However, some non-FreeBSD operating systems require the NIS domain name to be the same as the Internet domain name. If one or more machines on the network have this restriction, the Internet domain name must be used as the NIS domain name.

29.4.3.2. **Choosing a NIS server**

There are several things to keep in mind when choosing a machine to use as a NIS server. Since NIS clients depend upon the availability of the server, choose a machine that is not rebooted frequently. The NIS server should ideally be a stand-alone machine whose sole purpose is to be an NIS server. If the network is not heavily used, it is acceptable to put the NIS server on a machine running other services. However, if the NIS server becomes unavailable, it will adversely affect all NIS clients.

29.4.4. **Setting up a NIS Master server**

The canonical copies of all NIS files are stored on the master server. The databases used to store the information are called NIS maps. In FreeBSD, these maps are stored in `/var/yp/[domainname]` where `[domainname]` is the name of the NIS domain. Since multiple domains are supported, it is possible to have several directories, one for each domain. Each domain will have its own independent set of maps.

NIS master and slave servers handle all NIS requests through `ypserv(8)`. This daemon is responsible for receiving incoming requests from NIS clients, translating the requested domain and map name to a path to the corresponding database file, and transmitting data from the database back to the client.

Setting up a master NIS server can be relatively straightforward, depending on environmental needs. Since FreeBSD provides built-in NIS support, it only needs to be enabled by adding the following lines to `/etc/rc.conf`:

```
  nisdomainname="test-domain"
  nis_server_enable="YES"
  nis_yppasswdd_enable="YES"
```

This line sets the NIS domain name to test-domain.

This automates the start up of the NIS server processes when the system boots.

This enables the rpc.yppasswdd(8) daemon so that users can change their NIS password from a client machine.

Care must be taken in a multi-server domain where the server machines are also NIS clients. It is generally a good idea to force the servers to bind to themselves rather than allowing them to broadcast bind requests and possibly become bound to each other. Strange failure modes can result if one server goes down and others are dependent upon it. Eventually, all the clients will time out and attempt to bind to other servers, but the delay involved can be considerable and the failure mode is still present since the servers might bind to each other all over again.

A server that is also a client can be forced to bind to a particular server by adding these additional lines to /etc/rc.conf:

```bash
nis_client_enable="YES" # run client stuff as well
nis_client_flags="-S NIS domain,server"
```

After saving the edits, type /etc/netstart to restart the network and apply the values defined in /etc/rc.conf. Before initializing the NIS maps, start ypserv(8):

```bash
# service ypserv start
```

NIS maps are generated from the configuration files in /etc on the NIS master, with one exception: /etc/master.passwd. This is to prevent the propagation of passwords to all the servers in the NIS domain. Therefore, before the NIS maps are initialized, configure the primary password files:

```bash
# cp /etc/master.passwd /var/yp/master.passwd
# cd /var/yp
# vi master.passwd
```

It is advisable to remove all entries for system accounts as well as any user accounts that do not need to be propagated to the NIS clients, such as the root and any other administrative accounts.

Ensure that the /var/yp/master.passwd is neither group or world readable by setting its permissions to 600.

After completing this task, initialize the NIS maps. FreeBSD includes the ypinit(8) script to do this.

When generating maps for the master server, include -m and specify the NIS domain name:

```bash
ellington# ypinit -m test-domain
Server Type: MASTER Domain: test-domain
Creating an YP server will require that you answer a few questions.
```

Questions will all be asked at the beginning of the procedure.

Do you want this procedure to quit on non-fatal errors?

```
[ y/n: n ] n
```

Ok, please remember to go back and redo manually whatever fails. If not, something might not work.
At this point, we have to construct a list of this domain's YP servers.

rod.darktech.org is already known as the master server. Please continue to add any slave servers, one per line. When you are done with the list, type a <control D>.

<table>
<thead>
<tr>
<th>Master server</th>
<th>ellington</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next host to add</td>
<td>coltrane</td>
</tr>
</tbody>
</table>

The current list of NIS servers looks like this:

- ellington
- coltrane

Is this correct? [y/n: y] y

..output from map generation..

NIS Map update completed.

ellington has been set up as an YP master server without any errors.

This will create /var/yp/Makefile from /var/yp/Makefile.dist. By default, this file assumes that the environment has a single NIS server with only FreeBSD clients. Since test-domain has a slave server, edit this line in /var/yp/Makefile so that it begins with a comment (#):

```
NOPUSH = "True"
```

Every time a new user is created, the user account must be added to the master NIS server and the NIS maps rebuilt. Until this occurs, the new user will not be able to login anywhere except on the NIS master. For example, to add the new user jsmith to the test-domain domain, run these commands on the master server:

```
# pw useradd jsmith
# cd /var/yp
# make test-domain
```

The user could also be added using `adduser jsmith` instead of `pw useradd jsmith`.

29.4.5. Setting up an NIS Slave Server

To set up an NIS slave server, log on to the slave server and edit /etc/rc.conf as for the master server. Do not generate any NIS maps, as these already exist on the master server. When running `ypinit` on the slave server, use `-s` (for slave) instead of `-m` (for master). This option requires the name of the NIS master in addition to the domain name, as seen in this example:

```
coltrane# ypinit -s ellington test-domain
```

Server Type: SLAVE Domain: test-domain Master: ellington
Creating an YP server will require that you answer a few questions. Questions will all be asked at the beginning of the procedure.

Do you want this procedure to quit on non-fatal errors? [y/n: n] n

Ok, please remember to go back and redo manually whatever fails. If not, something might not work. There will be no further questions. The remainder of the procedure should take a few minutes, to copy the databases from ellington.

Transferring netgroup...
ypxfr: Exiting: Map successfully transferred

Transferring netgroup.byuser...
ypxfr: Exiting: Map successfully transferred

Transferring netgroup.byhost...
ypxfr: Exiting: Map successfully transferred

Transferring master.passwd.byuid...
ypxfr: Exiting: Map successfully transferred

Transferring passwd.byuid...
ypxfr: Exiting: Map successfully transferred

Transferring passwd.byname...
ypxfr: Exiting: Map successfully transferred

Transferring group.bygid...
ypxfr: Exiting: Map successfully transferred

Transferring group.byname...
ypxfr: Exiting: Map successfully transferred

Transferring services.byname...
ypxfr: Exiting: Map successfully transferred

Transferring rpc.bynumber...
ypxfr: Exiting: Map successfully transferred

Transferring rpc.byname...
ypxfr: Exiting: Map successfully transferred

Transferring protocols.byname...
ypxfr: Exiting: Map successfully transferred

Transferring master.passwd.byname...
ypxfr: Exiting: Map successfully transferred

Transferring networks.byname...
ypxfr: Exiting: Map successfully transferred

Transferring networks.byaddr...
ypxfr: Exiting: Map successfully transferred

Transferring netid.byname...
ypxfr: Exiting: Map successfully transferred

Transferring hosts.byaddr...
ypxfr: Exiting: Map successfully transferred
ypxfr: Exiting: Map successfully transferred
Transferring protocols.bynumber...
ypxfr: Exiting: Map successfully transferred
Transferring ypservers...
coltrane has been setup as an YP slave server without any errors.
Remember to update map ypservers on ellington.
This will generate a directory on the slave server called /var/yp/test-domain which contains copies of the NIS master server's maps. Adding these /etc/crontab entries on each slave server will force the slaves to sync their maps with the maps on the master server:

20 * * * * root /usr/libexec/ypxfr passwd.byname
21 * * * * root /usr/libexec/ypxfr passwd.byuid

These entries are not mandatory because the master server automatically attempts to push any map changes to its slaves. However, since clients may depend upon the slave server to provide correct password information, it is recommended to force frequent password map updates. This is especially important on busy networks where map updates might not always complete.
To finish the configuration, run /etc/netstart on the slave server in order to start the NIS services.

29.4.6. 設定 NIS 客戶端
An NIS client binds to an NIS server using ypbind(8). This daemon broadcasts RPC requests on the local network. These requests specify the domain name configured on the client. If an NIS server in the same domain receives one of the broadcasts, it will respond to ypbind, which will record the server's address. If there are several servers available, the client will use the address of the first server to respond and will direct all of its NIS requests to that server. The client will automatically ping the server on a regular basis to make sure it is still available. If it fails to receive a reply within a reasonable amount of time, ypbind will mark the domain as unbound and begin broadcasting again in the hopes of locating another server.

To configure a FreeBSD machine to be an NIS client:
1. Edit /etc/rc.conf and add the following lines in order to set the NIS domain name and start ypbind(8) during network startup:

 nisdomainname="test-domain"
 nis_client_enable="YES"

2. To import all possible password entries from the NIS server, use vipw to remove all user accounts except one from /etc/master.passwd. When removing the accounts, keep in mind that at least one local account should remain and this account should be a member of wheel. If there is a problem with NIS, this local account can be used to log in remotely, become the superuser, and fix the problem. Before saving the edits, add the following line to the end of the file:
This line configures the client to provide anyone with a valid account in the NIS server's password maps an account on the client. There are many ways to configure the NIS client by modifying this line. One method is described in Netgroups. For more detailed reading, refer to the book Managing NFS and NIS, published by O'Reilly Media.

3. To import all possible group entries from the NIS server, add this line to /etc/group:

```
+:*::
```

To start the NIS client immediately, execute the following commands as the superuser:

```
# /etc/netstart
# service ypbind start
```

After completing these steps, running `ypcat passwd` on the client should show the server's `passwd` map.

29.4.7. NIS 安全性

Since RPC is a broadcast-based service, any system running ypbind within the same domain can retrieve the contents of the NIS maps. To prevent unauthorized transactions, `ypserv(8)` supports a feature called "securenets" which can be used to restrict access to a given set of hosts. By default, this information is stored in `/var/yp/securenets`, unless `ypserv(8)` is started with `-p` and an alternate path. This file contains entries that consist of a network specification and a network mask separated by white space. Lines starting with `#` are considered to be comments. A sample `securenets` might look like this:

```
# allow connections from local host -- mandatory
127.0.0.1     255.255.255.255
# allow connections from any host
# on the 192.168.128.0 network
192.168.128.0 255.255.255.0
# allow connections from any host
# between 10.0.0.0 to 10.0.15.255
# this includes the machines in the testlab
10.0.0.0      255.255.240.0
```

If `ypserv(8)` receives a request from an address that matches one of these rules, it will process the request normally. If the address fails to match a rule, the request will be ignored and a warning message will be logged. If the `securenets` does not exist, `ypserv` will allow connections from any host.

TCP Wrapper is an alternate mechanism for providing access control instead of `securenets`. While either access control mechanism adds some security, they are both vulnerable to "IP spoofing" attacks. All NIS-related traffic should be blocked at the firewall.

Servers using `securenets` may fail to serve legitimate NIS clients with archaic TCP/IP.
implementations. Some of these implementations set all host bits to zero when doing broadcasts or fail to observe the subnet mask when calculating the broadcast address. While some of these problems can be fixed by changing the client configuration, other problems may force the retirement of these client systems or the abandonment of securenets.

The use of TCP Wrapper increases the latency of the NIS server. The additional delay may be long enough to cause timeouts in client programs, especially in busy networks with slow NIS servers. If one or more clients suffer from latency, convert those clients into NIS slave servers and force them to bind to themselves.

29.4.7.1. 阻擋部份使用者

In this example, the basic system is a faculty workstation within the NIS domain. The passwd map on the master NIS server contains accounts for both faculty and students. This section demonstrates how to allow faculty logins on this system while refusing student logins.

To prevent specified users from logging on to a system, even if they are present in the NIS database, use vipw to add -username with the correct number of colons towards the end of /etc/master.passwd on the client, where username is the username of a user to bar from logging in.

The line with the blocked user must be before the + line that allows NIS users. In this example, bill is barred from logging on to basie:

basie# cat /etc/master.passwd

root:[$password$]:0:0::0:0:The super-user:/root:/bin/csh
toor:[$password$]:0:0::0:0:The other super-user:/root:/bin/sh
daemon:*:1:1::0:0:Owner of many system processes:/root:/usr/sbin/nologin
operator:*:2:5::0:0:System &:/:/usr/sbin/nologin
bin:*:3:7::0:0:Binaries Commands and Source,,,:/:/usr/sbin/nologin
tty:*:4:65533::0:0:Tty Sandbox:/:/usr/sbin/nologin
kmem:*:5:65533::0:0:KMem Sandbox:/:/usr/sbin/nologin
games:*:7:13::0:0:Games pseudo-user:/usr/games:/usr/sbin/nologin
news:*:8:8::0:0:News Subsystem:/:/usr/sbin/nologin
man:*:9:9::0:0:Mister Man Pages:/usr/shared/man:/usr/sbin/nologin
bind:*:53:53::0:0:Bind Sandbox:/:/usr/sbin/nologin
uucp:*:66:66::0:0:UUCP pseudo-user:/var/spool/uucppublic:/usr/libexec/uucp/uucico
xten:*:67:67::0:0:X-10 daemon:/usr/local/xten:/usr/sbin/nologin
pop:*:68:6::0:0:Post Office Owner:/nonexistent:/usr/sbin/nologin
nobody:*:65534:65534::0:0:Unprivileged user:/nonexistent:/usr/sbin/nologin
-bill:::

+:::

basie#
To expand on the example used in this chapter, the NIS domain will be extended to add the users and systems shown in Tables 28.2 and 28.3:

Table 24. Other Users

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>IT department employees</td>
</tr>
<tr>
<td>beta</td>
<td>IT department apprentices</td>
</tr>
<tr>
<td>charlie</td>
<td>IT department apprentices</td>
</tr>
<tr>
<td>delta</td>
<td>IT department apprentices</td>
</tr>
<tr>
<td>echo</td>
<td>employees</td>
</tr>
<tr>
<td>foxtrott</td>
<td>employees</td>
</tr>
<tr>
<td>golf</td>
<td>employees</td>
</tr>
<tr>
<td>one</td>
<td>interns</td>
</tr>
<tr>
<td>two</td>
<td>interns</td>
</tr>
<tr>
<td>three</td>
<td>interns</td>
</tr>
<tr>
<td>four</td>
<td>interns</td>
</tr>
<tr>
<td>pride</td>
<td>All members of the IT department are allowed to login onto these servers.</td>
</tr>
<tr>
<td>greed</td>
<td>All members of the IT department are allowed to login onto these servers.</td>
</tr>
<tr>
<td>envy</td>
<td>All members of the IT department are allowed to login onto these servers.</td>
</tr>
<tr>
<td>wrath</td>
<td>All members of the IT department are allowed to login onto these servers.</td>
</tr>
<tr>
<td>lust</td>
<td>All members of the IT department are allowed to login onto these servers.</td>
</tr>
<tr>
<td>sloth</td>
<td>All members of the IT department are allowed to login onto these servers.</td>
</tr>
</tbody>
</table>

When using netgroups to configure this scenario, each user is assigned to one or more netgroups and logins are then allowed or forbidden for all members of the netgroup. When adding a new machine, login restrictions must be defined for all netgroups. When a new user is added, the account must be added to one or more netgroups. If the NIS setup is planned carefully, only one central configuration file needs modification to grant or deny access to machines.

The first step is the initialization of the NIS netgroup map. In FreeBSD, this map is not created by default. On the NIS master server, use an editor to create a map named `/var/yp/netgroup`.

This example creates four netgroups to represent IT employees, IT apprentices, employees, and interns:

- **IT_EMP** (alpha@test-domain) (beta@test-domain)
- **IT_APP** (charlie@test-domain) (delta@test-domain)
- **USERS** (echo@test-domain) (foxtrott@test-domain) (golf@test-domain)
- **INTERNS** (able@test-domain) (baker@test-domain)

Each entry configures a netgroup. The first column in an entry is the name of the netgroup. Each set of brackets represents either a group of one or more users or the name of another netgroup. When specifying a user, the three comma-delimited fields inside each group represent:

1. The name of the host(s) where the other fields representing the user are valid. If a hostname is not specified, the entry is valid on all hosts.
2. The name of the account that belongs to this netgroup.
3. The NIS domain for the account. Accounts may be imported from other NIS domains into a netgroup.

If a group contains multiple users, separate each user with whitespace. Additionally, each field may

...
contain wildcards. See netgroup(5) for details.

Netgroup names longer than 8 characters should not be used. The names are case sensitive and using capital letters for netgroup names is an easy way to distinguish between user, machine and netgroup names.

Some non-FreeBSD NIS clients cannot handle netgroups containing more than 15 entries. This limit may be circumvented by creating several sub-netgroups with 15 users or fewer and a real netgroup consisting of the sub-netgroups, as seen in this example:

```
BIGGRP1  (,joe1,domain)  (,joe2,domain)  (,joe3,domain) ...
BIGGRP2  (,joe16,domain)  (,joe17,domain) ...
BIGGRP3  (,joe31,domain)  (,joe32,domain)
```

BIGGROUP BIGGRP1 BIGGRP2 BIGGRP3

Repeat this process if more than 225 (15 times 15) users exist within a single netgroup.

To activate and distribute the new NIS map:

```
ellington#
cd /var/yp
ellington# make
```

This will generate the three NIS maps netgroup, netgroup.byhost and netgroup.byuser. Use the map key option of ypcat(1) to check if the new NIS maps are available:

```
ellington% ypcat -k netgroup
ellington% ypcat -k netgroup.byhost
ellington% ypcat -k netgroup.byuser
```

The output of the first command should resemble the contents of /var/yp/netgroup. The second command only produces output if host-specific netgroups were created. The third command is used to get the list of netgroups for a user.

To configure a client, use vipw(8) to specify the name of the netgroup. For example, on the server named war, replace this line:

```
+:::::::::
```

with

```
+@IT_EMP:::::::::
```

This specifies that only the users defined in the netgroup IT_EMP will be imported into this system's password database and only those users are allowed to login to this system.

This configuration also applies to the ~ function of the shell and all routines which convert between user names and numerical user IDs. In other words, cd ~ user will not work, ls -l will show the numerical ID instead of the username, and find . -user joe -print will fail with the message No such user. To fix this, import all user entries without allowing them to login into the servers. This can be achieved by adding an extra line:

```
```
This line configures the client to import all entries but to replace the shell in those entries with /usr/sbin/nologin. Make sure that extra line is placed after +@IT_EMP:::. Otherwise, all user accounts imported from NIS will have /usr/sbin/nologin as their login shell and no one will be able to login to the system.

To configure the less important servers, replace the old +::::::::: on the servers with these lines:

+@IT_EMP:::
+@IT_APP:::
+:::::::::/usr/sbin/nologin

The corresponding lines for the workstations would be:

+@IT_EMP:::
+@USERS:::
+:::::::::/usr/sbin/nologin

NIS supports the creation of netgroups from other netgroups which can be useful if the policy regarding user access changes. One possibility is the creation of role-based netgroups. For example, one might create a netgroup called BIGSRV to define the login restrictions for the important servers, another netgroup called SMALLSRV for the less important servers, and a third netgroup called USERBOX for the workstations. Each of these netgroups contains the netgroups that are allowed to login onto these machines. The new entries for the NIS netgroup map would look like this:

BIGSRV IT_EMP IT_APP
SMALLSRV IT_EMP IT_APP ITINTERN
USERBOX IT_EMP ITINTERN USERS

This method of defining login restrictions works reasonably well when it is possible to define groups of machines with identical restrictions. Unfortunately, this is the exception and not the rule. Most of the time, the ability to define login restrictions on a per-machine basis is required. Machine-specific netgroup definitions are another possibility to deal with the policy changes. In this scenario, the /etc/master.passwd of each system contains two lines starting with "+". The first line adds a netgroup with the accounts allowed to login onto this machine and the second line adds all other accounts with /usr/sbin/nologin as shell. It is recommended to use the "ALL-CAPS" version of the hostname as the name of the netgroup:

+@BOXNAME:::::::::
+:::::::::/usr/sbin/nologin

Once this task is completed on all the machines, there is no longer a need to modify the local versions of /etc/master.passwd ever again. All further changes can be handled by modifying the NIS map. Here is an example of a possible netgroup map for this scenario:

589
Define groups of users first

IT_EMP (,alpha,test-domain) (,beta,test-domain)
IT_APP (,charlie,test-domain) (,delta,test-domain)
DEPT1 (,echo,test-domain) (,foxtrott,test-domain)
DEPT2 (,golf,test-domain) (,hotel,test-domain)
DEPT3 (,india,test-domain) (,juliet,test-domain)
ITINTERN (,kilo,test-domain) (,lima,test-domain)
D_INTERNS (,able,test-domain) (,baker,test-domain)

Now, define some groups based on roles

USERS DEPT1 DEPT2 DEPT3
BIGSRV IT_EMP IT_APP
SMALLSRV IT_EMP IT_APP ITINTERN
USERBOX IT_EMP ITINTERN USERS

And a groups for a special tasks

Allow echo and golf to access our anti-virus-machine
SECURITY IT_EMP (,echo,test-domain) (,golf,test-domain)

machine-based netgroups

Our main servers
WAR BIGSRV
FAMINE BIGSRV
User india needs access to this server
POLLUTION BIGSRV (,india,test-domain)

This one is really important and needs more access restrictions
DEATH IT_EMP

The anti-virus-machine mentioned above
ONE SECURITY

Restrict a machine to a single user
TWO (,hotel,test-domain)

[...more groups to follow]
To check which format a server or client is using, look at this section of `/etc/login.conf`:

```
default:
    passwd_format=des:
    copyright=/etc/COPYRIGHT:
```

In this example, the system is using the DES format. Other possible values are `blf` for Blowfish and `md5` for MD5 encrypted passwords.

If the format on a host needs to be edited to match the one being used in the NIS domain, the login capability database must be rebuilt after saving the change:

```
# cap_mkdb /etc/login.conf
```

The format of passwords for existing user accounts will not be updated until each user changes their password after the login capability database is rebuilt.

29.5. Lightweight Directory Access Protocol (LDAP)

Lightweight Directory Access Protocol (LDAP) is a protocol that uses a distributed directory service to perform retrieval, modification, and authentication of information. It can be thought of as a phone book or address book where users can use one account to access multiple layers of information, such as email authentication, employee contact information, and internal website authentication. It is used in Active Directory and OpenLDAP networks, allowing users to use a single account to access multiple layers of information, such as email authentication, employee contact information, and internal website authentication.

This section will introduce how to quickly set up an LDAP server on a FreeBSD system. This section assumes that the administrator has made a plan, which includes:

- What type of information to store
- What these pieces of information will be used for
- Which users have access to these pieces of information
- How to ensure that these pieces of information are not accessed without authorization.
This example project will display `dn`, `mail`, `cn`, and `uid` values. `cn` is an RDN.

More information on LDAP and its terminology can be found at http://www.openldap.org/doc/admin24/intro.html.

29.5.2. Setting up LDAP on FreeBSD

FreeBSD does not provide an integrated LDAP server. Before starting the setup, please install the `net/openldap-server` package or Port:

```
# pkg install openldap-server
```

In the package, many default options have been enabled. To view the enabled options, you can execute:

```
# pkg info openldap-server
```

If there are insufficient places (for example, if you need to enable SQL support), consider recompiling the Port.

The installation program will create the directory `/var/db/openldap-data` to store the data, and you will also need to create a directory for storing the certificates:

```
# mkdir /usr/local/etc/openldap/private
```

Next is configuring the certificate authority (Certificate authority). The following commands must be executed in `/usr/local/etc/openldap/private`, since the file permissions need to be restricted and other users should not have access to these files:

```
# openssl req -days 365 -nodes -new -x509 -keyout ca.key -out ../ca.crt
```

The prompt for input includes the `Common Name` (other inputs are optional). This name must use a name that is different from the system host name. If this is a self-signed certificate (Self signed certificate), add the host name at the beginning of the certificate authority name.

The next step is creating a server certificate request. Please enter the following command and follow the prompts:

```
# openssl req -days 365 -nodes -new -keyout server.key -out server.csr
```
在憑證產生程序的過程中請確認Common Name屬性設定正確。

憑證署請求（Certificate Signing Request）必須經過憑證機構署署後才會成為有效的憑證:

```
# openssl x509 -req -days 365 -in server.csr -out ../server.crt -CA ../ca.crt -CAkey ca.key
```

在憑證產生程序的最後一步是產生並署署客戶憑證:

```
# openssl req -days 365 -nodes -new -keyout client.key -out client.csr
# openssl x509 -req -days 3650 -in client.csr -out ../client.crt -CA ../ca.crt -CAkey ca.key
```

記得當提示時要使用同樣的Common Name屬性。完成之後，請確認執行的指令產生了8個新檔案。

OpenLDAP伺服器所執行的Daemon為slapd，OpenLDAP是透過slapd.ldif來做設定，OpenLDAP官方已停止採用舊的slapd.conf格式。

這裡有些slapd.ldif的設定檔範例可以使用，同時您也可以在/usr/local/etc/openldap/slapd.ldif.sample找到範例資訊。相關可用的選項在slapd-config(5)文件會有說明。

```
# See slapd-config(5) for details on configuration options.
# This file should NOT be world readable.
#

dn: cn=config
objectClass: olcGlobal

cn: config
#
#
# Define global ACLs to disable default read access.
#
olcArgsFile: /var/run/openldap/slapd.args
olcPidFile: /var/run/openldap/slapd.pid
olcTLSCertificateFile: /usr/local/etc/openldap/server.crt
olcTLSCertificateKeyFile: /usr/local/etc/openldap/private/server.key
olcTLSCACertificateFile: /usr/local/etc/openldap/ca.crt
#olcTLSCipherSuite: HIGH
olcTLSProtocolMin: 3.1
olcTLSVerifyClient: never
```

這個檔案中必須指定憑證機構（Certificate Authority）、伺服器憑證（Server Certificate）與伺服器私鑰（Server Private Key）。

建議可讓客戶端決定使用的安全密碼（Security Cipher），略過olcTLSCipherSuite選項（此選項不相容openssl以外的TLS客戶端）。

選項olcTLSProtocolMin讓伺服器可要求一個安全等級的最低限度，建議使用。伺服器有進行驗証的必要，但客戶端並不需要，因此可設定olcTLSVerifyClient: never。
第二個部份是設定，後端要採用的模組有那一些，可使用以下方式設定:

```bash
# Load dynamic backend modules:
#
dn: cn=module,cn=config
objectClass: olcModuleList
cn: module
olcModulepath: /usr/local/libexec/openldap
olcModuleload: back_mdb.la
#olcModuleload: back_bdb.la
#olcModuleload: back_hdb.la
#olcModuleload: back_ldap.la
#olcModuleload: back_passwd.la
```

第三個部份要載入資料庫所需的ldif綱要(Schema)，這個動作是必要的。

```bash
dn: cn=schema,cn=config
objectClass: olcSchemaConfig
cn: schema
include: file:///usr/local/etc/openldap/schema/core.ldif
include: file:///usr/local/etc/openldap/schema/cosine.ldif
include: file:///usr/local/etc/openldap/schema/inetorgperson.ldif
include: file:///usr/local/etc/openldap/schema/nis.ldif
```

接下來是前段設定的部份:

```bash
# Frontend settings
#
dn: olcDatabase={-1}frontend,cn=config
objectClass: olcDatabaseConfig
objectClass: olcFrontendConfig
olcDatabase: {-1}frontend
olcAccess: to * by * read
```

Sample global access control policy:
- Root DSE: allow anyone to read it
- Subschema (sub)entry DSE: allow anyone to read it
- Other DSEs:
 - Allow self write access
Allow authenticated users read access
Allow anonymous users to authenticate

olcAccess: to dn.base="" by * read
olcAccess: to dn.base="cn=Subschema" by * read

olcAccess: to *
 by self write
 by users read
 by anonymous auth

if no access controls are present, the default policy
allows anyone and everyone to read anything but restricts
updates to rootdn. (e.g., "access to * by * read")

rootdn can always read and write EVERYTHING!

olcPasswordHash: {SSHA}
{SSHA} is already the default for olcPasswordHash

再

來是
設定
後端
的部份,之後
唯一能夠存取
OpenLDAP
伺服器
設定
的方式是使用
全域超級
使用者。

dn: olcDatabase={0}config,cn=config
objectClass: olcDatabaseConfig
olcDatabase: {0}config
olcAccess: to * by * none
olcRootPW: {SSHA}iae+lrQZILpiUdf16Z9KmDmSwT77Dj4U

預設的管理者使用者
名稱是
cn=config,可在
Shell
中
輸入
slappasswd,
決定要使用的
密碼
並
將其生產
的
編碼
放到
olcRootPW
欄位中。若這個
選項
在這時
沒有
設定好,
在
匯入
slapd.ldif
之後
將沒有
任何人有
辦法
修改
全域的
設定。

最後一個部份是有
關於
資料庫
後端
的
設定:

###
LMDB database definitions
###

dn: olcDatabase=mdb,cn=config
objectClass: olcDatabaseConfig
objectClass: olcMdbConfig
olcDatabase: mdb
olcDbMaxSize: 1073741824
olcSuffix: dc=domain,dc=example
olcRootDN: cn=mdbadmin,dc=domain,dc=example
Cleartext passwords, especially for the rootdn, should be avoided. See slappasswd(8) and slapd-config(5) for details. Use of strong authentication encouraged.

olcRootPW: {SSHA}X2wHvIWDk6G76CQyCMS1vDCvtICWgn0+

The database directory MUST exist prior to running slapd AND should only be accessible by the slapd and slap tools. Mode 700 recommended.

olcDbDirectory: /var/db/openldap-data

Indices to maintain

olcDbIndex: objectClass eq

這裡指定的資料庫即實際用來保存LDAP目錄的資料,也可以使用mdb以外的項目,資料庫的使用者可在這裡設定(與全域的使用者是不同的東西):

olcRootDN需填寫使用者名稱(可自訂), olcRootPW需填寫該使用者編碼後的密碼,將密碼編碼可使用slappasswd如同前面所述。这里有个档案库内有四个slapd.ldif的範例,要将现有的slapd.conf转换成slapd.ldif格式,可参考此頁(注意,这里面的說明也会介绍一些不常用的選項)。

當設定完成之後,需將slapd.ldif放在一個空的目錄當中,建議如以下方式建立:

mkdir /usr/local/etc/openldap/slapd.d/

自動設定資料庫:

/usr/local/sbin/slapadd -n0 -F /usr/local/etc/openldap/slapd.d/ -l /usr/local/etc/openldap/slapd.ldif

啟動slapdDaemon:

/usr/local/libexec/slapd -F /usr/local/etc/openldap/slapd.d/

選項-d可以用來除錯使用,如同slapd(8)中所說明的,若要檢驗伺服器是否正常執行與運作可以:

ldapsearch -x -b '' -s base '(objectclass=*)' namingContexts

extended LDIF

LDAPv3
base <> with scope baseObject
filter: (objectclass=*)
requesting: namingContexts

dn:
Naming contexts:

```
dc = domain, dc = example
```

Search result

```
search: 2
result: 0 Success
```

伺服器端仍必須受到信任，若在此之前未做過這個動作，請依照以下指示操作。安裝OpenSSL套件或Port:

```
# pkg install openssl
```

進入ca.crt所在的目錄（以這邊使用的例子來說則是 `/usr/local/etc/openldap`），執行:

```
# c_rehash .
```

現在CA與伺服器憑証可以依其用途被辨識，可進入server.crt所在的目錄執行以下指令來檢查:

```
# openssl verify -verbose -CApath . server.crt
```

若slapd已正執行，就重新啟動它。如同 `/usr/local/etc/rc.d/slapd` 所述，要讓slapd開機時能正常執行，須要加入以下行到 `/etc/rc.conf`:

```
lapd_enable = "YES"
slapd_flags = "-h "ldapi://%2fvar%2frun%2fopenldap%2fldapi/ldap://0.0.0.0/""
slapd_sockets = "/var/run/openldap/ldapi"
slapd_cn_config = "YES"
```

開機啟動slapd並不會提供除錯的機能，您可以檢查 `/var/log/debug.log`, `dmesg -a`及 `/var/log/messages` 檢確認為否有正常運作。

以下範例會新增群組team及使用者john到domain.example LDAP資料庫，而該資料庫目前是空的。首先要先建立 domain.ldif 檔:

```
# cat domain.ldif

dn: dc = domain, dc = example
objectClass: dcObject
objectClass: organization
o: domain.example
dc: domain
```

請查看 OpenLDAP 說明文件取得更詳細的資訊，使用 slappasswd 將純文字的密碼 secret 更改為已編碼的型式來填寫 userPassword 欄位。在 loginShell 所指定的路徑，必須在所有可讓 john 登入的系統中存。最後是使用 mdb 管理者修改資料庫:

```
# ldapadd -W -D "cn=mdbadmin,dc=domain,dc=example" -f domain.ldif
```

要修改全域設定只能使用全域的超及使用者，例 如，假設一開始採用了 olcTLSCipherSuite: HIGH:MEDIUM:SSLv3 選項，但最後想把它移除，可以建立一個有以下內容的檔案:

```
# cat global_mod
```

dn:
changetype: modify
delete: olcTLSCipherSuite

然後套用修改內容: 598
在安装时已存在的子网，如在安装时已设定的同步 DHCP 问”，这行可能会停启式会已设定同步 DHCP 问，这个避免动配（网行会路位置能完成，若网路较路才间某务尝些系统可能需要 DHCP 背景时可应客户端。然而好动执系统行，来启继续 Script 开机会在背景当预非 dhcp-options(5) 子网地址详细位的网 DNS 道及单闸关位，路的与其他相讯：68 UDP，来网考的更简单资收讯变路位置从 DHCP 在新安装的系统上设定 DHCP 安装程式当中，这

DHCP 29.6.1. 設定客户端将安装并会介绍如本节关讯通 DHCP 连含版本的 OpenBSD。路内必可分配到网通的系统以在该网讯动定主 attain 设定客户中也可以同时有安装针对主说明只若端设定：法的问无删资料。也可以使用当提時，提供当时在示输入密

ifconfig_fxp0="DHCP"

rm -rf /usr/local/etc/openldap/slapd.d/

ldapmodify -f global_mod -x -D "cn=config" -W

599
要改設定系統採用同步模式,在啟動時暫停等候DHCP完成,使用"SYNCDHCP":

```bash
ifconfig_fxp0="SYNCDHCP"
```

尚有其他可用的客戶端選項,請在`rc.conf(5)`搜尋`dhclient`來取得詳細資訊。

DHCP客戶端會使用到以下檔案:

- `/etc/dhclient.conf` dhclient用到的設定檔。通常這個檔案只會有解說,因為預設便適用大多數客戶端。這個設定檔在`dhclient.conf(5)`中有說明。
- `/sbin/dhclient`有關於指令本身的更多信息可於`dhclient(8)`找到。
- `/sbin/dhclient-script` FreeBSD特定的DHCP客戶端設定Script。在`dhclient-script(8)`中有說明,但應不用做任何修改便能正常運作。
- `/var/db/dhclient.leases.interface` DHCP客戶端會在這個檔案中儲存有效的租約的資料,寫入的格式類似日誌,在`dhclient.leases(5)`有說明。

29.6.2. 安裝並設定DHCP伺服器
本節將示範如何設定FreeBSD系統成為DHCP伺服器,使用Internet Systems Consortium (ISC)所實作的DHCP伺服器,這個伺服器及其文件可使用`net/isc-dhcp44-server`套件或Port業安裝。

`net/isc-dhcp44-server`的安裝程式會安裝一份範例設定檔,複製`/usr/local/etc/dhcpd.conf.example`到`/usr/local/etc/dhcpd.conf`並在這個新檔案做編輯。

這個設定檔內容包括了子網路及主機的宣告,用來定義要提供給DHCP客戶端的資訊。如以下設定:

```plaintext
option domain-name "example.org";
```

```plaintext
option domain-name-servers ns1.example.org;
```

```plaintext
option subnet-mask 255.255.255.0;
```

```plaintext
default-lease-time 600;
```

```plaintext
max-lease-time 72400;
```

```plaintext
ddns-update-style none;
```

```plaintext
subnet 10.254.239.0 netmask 255.255.255.224 {
range 10.254.239.10 10.254.239.20;
```

```plaintext
option routers rtr-239-0-1.example.org, rtr-239-0-2.example.org;
```

```plaintext
host fantasia {
hardware ethernet 08:00:07:26:c0:a5;
```
① 這個選項指定要提供給客戶端的預設搜尋網域。請參考resolv.conf(5)取得更多信息。

② 這個選項指定了客戶端應使用的DNS伺服器清單（以逗號分隔）。如範例中所示,可使用伺服器的完整網域名稱(Fully Qualified Domain Names, FQDN)或伺服器的IP位址。

③ 要提供給客戶端的子網路遮罩。

④ 預設租約到期間（秒）。客戶端可以自行設定覆蓋這個數值。

⑤ 一個租約最多允許的時間長度（秒）。若客戶端請求更長的租約,仍會發出租約,但最多只會在max-lease-time內有效。

⑥ 預設的none會關閉動態DNS更新。更改此值為interim可讓DHCP伺服器每當發出一個租約便通知DNS伺服器更新,如此一來DNS伺服器便知邊路中該電腦的IP位址。不要更改此預設值,除非DNS伺服器已設定為支援動態DNS更新。

⑦ 此行會建立一個可用IP位址的儲存池來保留這些要分配給DHCP客戶端的位址。位址範圍必須在前一行所指定的網路或子網路中有效。

⑧ 宣告在開始的{}括號之前所指定的網路或子網路中有效的預設通訊閘。

⑨ 指定客戶端的硬體MAC位址,好讓DHCP伺服器在客戶端發出請求時可以辨識客戶端。

⑩ 指定這個主機應分配相同的IP位址。在此處用主機名稱是正確的,由於DHCP伺服器會在回傳租約資訊前先解析主機名稱。

此設定檔還支援其他選項,請參考隨伺服器一併安裝的dhcpd.conf(5)來取得詳細資訊與範例。

完成dhcpd.conf的設定之後,在/etc/rc.conf啟動DHCP伺服器:

dhcpd_enable="YES"
dhcpd_ifaces="dc0"

替換dc0為DHCP伺服器要傾聽DHCP客戶端請求的網路介面（多個介面可以空白分隔）。

執行以下指令來啟動伺服器:

service isc-dhcpd start

往後對伺服器設定的變更會需要使用service(8)中止dhcpd服務然後啟動。

DHCP伺服器會使用到以下檔案。注意,操作手冊會與伺服器軟體一同安裝。

- /usr/local/sbin/dhcpd
 更多有關dhcpd伺服器的資訊可在dhcpd(8)找到。

- /usr/local/etc/dhcpd.conf
 伺服器設定檔需要含有所有要提供給客戶端的資訊以及有關伺服器運作的資訊。在dhcpd.conf(5)有此設定檔的說明。

- /var/db/dhcpd.leases
 DHCP伺服器會儲存一份已發出租約的資料於這個檔案,寫入的格式類似日誌。參考dhcpd.leases(5)會有更完整的說明。

- /usr/local/sbin/dhcrelay
一次**對**, 因**其他的**詢問區則做快為之外在本網域外部這些資查詢路地被再詢伺服器不需要訊已經查詢伺服器, 只需要名稱收由取其回覆快伺服器, 只需要名稱由取他們的快要查, 以下名稱取快會需要一伺服器以下名稱取快有權的: 伺服器以下情況台會需要一伺服器\(\text{Authoritative})\)或解析伺服器。}

例: 一段話

```
www.FreeBSD.org
```

是一個在轄底層網際權、最網調的有根點會協\(\text{Top Level Domain, TLD})\)節反DNS然。是一種協系統用來亦域名稱, 域名稱址轉換網之位網IP定為\(\text{Domain Name System, DNS}\)。在文件中表區更詳細訊。若需要使用此伺服器的環境能, 請安裝功路DHCP的發另到客戶端伺服器要一個網求的請來自一個轉另到這個環境階更Daemon會用在的DHCP中, 在一個進

```
1.168.192.in-addr.arpa
```

是\(\text{example.org.}\)代表用來轄所有在區是一個在轄底層網\(\text{TLD}\)。是一個在轄底層區的一般根的方式。達在文件中表區更詳細訊。
29.7.2. DNS 伺服器

由 FreeBSD 基礎系統提供, 預設只會提供本機的 DNS 解析, 該基礎系統的套件可被設定提供本機以外的解析服務, 但要解決這樣的需求仍建議安裝 FreeBSD Port 套件集中的 Unbound。

要開啟 Unbound 可加入下行到 /etc/rc.conf:

```
local_unbound_enable="YES"
```

任何已存在於 /etc/resolv.conf 中的名稱伺服器會在新的 Unbound 設定中被設為追隨者（Forwarder）。

若任一個列在清單中的名稱伺服器不支援 DNSSEC, 則本地的 DNS 解析便會失敗, 請確認為有一台名稱伺服器並移除所有測試失敗的項目。以下指令會顯示出信認樹或在 192.168.1.1 上執行失敗的名稱伺服器:

```
% drill -S FreeBSD.org @192.168.1.1
```

確認完每一台名稱伺服器都支援 DNSSEC 後啟動 Unbound:

```
# service local_unbound onestart
```

這將會更新 /etc/resolv.conf 來讓查詢已用 DNSSEC 確保安 全的網域現在可以運作, 例如, 託行以下指令來檢 驗 FreeBSD.org DNSSEC 信任樹:

```
% drill -S FreeBSD.org
```

```
Number of trusted keys: 1
Chasing: freebsd.org. A
DNSSEC Trust tree:
freebsd.org.
|---freebsd.org. (DNSKEY keytag: 36786 alg: 8 flags: 256)
|---freebsd.org. (DNSKEY keytag: 32659 alg: 8 flags: 257)
|---freebsd.org. (DS keytag: 32659 digest type: 2)
|---org. (DNSKEY keytag: 49587 alg: 7 flags: 256)
|---org. (DNSKEY keytag: 9795 alg: 7 flags: 257)
|---org. (DNSKEY keytag: 21366 alg: 7 flags: 257)
|---org. (DS keytag: 21366 digest type: 1)
|   |---. (DNSKEY keytag: 40926 alg: 8 flags: 256)
|       |---. (DNSKEY keytag: 19036 alg: 8 flags: 257)
|---org. (DS keytag: 21366 digest type: 2)
|---. (DNSKEY keytag: 40926 alg: 8 flags: 256)
|---. (DNSKEY keytag: 19036 alg: 8 flags: 257)
```

```
Chase successful
```

```
603
```
Apache HTTP服务器

Apache HTTP Server 是目前最广泛使用的网页服务器。FreeBSD 预设并不会安装这个网页服务器，但可从 www/apache24 套件或 Port 安装。

本节将会摘要如设定并启动在 FreeBSD 上的 Apache HTTP Server。要取得有关 Apache 更详细的信息及其设定项目，请参考 httpd.apache.org。

29.8.1. 设定并启动 Apache 在 FreeBSD 中，主 Apache HTTP Server 设定档会安装于 /usr/local/etc/apache2x/httpd.conf，其中 x 代表版号，这份 ASCII 文字档中以 # 做为行首的是注解，而最常需修改的项目有:

- **ServerRoot**

 指定该 Apache 的预设安装路径，Binary 档会储存于服务器根目录 (Server root) 下的 bin 与 sbin 子目录，而设定档会储存于 etc/apache2x 子目录。

- **ServerAdmin**

 更改此项目为您要接收问题回报的电子邮件地址，这个地址也会显示在一些服务器产生的页面上，如：错误页面。

- **ServerName**

 让管理者可以设定服务器要回传给客户端的主机名称 (Hostname)，例如，www 可以更改为其实际的主机名称，若系统并末有注册的 DNS 名称，就可改输入其 IP 位址，若服务器需要倾听其他埠号，可更改 80 为其他埠号。

- **DocumentRoot**

 提供文件的目录，预设所有的请求均会到此目录，但可以使用符号连结与别名来指向其他地方。

在对 Apache 设定档做变更之前，建议先做备份，在 Apache 设定完成之后，储存设定档并使用 apachectl 检验设定，执行 apachectl configtest 的结果应回传 Syntax OK。

要在系统启动时执行 Apache，可加入下行到/etc/rc.conf:

```
apache24_enable="YES"
```

若 Apache 要使用非预设的选项启动，可加入下行到/etc/rc.conf 来指定所需的旗帜参数:

```
apache24_flags=""
```

若 apachectl 未回报设定错，则可启动 httpd:

```
# service apache24 start
```

httpd 服务可以透过在网页浏览器中输入 http://localhost 来测试，将 localhost 更改为执行 httpd 那台主机的完整网域名称 (Fully-qualified domain name)。预设会显示的网页为 /usr/local/www/apache24/data/index.html。

后续若有在 httpd 执行中时修改 Apache 设定档可使用以下指令来测试是否有误:

```
# service apache24 configtest
```
注意，configtest並非採用rc(8)標準，不應預期其可在所有的啟動Script中正常運作。

29.8.2. 虛擬主機

虛擬主機允許在一個Apache伺服器執行多個網站，虛擬主機可以是以IP為主(IP-based)或以名稱為主(name-based)。以IP為主的虛擬主機中的每一個網站要使用不同的IP位址。以名稱為主的虛擬主機會使用客户端的HTTP/1.1標頭來判斷主機名稱，這可讓不同的網站共用相同的IP位址。

要設定Apache使用以名稱為主的虛擬主機可在每一個網站加入VirtualHost區塊，例如，有一個名稱為www.domain.tld的主機擁有一個www.someotherdomain.tld的虛擬網域，可加入以下項目到httpd.conf:

```plaintext
<VirtualHost *>
  ServerName www.domain.tld
  DocumentRoot /www/domain.tld
</VirtualHost>

<VirtualHost *>
  ServerName www.someotherdomain.tld
  DocumentRoot /www/someotherdomain.tld
</VirtualHost>
```

每一個虛擬主機均需更改其ServerName與DocumentRoot的值為實際要使用的值。

更多有關設定虛擬主機的資訊，可參考Apache官方說明文件於:

http://httpd.apache.org/docs/vhosts/。

29.8.3. Apache模組

Apache使用模組(Module)來擴充伺服器所提供的功能。请參考http://httpd.apache.org/docs/current/mod/取得可用模組的完整清單與設定詳細資訊。

在FreeBSD中有些模組可以隨著www/apache24Port編譯，只要在/usr/ports/www/apache24輸入make config便可查看有那一些模組是預設開啓的，若模組未與Port一併編譯，FreeBSD Port套件集也提供了一個簡單的方式可安裝各種模組，本節將介紹最常使用的三個模組。

29.8.3.1. mod_ssl

mod_ssl模組利用了OpenSSL透過Secure Sockets Layer (SSLv3)與Transport Layer Security (TLSv1)通訊協定來提供強大的加密，這個模組提供了向受信認的憑證簽署機構申請簽章憑証所需的任何東西，讓FreeBSD上能夠執行安全的網頁伺服器。

在FreeBSD中mod_ssl模組預設在套件與Port均是開啓的，可用的設定項目在http://httpd.apache.org/docs/current/mod/mod_ssl.html會說明。

29.8.3.2. mod_perl

mod_perl模組讓您可以使用Perl撰寫Apache模組，此外，嵌入到伺服器的直譯器可避免啟動外部直譯器的額外銷與Perl耗費的啟動時間。

mod_perl可以使用www/mod_perl2套件或Port安裝，有關使用此模組的說明文件可在http://perl.apache.org/docs/2.0/index.html中找到。
加入用程式, 可設定到網站應求遞下行到傳個呼器, 此URL叫譯直配安裝完成之後, 能使用內設定Apache用程式會需要一個專案的嵌才並Django, 要可在擎資料動會自Django拆HTML它輯用程式的現邏人庫讓開發的存物寫物員需要開發資料取件來可當做, 所以各種資料型態(Object-relational mapper)對應聯(Framework)高讓開發員指寫應用在效雅優, 的用程式。、的網頁人Django框授權BSD。言立語網頁內容, 這包建除Ruby on外, 也有其他態與含mod_php網站動態重在安裝完伺服器來使用新的: Apache值新載必須新伺服器的可安裝來安裝各擴充當的增加例別Port適套MySQL件, 來安裝, 該入重graceful來載著執動PHP行/usr/local/etc/apache24/httpd.conf程會自設定支援動PHPPort模組態下行到, 這會安裝並應用程式所需的Apache上加入對PHP5當中, 法快速及HTMLC, Java™Perl它的開發, PHP: Hypertext Preprocessor。
PythonAutoReload On
PythonDebug On

29.8.4.2. Ruby on Rails
Ruby on Rails is another open-source website framework, providing an entire development stack, this makes web developers more productive and able to quickly write powerful applications. In FreeBSD, it can be installed using the www/rubygem-rails or Port.

Please refer to http://guides.rubyonrails.org to obtain more information on how to use Ruby on Rails.

29.9. 檔案傳輸協定 (FTP)
File Transfer Protocol (FTP) provides a simple way to transfer files to an FTP server. FreeBSD has an FTP server software, ftplib, in the basic system.

FreeBSD provides multiple configuration files to control access to the FTP server. This section will summarize these files' settings. Please refer to ftpd(8) for more information on the built-in FTP server.

29.9.1. 設定最重要的一步 is determining which accounts can access the FTP server. FreeBSD has several system accounts, these accounts should not have FTP access rights, and FTP users should not be allowed to use FTP. The file /etc/ftpusers by default contains all the system accounts, other accounts who should not have FTP access can also be added here.

In some cases, it may be desirable to restrict some users' access, rather than completely prevent these users from using FTP, this can be achieved by creating a /etc/ftpchroot file, as described in ftpchroot(5), this file will list users and groups limited to FTP access.

To enable anonymous FTP access on the server, you can create a user named ftp. The user will be able to use anonymous or anonymous user name to log in to the FTP server. When prompted to enter a password, any value will be accepted, but it is customary to use an email address as the password. When the anonymous user logs in, the FTP server will call chroot(2) to limit the user to accessing the ftp user's home directory.

To display information given to FTP clients, there are two text files can be created, /etc/ftpwelcome contains the content displayed to users before login, and /etc/ftpmotd contains the content displayed after successful login. Note, the path of this file is relative to the login environment, so ~ftp/etc/ftpmotd the content will only be displayed to anonymous users.

After setting up the FTP server, you can set the appropriate variables in /etc/rc.conf to start the service:

```
ftpd_enable="YES"
```

To immediately start the service:
```
# service ftpd start
```

To test the FTP server's connectivity, you can enter:
```
% ftp localhost
```

The ftplib daemon will use syslog(3) to record information, by default, the system will write information related to FTP to the file.

007
FTP 記錄的位置可以透過更改 /etc/syslog.conf 中下行來做修改:

```
ftp.info /var/log/xferlog
```

要注意啟動匿名 FTP 伺服器可能的潛藏問題，尤其是要讓匿名使用者上傳檔案時要再確認，因為這可能讓該 FTP 站變成交換未授權商業軟體的交流平台或者更糟的狀況。若真的需要匿名 FTP 上傳，那麼請檢查權限設定，讓這些檔案在尚未被管理者審查前不能夠被其他匿名使用者讀取。

29.10. Microsoft™ Windows™ 用戶端檔案與列印服務(Samba)

Samba 是熱門的開放源碼軟體，使用 SMB/CIFS 通訊協定提供檔案與列印服務，此通訊協定內建於 Microsoft™ Windows™ 系統，在非 Microsoft™ Windows™ 的系統可透過安裝 Samba 客戶端程式庫來支援此協定。此通訊協定讓客戶端可以存取共享的資料與印表機，這些共享的資源可掛載到一個本機的磁碟機，而共享的印表機則可以當做本機的印表機使用。

在 FreeBSD 上，可以使用 net/samba48 Port 或套件來安裝 Samba 客戶端程式庫，這個客戶端提供了讓 FreeBSD 系統能存取 SMB/CIFS 在 Microsoft™ Windows™ 網路中共享的資源。

FreeBSD 系統也可以透過安裝 net/samba48 Port 或套件來設定成 Samba 伺服器，這讓管理者可以在 FreeBSD 系統上建立 SMB/CIFS 的共享資源，讓執行 Microsoft™ Windows™ 或 Samba 客戶端程式庫的客戶端能夠存取。

29.10.1. 伺服器設定

Samba 的設定位於 /usr/local/etc/smb4.conf，必須先設定這個檔案才可使用 Samba。

要共享目錄與印表機給在工作群組中的 Windows™ 客戶端的簡易 smb4.conf 範例如下。對於涉及 LDAP 或 Active Directory 的複雜安裝，可使用 samba-tool(8) 來建立初始的 smb4.conf。

```
[global]
workgroup = WORKGROUP
server string = Samba Server Version %v
netbios name = ExampleMachine
wins support = Yes
security = user
passdb backend = tdbsam

# Example: share /usr/src accessible only to 'developer' user
[src]
path = /usr/src
valid users = developer
writable = yes
browsable = yes
read only = no
guest ok = no
public = no
```
在 `/usr/local/etc/smb4.conf` 中加入用来描述网络环境的设定有:

- `workgroup` 要提供的工作群组名称。
- `netbios name` Samba 服务器已知的 NetBIOS 名称，预设为主机的 DNS 名称第一。节。
- `server string` 会显示于 `net view` 输出结果以及其他会寻找伺服器描述文字并显示的网络工具的文字。
- `wins support` 不论 Samba 是否要作为 WINS 服务器，请不要在网络上开启过多一台伺服器的 WINS 功能。

在 `/usr/local/etc/smb4.conf` 中最重要的设定便是安全性模式以及后端密码格式，以下项目管控的选项有:

- `security` 最常见的设定为 `security = share` 以及 `security = user`，若客户端使用的使用者名称与在 FreeBSD 主机上使用的使用者名称相同，则应该使用使用者 (user) 层级的安全性，这是预设的安全性原则且它会要求客户端在存取共享资源前先登入。

安全性为共享 (share) 层级时，客户端存取共享资源不需要先使用有效的使用者名称与密码登入服务器，是在是旧版 Samba 所采用的预设安全性模式。

- `passdb backend` Samba 支援数种不同的后端认证模式，客户端可以使用 LDAP, NIS+, SQL 资料库或修改过的密码档来认证，建议的认证方式是 `tdbsam`，适用于简易的网络环境且在此处说明，对于较大型或更复杂的网络则较建议使用 `ldapsam`，而 `smbpasswd` 是旧版的预设值，现已经废弃不使用。

本节只提到一些最常用的设定，请参考官方 Samba HOWTO 来取得有关可用设定选项的额外资讯。

在发动 Samba 时，可以在 `/etc/rc.conf` 中加入以下设定来启动它:

```
samba_server_enable="YES"
```

要立刻启动 Samba:

```
609
```
Samba は、nmbd と smbd の 3 つの独立のデーモンからなる。nmbd と smbd は、samba_enable を使用して開始できます。winbind 名前解析サービスが必要な場合、額外設定が必要です:

```
winbindd_enable="YES"
```

Samba は、時を随时停止できます。停止するために、次のコマンドを使用します:

```
# service samba_server stop
```

Samba は、Microsoft™ Windows™ 網路上の複雑なソフトウェアです。設定の詳細は、http://www.samba.org を参照してください。

29.11. NTP 時間校正

時間を使って、コンピュータの時計は徐々にずれていくため、ネットワーク上のコンピュータが同じ精度の時刻を求めるには問題が生じます。正確な時刻は、ファイルのタイムスタンプの一致を保つためも必要です。ネットワーク時間を定義する(Network Time Protocol, NTP)は、ネットワーク上のコンピュータを時刻を合わせるための方法です。

FreeBSD 内に ntpd(8) は、その設定により他の NTP サーバーを問い合わせてシステムの時刻を同期するか、または他のネットワーク上のコンピュータに時刻を提供する役割を果たします。

本節では、FreeBSD 上の ntpd の設定を紹介します。さらに詳細は、/usr/shared/doc/ntp/HTML フォーマットの文書を参照することも可能です。

29.11.1. NTP 設定

FreeBSD 上の内蔵 ntpd は、rc.conf(5) による設定で、また次の節で詳しく説明する /etc/ntp.conf を使用して設定できます。

Ntpd は、ネットワーク中の各点の通信は UDP パッケージ、サーバーと NTP 各点間の防壁設定が必要です。

29.11.1.1. /etc/ntp.conf 档

Ntpd は、/etc/ntp.conf を読むことで、NTP サーバーを問い合わせる時間、推奨できるのはモードを使用して複数の NTP サーバーを設定し、万一その中のサーバーが接続されないか、不確実な問題が発生した場合に備えます。Ntpd は、応答が届いたときに最も信頼できるサーバーを優先します。

問い合わせるサーバーは、インターネットの ISP から、またはオンラインで公開されている NTP サーバーのリストから選べます。遅くない地理位置に近いサーバーを選択し、それが使用規則を読むことをお勧めします。公開されている NTP プールもオンラインのリストがあります、地理的な地域によって組織されています。FreeBSD は、推薦するアシスタントの NTP プールを提供します、0.freebsd.pool.ntp.org。

例 49. /etc/ntp.conf 範例

この簡単な ntp.conf 範例は、推奨される選択項を含むことを保証するには、公開されていないサーバーを避けることができます。
Disallow ntpq control/query access. Allow peers to be added only based on pool and server statements in this file.
restrict default limited kod nomodify notrap noquery nopeer
restrict source limited kod nomodify notrap noquery
Allow unrestricted access from localhost for queries and control.
restrict 127.0.0.1
restrict ::1
Add a specific server.
server ntplocal.example.com iburst
Add FreeBSD pool servers until 3-6 good servers are available.
tos minclock 3 maxclock 6
pool 0.freebsd.pool.ntp.org iburst
Use a local leap-seconds file.
leapfile "/var/db/ntpd.leap-seconds.list"
ntpd_config=
可更改ntp.conf档的位置。

ntpd_flags=
可设定使用任何其他所需的ntpd参数，但要避免使用由/etc/rc.d/ntpd内部管理的参数如下：

• -p (pid档案位置)
• -c (改用ntpd_config=设定)

29.11.1.3.
使用无特权的ntpd使用者执行Ntpd

在FreeBSD上Ntpd现在可以使用无特权的使用者启动并执行，要达到这个功能需要mac_ntpd(4)规则模组。

/etc/rc.d/ntpd启动Script会先检查NTP的设定，若可以的话它会载入mac_ntpd模组，然后以无特权的使用者ntpd(user id 123)来启动ntpd。

为了避免档案与目录存取权限的问题，当设定中有任何档案相关的选项时，启动Script不会自动以ntpd身份启动ntpd。

在ntpd_flags若出现以下任何参数则需要以最下面的方式手动设定才能以ntpd使用者身份执行：

• -f 或 --driftfile
• -i 或 --jaildir
• -k 或 --keyfile
• -l 或 --logfile
• -s 或 --statsdir

在ntp.conf若出现以下任何关键字则需要以最下面的方式手动设定才能以ntpd使用者身份执行：

• crypto
• driftfile
• key
• logdir
• statsdir

要手动设定以使用者ntpd身份执行ntpd你必须：

• 确保ntpd使用者有权限存取所有在设定档中指定的档案与目录。
• 让mac_ntpd模组载入或编译至核心，请参考mac_ntpd(4)取得详细资讯。

• 在/etc/rc.conf中设定ntpd_user="ntpd"

29.11.2.
在PPP连线使用NTP
ntpd并不需要永久的网际网路连线才能正常运作，若有一个PPP连线是设定成需要时拨号，那么便需要避免NTP的流量触发拨号或是保持连线不中断，这可在/etc/ppp/ppp.conf使用filter项目设定，例如：

set filter dial 0 deny udp src eq 123
Prevent NTP traffic from initiating dial out
set filter dial 1 permit 0 0
set filter alive 0 deny udp src eq 123
Prevent incoming NTP traffic from keeping the connection open
set filter alive 1 deny udp dst eq 123
Prevent outgoing NTP traffic from keeping the connection open
set filter alive 2 permit 0/0 0/0
29.12. iSCSI Initiator

iSCSI is a way to share storage over a network. Unlike NFS, which works at the file system level, iSCSI works at the block device level.

In iSCSI terminology, the system that shares the storage is known as the **target**. The storage can be a physical disk, or an area representing multiple disks or a portion of a physical disk. For example, if the disk(s) are formatted with ZFS, a zvol can be created to use as the iSCSI storage.

The clients which access the iSCSI storage are called **initiators**. To initiators, the storage available through iSCSI appears as a raw, unformatted disk known as a LUN. Device nodes for the disk appear in `/dev/` and the device must be separately formatted and mounted.

FreeBSD provides a native, kernel-based iSCSI target and initiator. This section describes how to configure a FreeBSD system as a target or an initiator.

29.12.1. 設定 iSCSI Target

To configure an iSCSI target, create the `/etc/ctl.conf` configuration file, add a line to `/etc/rc.conf` to make sure the `ctld(8)` daemon is automatically started at boot, and then start the daemon.

The following is an example of a simple `/etc/ctl.conf` configuration file. Refer to `ctl.conf(5)` for a more complete description of this file's available options.

```plaintext
portal-group pg0 {
  discovery-auth-group no-authentication
  listen 0.0.0.0
  listen [::]
}
target iqn.2012-06.com.example:target0 {
  auth-group no-authentication
  portal-group pg0
  lun 0 {
    path /data/target0-0
    size 4G
  }
}
```

The first entry defines the `pg0` portal group. Portal groups define which network addresses the `ctld(8)` daemon will listen on. The `discovery-auth-group no-authentication` entry indicates that any initiator is allowed to perform iSCSI target discovery without authentication. Lines three and four configure `ctld(8)` to listen on all IPv4 (`listen 0.0.0.0`) and IPv6 (`listen [::]`) addresses on the default port of 3260.
It is not necessary to define a portal group as there is a built-in portal group called `default`. In this case, the difference between `default` and `pg0` is that with `default`, target discovery is always denied, while with `pg0`, it is always allowed.

The second entry defines a single target. Target has two possible meanings: a machine serving iSCSI or a named group of LUNs. This example uses the latter meaning, where `iqn.2012-06.com.example:target0` is the target name. This target name is suitable for testing purposes. For actual use, change `com.example` to the real domain name, reversed. The `2012-06` represents the year and month of acquiring control of that domain name, and `target0` can be any value. Any number of targets can be defined in this configuration file.

The `auth-group no-authentication` line allows all initiators to connect to the specified target and `portal-group pg0` makes the target reachable through the `pg0` portal group.

The next section defines the LUN. To the initiator, each LUN will be visible as a separate disk device. Multiple LUNs can be defined for each target. Each LUN is identified by a number, where LUN 0 is mandatory. The `path /data/target0-0` line defines the full path to a file or zvol backing the LUN. That path must exist before starting `ctld(8)`. The second line is optional and specifies the size of the LUN.

Next, to make sure the `ctld(8)` daemon is started at boot, add this line to `/etc/rc.conf`:

```
ctld_enable="YES"
```

To start `ctld(8)` now, run this command:

```
# service ctld start
```

As the `ctld(8)` daemon is started, it reads `/etc/ctl.conf`. If this file is edited after the daemon starts, use this command so that the changes take effect immediately:

```
# service ctld reload
```

29.12.1.1.

認証

The previous example is inherently insecure as it uses no authentication, granting anyone full access to all targets. To require a username and password to access targets, modify the configuration as follows:

```
auth-group ag0 {
chap username1 secretsecret
chap username2 anothersecret
}
portal-group pg0 {
discovery-auth-group no-authentication
listen 0.0.0.0
listen [::]
}
target iqn.2012-06.com.example:target0 {
```

614
The auth-group section defines username and password pairs. An initiator trying to connect to iqn.2012-06.com.example:target0 must first specify a defined username and secret. However, target discovery is still permitted without authentication. To require target discovery authentication, set discovery-auth-group to a defined auth-group name instead of no-authentication.

It is common to define a single exported target for every initiator. As a shorthand for the syntax above, the username and password can be specified directly in the target entry:

target iqn.2012-06.com.example:target0 {
 portal-group pg0
 chap username1 secretsecret
 lun 0 {
 path /data/target0-0
 size 4G
 }
}

The iSCSI initiator described in this section is supported starting with FreeBSD 10.0-RELEASE. To use the iSCSI initiator available in older versions, refer to iscontrol(8).

The iSCSI initiator requires that the iscsid(8) daemon is running. This daemon does not use a configuration file. To start it automatically at boot, add this line to /etc/rc.conf:

iscsid_enable="YES"

To start iscsid(8) now, run this command:

service iscsid start

Connecting to a target can be done with or without an /etc/iscsi.conf configuration file. This section demonstrates both types of connections.

29.12.2.1. 不使用設定檔連線到Target

To connect an initiator to a single target, specify the IP address of the portal and the name of the
To verify if the connection succeeded, run `iscsictl` without any arguments. The output should look similar to this:

<table>
<thead>
<tr>
<th>Target name</th>
<th>Target portal</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>iqn.2012-06.com.example:target0</td>
<td>10.10.10.10</td>
<td>Connected: da0</td>
</tr>
</tbody>
</table>

In this example, the iSCSI session was successfully established, with `/dev/da0` representing the attached LUN. If the `iqn.2012-06.com.example:target0` target exports more than one LUN, multiple device nodes will be shown in that section of the output: `Connected: da0 da1 da2`.

Any errors will be reported in the output, as well as the system logs. For example, this message usually means that the `iscsid(8)` daemon is not running:

<table>
<thead>
<tr>
<th>Target name</th>
<th>Target portal</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>iqn.2012-06.com.example:target0</td>
<td>10.10.10.10</td>
<td>Waiting for iscsid(8)</td>
</tr>
</tbody>
</table>

The following message suggests a networking problem, such as a wrong IP address or port:

<table>
<thead>
<tr>
<th>Target name</th>
<th>Target portal</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>iqn.2012-06.com.example:target0</td>
<td>10.10.10.11</td>
<td>Connection refused</td>
</tr>
</tbody>
</table>

This message means that the specified target name is wrong:

<table>
<thead>
<tr>
<th>Target name</th>
<th>Target portal</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>iqn.2012-06.com.example:target0</td>
<td>10.10.10.10</td>
<td>Not found</td>
</tr>
</tbody>
</table>

This message means that the target requires authentication:

<table>
<thead>
<tr>
<th>Target name</th>
<th>Target portal</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>iqn.2012-06.com.example:target0</td>
<td>10.10.10.10</td>
<td>Authentication failed</td>
</tr>
</tbody>
</table>

To specify a CHAP username and secret, use this syntax:

```
# iscsictl -A -p 10.10.10.10 -t iqn.2012-06.com.example:target0 -u user -s secretsecret
```

To connect using a configuration file, create `/etc/iscsi.conf` with contents like this:
The `t0` specifies a nickname for the configuration file section. It will be used by the initiator to specify which configuration to use. The other lines specify the parameters to use during connection. The `TargetAddress` and `TargetName` are mandatory, whereas the other options are optional. In this example, the CHAP username and secret are shown.

To connect to the defined target, specify the nickname:

```
# iscsictl -An t0
```

Alternately, to connect to all targets defined in the configuration file, use:

```
# iscsictl -Aa
```

To make the initiator automatically connect to all targets in `/etc/iscsi.conf`, add the following to `/etc/rc.conf`:

```
iscsictl_enable="YES"
iscsictl_flags="-Aa"
```

| FreeBSD路概念。解及了網基礎如IPFILTER何設定防火牆使用與。何如。設定防火牆使用與IPFW如何使用與設定防火牆。差異之建防火牆間的FreeBSD何定義包則如過包中進出的網都會使用一個際網線位開位配公址IP連位分使用一個際網現場。當中的到網或者自動路池址連一個共用址轉有IP使用支援內部網私（Network address translation, NAT）路位許，可路允網取網網路路制的主止限禁。或者務機存，應離保護不用程式、服機路要的際網的存避免並必與主務內部網隔。
護維計一份有於OpenBSD擇套、多ALTQ (Alternate Queuing)能的Quality of Service完自PF被使用,因此可供網根據際位留,為的傳位公對。反它也同位NAT台際時,會自防火牆路腦際IP網,而不需要外址每ISP甚(IP分NAT代表由類夠比對力擊最,且動將鎖封的許,假其何過許任連動連會自將連通麼,若新的過封管理者可以專注那Stateful filtering中(Dynamic state table)動移態連何動符合連否封的比對每產的會自足夠力能的封理該個預處交換所有的封是一個成的(State),當在所將動技術(Stateful filtering)態線連通的包或安線追蹤連型進一步使用狀,因為全。比排不安要路網並的會錄規控制連型,所有不防火則選際同時可以防火牆內有好提供網網佳控制流量式的符合允線連集的封。其他許許了("inclusive")防火牆含會,內連線除式的則規除("exclusive")防火牆或者內連線見兩進一步的說明,者。模道在動模全者的式會式,器("inclusive")防火魔含有規除("exclusive")防火魔或者內連線見兩進一步的說明,者。
This section of the Handbook focuses on PF as it pertains to FreeBSD. It demonstrates how to enable PF and ALTQ. It also provides several examples for creating rulesets on a FreeBSD system.

30.3.1. Enabling PF

To use PF, its kernel module must be first loaded. This section describes the entries that can be added to `/etc/rc.conf` to enable PF.

Start by adding `pf_enable=yes` to `/etc/rc.conf`:

```
# sysrc pf_enable=yes
```

Additional options, described in `pfctl(8)`, can be passed to PF when it is started. Add or change this entry in `/etc/rc.conf` and specify any required flags between the two quotes (``` ``):

```
pf_flags="" # additional flags for pfctl startup
```

PF will not start if it cannot find its ruleset configuration file. By default, FreeBSD does not ship with a ruleset and there is no `/etc/pf.conf`. Example rulesets can be found in `/usr/shared/examples/pf/`. If a custom ruleset has been saved somewhere else, add a line to `/etc/rc.conf` which specifies the full path to the file:

```
pf_rules="/path/to/pf.conf"
```

Logging support for PF is provided by `pflog(4)`. To enable logging support, add `pflog_enable=yes` to `/etc/rc.conf`:

```
# sysrc pflog_enable=yes
```

The following lines can also be added to change the default location of the log file or to specify any additional flags to pass to `pflog(4)` when it is started:

```
pflog_logfile="/var/log/pflog"  # where pflogd should store the logfile
pflog_flags=""                  # additional flags for pflogd startup
```

Finally, if there is a LAN behind the firewall and packets need to be forwarded for the computers on the LAN, or NAT is required, enable the following option:

```
gateway_enable="YES"            # Enable as LAN gateway
```

After saving the needed edits, PF can be started with logging support by typing:

```
# service pf start
```
By default, PF reads its configuration rules from /etc/pf.conf and modifies, drops, or passes packets according to the rules or definitions specified in this file. The FreeBSD installation includes several sample files located in /usr/shared/examples/pf/. Refer to the PF FAQ for complete coverage of PF rulesets.

To control PF, use pfctl. Useful pfctl options summarizes some useful options to this command. Refer to pfctl(8) for a description of all available options:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pfctl -e</td>
<td>Enable PF.</td>
</tr>
<tr>
<td>pfctl -d</td>
<td>Disable PF.</td>
</tr>
<tr>
<td>pfctl -F all -f /etc/pf.conf</td>
<td>Flush all NAT, filter, state and table rules and reload /etc/pf.conf.</td>
</tr>
<tr>
<td>pfctl -s [rules</td>
<td>Report on the filter rules, NAT rules, or state table.</td>
</tr>
<tr>
<td>pfctl -vnf /etc/pf.conf</td>
<td>Check /etc/pf.conf for errors, but do not load ruleset.</td>
</tr>
</tbody>
</table>

security/sudo is useful for running commands like pfctl that require elevated privileges. It can be installed from the Ports Collection.

To keep an eye on the traffic that passes through the PF firewall, consider installing the sysutils/pftop package or port. Once installed, pftop can be run to view a running snapshot of traffic in a format which is similar to top(1).

30.3.2. PF ruleset

This section demonstrates how to create a customized ruleset. It starts with the simplest of rulesets and builds upon its concepts using several examples to demonstrate real-world usage of PF's many features.

The simplest possible ruleset is for a single machine that does not run any services and which needs access to one network, which may be the Internet. To create this minimal ruleset, edit /etc/pf.conf so it looks like this:

```
block in all
pass out all keep state
```

The first rule denies all incoming traffic by default. The second rule allows connections created by this system to pass out, while retaining state information on those connections. This state information allows return traffic for those connections to pass back and should only be used on machines that can be trusted. The ruleset can be loaded with:

```
# pfctl -e; pfctl -f /etc/pf.conf
```

In addition to keeping state, PF provides lists and macros which can be defined for use when creating rules. Macros can include lists and need to be defined before use. As an example, insert these lines at the very top of the ruleset:
TCP services are defined as a list of port names:
```
tcp_services = 
   { ssh, smtp, domain, www, pop3, auth, pop3s }
```
UDP services are defined as a list of port names:
```
udp_services = 
   { domain }
```
PF understands port names as well as port numbers, as long as the names are listed in `/etc/services`. This example creates two macros. The first is a list of seven TCP port names and the second is one UDP port name. Once defined, macros can be used in rules. In this example, all traffic is blocked except for the connections initiated by this system for the seven specified TCP services and the one specified UDP service:
```
block all
pass out proto tcp to any port $tcp_services keep state
pass proto udp to any port $udp_services keep state
```
Even though UDP is considered to be a stateless protocol, PF is able to track some state information. For example, when a UDP request is passed which asks a name server about a domain name, PF will watch for the response to pass it back.

Whenever an edit is made to a ruleset, the new rules must be loaded so they can be used:
```
# pfctl -f /etc/pf.conf
```
If there are no syntax errors, `pfctl` will not output any messages during the rule load. Rules can also be tested before attempting to load them:
```
# pfctl -nf /etc/pf.conf
```
Including `-n` causes the rules to be interpreted only, but not loaded. This provides an opportunity to correct any errors. At all times, the last valid ruleset loaded will be enforced until either PF is disabled or a new ruleset is loaded.

Adding `-v` to a `pfctl` ruleset verify or load will display the fully parsed rules exactly the way they will be loaded. This is extremely useful when debugging rules.

30.3.2.1. 使用NAT的简单通讯

This section demonstrates how to configure a FreeBSD system running PF to act as a gateway for at least one other machine. The gateway needs at least two network interfaces, each connected to a separate network. In this example, `xl1` is connected to the Internet and `xl0` is connected to the internal network.

First, enable the gateway to let the machine forward the network traffic it receives on one interface to another interface. This `sysctl` setting will forward IPv4 packets:
```
# sysctl net.inet.ip.forwarding=1
```
To forward IPv6 traffic, use:
```
622
```
To enable these settings at system boot, use `sysrc(8)` to add them to `/etc/rc.conf`:

```
# sysrc gateway_enable=yes
# sysrc ipv6_gateway_enable=yes
```

Verify with `ifconfig` that both of the interfaces are up and running.

Next, create the PF rules to allow the gateway to pass traffic. While the following rule allows stateful traffic to pass from the Internet to hosts on the network, the `to` keyword does not guarantee passage all the way from source to destination:

```
pass in on xl1 from xl1:network to xl0:network port $ports keep state
```

That rule only lets the traffic pass in to the gateway on the internal interface. To let the packets go further, a matching rule is needed:

```
pass out on xl0 from xl1:network to xl0:network port $ports keep state
```

While these two rules will work, rules this specific are rarely needed. For a busy network admin, a readable ruleset is a safer ruleset. The remainder of this section demonstrates how to keep the rules as simple as possible for readability. For example, those two rules could be replaced with one rule:

```
pass from xl1:network to any port $ports keep state
```

The `interface:network` notation can be replaced with a macro to make the ruleset even more readable. For example, a `$localnet` macro could be defined as the network directly attached to the internal interface (`$xl1:network`). Alternatively, the definition of `$localnet` could be changed to an IP address/netmask notation to denote a network, such as `192.168.100.1/24` for a subnet of private addresses.

If required, `$localnet` could even be defined as a list of networks. Whatever the specific needs, a sensible `$localnet` definition could be used in a typical pass rule as follows:

```
pass from $localnet to any port $ports keep state
```

The following sample ruleset allows all traffic initiated by machines on the internal network. It first defines two macros to represent the external and internal 3COM interfaces of the gateway.

```
ext_if = "xl0"  # macro for external interface - use tun0 for PPPoE
int_if = "xl1"  # macro for internal interface
localnet = $int_if:network
```

For dialup users, the external interface will use `tun0`. For an ADSL connection, specifically those using PPP over Ethernet (PPPoE), the correct external interface is `tun0`, not the physical Ethernet interface.

```
ext_if = "xl0"  # macro for external interface - use tun0 for PPPoE
int_if = "xl1"  # macro for internal interface
localnet = $int_if:network
```

```
This ruleset introduces the nat rule which is used to handle the network address translation from the non-routable addresses inside the internal network to the IP address assigned to the external interface. The parentheses surrounding the last part of the nat rule ($ext_if) is included when the IP address of the external interface is dynamically assigned. It ensures that network traffic runs without serious interruptions even if the external IP address changes.

Note that this ruleset probably allows more traffic to pass out of the network than is needed. One reasonable setup could create this macro:

```
client_out = \{ ftp-data, ftp, ssh, domain, pop3, auth, nntp, http, https, cvspserver, 2628, 5999, 8000, 8080 \}
```

to use in the main pass rule:

```
pass inet proto tcp from $localnet to any port $client_out flags S/SA keep state
```

A few other pass rules may be needed. This one enables SSH on the external interface:

```
pass in inet proto tcp to $ext_if port ssh
```

This macro definition and rule allows DNS and NTP for internal clients:

```
udp_services = \{ domain, ntp \}
pass quick inet proto { tcp, udp } to any port $udp_services keep state
```

Note the quick keyword in this rule. Since the ruleset consists of several rules, it is important to understand the relationships between the rules in a ruleset. Rules are evaluated from top to bottom, in the sequence they are written. For each packet or connection evaluated by PF, the last matching rule in the ruleset is the one which is applied. However, when a packet matches a rule which contains the quick keyword, the rule processing stops and the packet is treated according to that rule. This is very useful when an exception to the general rules is needed.

30.3.2.2. 建立 FTP Proxy

Configuring working FTP rules can be problematic due to the nature of the FTP protocol. FTP predates firewalls by several decades and is insecure in its design. The most common points against using FTP include:

- Passwords are transferred in the clear.
- The protocol demands the use of at least two TCP connections (control and data) on separate ports.
- When a session is established, data is communicated using randomly selected ports.

All of these points present security challenges, even before considering any potential security...
weaknesses in client or server software. More secure alternatives for file transfer exist, such as sftp(1) or scp(1), which both feature authentication and data transfer over encrypted connections.

For those situations when FTP is required, PF provides redirection of FTP traffic to a small proxy program called ftp-proxy(8), which is included in the base system of FreeBSD. The role of the proxy is to dynamically insert and delete rules in the ruleset, using a set of anchors, to correctly handle FTP traffic.

To enable the FTP proxy, add this line to /etc/rc.conf:

```
ftpproxy_enable="YES"
```

Then start the proxy by running service ftp-proxy start.

For a basic configuration, three elements need to be added to /etc/pf.conf. First, the anchors which the proxy will use to insert the rules it generates for the FTP sessions:

```
nat-anchor "ftp-proxy/*"
rdr-anchor "ftp-proxy/*"
```

Second, a pass rule is needed to allow FTP traffic in to the proxy.

Third, redirection and NAT rules need to be defined before the filtering rules. Insert this rdr rule immediately after the nat rule:

```
rdr pass on $int_if proto tcp from any to any port ftp -> 127.0.0.1 port 8021
```

Finally, allow the redirected traffic to pass:

```
pass out proto tcp from $proxy to any port ftp
```

where $proxy expands to the address the proxy daemon is bound to.

Save /etc/pf.conf, load the new rules, and verify from a client that FTP connections are working:

```
pfctl -f /etc/pf.conf
```

This example covers a basic setup where the clients in the local network need to contact FTP servers elsewhere. This basic configuration should work well with most combinations of FTP clients and servers. As shown in ftp-proxy(8), the proxy's behavior can be changed in various ways by adding options to the ftpproxy_flags= line. Some clients or servers may have specific quirks that must be compensated for in the configuration, or there may be a need to integrate the proxy in specific ways such as assigning FTP traffic to a specific queue.

For ways to run an FTP server protected by PF and ftp-proxy(8), configure a separate ftp-proxy in reverse mode, using -R, on a separate port with its own redirecting pass rule.

30.3.2.3.

管理

ICMP

Many of the tools used for debugging or troubleshooting a TCP/IP network rely on the Internet Control Message Protocol (ICMP), which was designed specifically with debugging in mind.
The ICMP protocol sends and receives control messages between hosts and gateways, mainly to provide feedback to a sender about any unusual or difficult conditions enroute to the target host. Routers use ICMP to negotiate packet sizes and other transmission parameters in a process often referred to as path MTU discovery.

From a firewall perspective, some ICMP control messages are vulnerable to known attack vectors. Also, letting all diagnostic traffic pass unconditionally makes debugging easier, but it also makes it easier for others to extract information about the network. For these reasons, the following rule may not be optimal:

```
pass inet proto icmp from any to any
```

One solution is to let all ICMP traffic from the local network through while stopping all probes from outside the network:

```
pass inet proto icmp from $localnet to any keep state
pass inet proto icmp from any to $ext_if keep state
```

Additional options are available which demonstrate some of PF's flexibility. For example, rather than allowing all ICMP messages, one can specify the messages used by `ping(8)` and `traceroute(8)`.

Start by defining a macro for that type of message:

```
icmp_types = "echoreq"
```

and a rule which uses the macro:

```
pass inet proto icmp all icmp-type $icmp_types keep state
```

If other types of ICMP packets are needed, expand `icmp_types` to a list of those packet types. Type `more /usr/src/sbin/pfctl/pfctl_parser.c` to see the list of ICMP message types supported by PF. Refer to [http://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml](http://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml) for an explanation of each message type.

Since Unix `traceroute` uses UDP by default, another rule is needed to allow Unix `traceroute`:

```
allow out the default range for traceroute(8):
pass out on $ext_if inet proto udp from any to any port 33433 >< 33626 keep state
```

Since `TRACERT.EXE` on Microsoft Windows systems uses ICMP echo request messages, only the first rule is needed to allow network traces from those systems. Unix `traceroute` can be instructed to use other protocols as well, and will use ICMP echo request messages if `-I` is used. Check the `traceroute(8)` man page for details.

### 30.3.2.3.1. Path MTU Discovery

Internet protocols are designed to be device independent, and one consequence of device independence is that the optimal packet size for a given connection cannot always be predicted reliably. The main constraint on packet size is the Maximum Transmission Unit (MTU) which sets the upper limit on the packet size for an interface. Type `ifconfig` to view the MTUs for a system's network interfaces.

TCP/IP uses a process known as path MTU discovery to determine the right packet size for a connection.
connection. This process sends packets of varying sizes with the "Do not fragment" flag set, expecting an ICMP return packet of "type 3, code 4" when the upper limit has been reached. Type 3 means "destination unreachable", and code 4 is short for "fragmentation needed, but the do-not-fragment flag is set". To allow path MTU discovery in order to support connections to other MTUs, add the `destination unreachable` type to the `icmp_types` macro:

```plaintext
icmp_types = \{ echoreq, unreach \}
```

Since the pass rule already uses that macro, it does not need to be modified to support the new ICMP type:

```plaintext
pass inet proto icmp all icmp-type $icmp_types keep state
```

PF allows filtering on all variations of ICMP types and codes. The list of possible types and codes are documented in `icmp(4)` and `icmp6(4)`.

### 30.3.2.4. 使用 Tables

Some types of data are relevant to filtering and redirection at a given time, but their definition is too long to be included in the ruleset file. PF supports the use of tables, which are defined lists that can be manipulated without needing to reload the entire ruleset, and which can provide fast lookups. Table names are always enclosed within `< >`, like this:

```plaintext
table <clients> { 192.168.2.0/24, !192.168.2.5 }
```

In this example, the `192.168.2.0/24` network is part of the table, except for the address `192.168.2.5`, which is excluded using the `!` operator. It is also possible to load tables from files where each item is on a separate line, as seen in this example `/etc/clients`:

```plaintext
192.168.2.0/24
!192.168.2.5
```

To refer to the file, define the table like this:

```plaintext
table <clients> persist file "/etc/clients"
```

Once the table is defined, it can be referenced by a rule:

```plaintext
pass inet proto tcp from <clients> to any port $client_out flags S/SA keep state
```

A table's contents can be manipulated live, using `pfctl`. This example adds another network to the table:

```plaintext
pfctl -t clients -T add 192.168.1.0/16
```

Note that any changes made this way will take affect now, making them ideal for testing, but will not survive a power failure or reboot. To make the changes permanent, modify the definition of the table in the ruleset or edit the file that the table refers to. One can maintain the on-disk copy of the table's contents, using `pfctl`.
table using a cron(8) job which dumps the table’s contents to disk at regular intervals, using a command such as `pfctl -t clients -T show >/etc/clients`. Alternatively, `/etc/clients` can be updated with the in-memory table contents:

```
pfctl -t clients -T replace -f /etc/clients
```

30.3.2.5.

### Overload Tables

Those who run SSH on an external interface have probably seen something like this in the authentication logs:

```
Sep 26 03:12:34 skapet sshd[25771]: Failed password for root from 200.72.41.31 port 40992
Sep 26 03:12:34 skapet sshd[5279]: Failed password for root from 200.72.41.31 port 40992
Sep 26 03:12:35 skapet sshd[5279]: Received disconnect from 200.72.41.31: 11: Bye Bye
Sep 26 03:12:44 skapet sshd[29635]: Invalid user admin from 200.72.41.31
Sep 26 03:12:44 skapet sshd[24703]: input_userauth_request: invalid user admin from 200.72.41.31 port 41484
```

This is indicative of a brute force attack where somebody or some program is trying to discover the user name and password which will let them into the system.

If external SSH access is needed for legitimate users, changing the default port used by SSH can offer some protection. However, PF provides a more elegant solution. Pass rules can contain limits on what connecting hosts can do and violators can be banished to a table of addresses which are denied some or all access. It is even possible to drop all existing connections from machines which overreach the limits.

To configure this, create this table in the tables section of the ruleset:

```
table <bruteforce> persist
```

Then, somewhere early in the ruleset, add rules to block brute access while allowing legitimate access:

```
block quick from <bruteforce>
```

```
pass inet proto tcp from any to $localnet port $tcp_services
flags S/SA keep state
(max-src-conn 100, max-src-conn-rate 15/5,
overload <bruteforce> flush global)
```

The part in parentheses defines the limits and the numbers should be changed to meet local requirements. It can be read as follows:

- `max-src-conn` is the number of simultaneous connections allowed from one host.
- `max-src-conn-rate` is the rate of new connections allowed from any single host (15) per number of seconds (5).
Overload means that any host which exceeds these limits gets its address added to the bruteforce table. The ruleset blocks all traffic from addresses in the bruteforce table. Finally, flush global says that when a host reaches the limit, that all (global) of that host's connections will be terminated (flush).

These rules will not block slow bruteforcers, as described in http://home.nuug.no/~peter/hailmary2013/. This example ruleset is intended mainly as an illustration. For example, if a generous number of connections in general are wanted, but the desire is to be more restrictive when it comes to ssh, supplement the rule above with something like the one below, early on in the rule set:

```
pass quick proto { tcp, udp } from any to any port ssh
flags S/SA keep state
(max-src-conn 15, max-src-conn-rate 5/3,
overload <bruteforce> flush global)
```

It May Not be Necessary to Block All Overloaders

It is worth noting that the overload mechanism is a general technique which does not apply exclusively to SSH, and it is not always optimal to entirely block all traffic from offenders. For example, an overload rule could be used to protect a mail service or a web service, and the overload table could be used in a rule to assign offenders to a queue with a minimal bandwidth allocation or to redirect to a specific web page.

Over time, tables will be filled by overload rules and their size will grow incrementally, taking up more memory. Sometimes an IP address that is blocked is a dynamically assigned one, which has since been assigned to a host who has a legitimate reason to communicate with hosts in the local network.

For situations like these, pfctl provides the ability to expire table entries. For example, this command will remove <bruteforce> table entries which have not been referenced for 86400 seconds:

```
pfctl -t bruteforce -T expire 86400
```

Similar functionality is provided by security/expiretable, which removes table entries which have not been accessed for a specified period of time. Once installed, expiretable can be run to remove <bruteforce> table entries older than a specified age. This example removes all entries older than 24 hours:

```
/usr/local/sbin/expiretable -v -d -t 24h bruteforce
```

30.3.2.6. SPAM 防護

Not to be confused with the spamd daemon which comes bundled with spamassassin, mail/spamd can be configured with PF to provide an outer defense against SPAM. This spamd hooks into the PF configuration using a set of redirections.

Spammers tend to send a large number of messages, and SPAM is mainly sent from a few spammer friendly networks and a large number of hijacked machines, both of which are reported to
When an SMTP connection from an address in a blacklist is received, spamd presents its banner and immediately switches to a mode where it answers SMTP traffic one byte at a time. This technique, which is intended to waste as much time as possible on the spammer's end, is called **tarpitting**.

The specific implementation which uses one byte SMTP replies is often referred to as **stuttering**.

This example demonstrates the basic procedure for setting up spamd with automatically updated blacklists. Refer to the man pages which are installed with `mail/spamd` for more information.

### Procedure: Configuring spamd

1. Install the `mail/spamd` package or port. To use spamd's greylisting features, `fdescfs(5)` must be mounted at `/dev/fd`. Add the following line to `/etc/fstab`:

   ```
 fdescfs /dev/fd fdescfs rw 0 0
   ```

   Then, mount the filesystem:
   ```
 # mount fdescfs
   ```

2. Next, edit the PF ruleset to include:

   ```
 table <spamd> persist
 table <spamd-white> persist
 rdr pass on $ext_if inet proto tcp from <spamd> to
 { $ext_if, $localnet } port smtp -> 127.0.0.1 port 8025
 rdr pass on $ext_if inet proto tcp from !<spamd-white> to
 { $ext_if, $localnet } port smtp -> 127.0.0.1 port 8025
   ```

   The two tables `<spamd>` and `<spamd-white>` are essential. SMTP traffic from an address listed in `<spamd>` but not in `<spamd-white>` is redirected to the spamd daemon listening at port 8025.

3. The next step is to configure spamd in `/usr/local/etc/spamd.conf` and to add some `rc.conf` parameters. The installation of `mail/spamd` includes a sample configuration file (`/usr/local/etc/spamd.conf.sample`) and a man page for `spamd.conf`. Refer to these for additional configuration options beyond those shown in this example.

   One of the first lines in the configuration file that does not begin with a `#` comment sign contains the block which defines the **all** list, which specifies the lists to use:

   ```
 all:
   ```

   This entry adds the desired blacklists, separated by colons (`:`). To use a whitelist to subtract addresses from a blacklist, add the name of the whitelist immediately after the name of that blacklist. For example:

   ```
 :blacklist:whitelist:
   ```
This is followed by the specified blacklist's definition:

```
traplist:
 black:
 msg="SPAM. Your address %A has sent spam within the last 24 hours":
 method=http:
 file=www.openbsd.org/spamd/traplist.gz
```

where the first line is the name of the blacklist and the second line specifies the list type.

The `msg` field contains the message to display to blacklisted senders during the SMTP dialogue. The `method` field specifies how spamd-setup fetches the list data; supported methods are `http`, `ftp`, from a file in a mounted file system, and via `exec` of an external program. Finally, the `file` field specifies the name of the file spamd expects to receive.

The definition of the specified whitelist is similar, but omits the `msg` field since a message is not needed:

```
whitelist:
 white:
 method=file:
 file=/var/mail/whitelist.txt
```

Choose Data Sources with Care

Using all the blacklists in the sample `spamd.conf` will blacklist large blocks of the Internet. Administrators need to edit the file to create an optimal configuration which uses applicable data sources and, when necessary, uses custom lists.

Next, add this entry to `/etc/rc.conf`.

```
spamd_flags="-v" # use "" and see spamd-setup(8) for flags
```

Additional flags are described in the man page specified by the comment:

```
spamd_flags="-v" # use "" and see spamd-setup(8) for flags
```

When finished, reload the ruleset, start spamd by typing `service obspamd start`, and complete the configuration using `spamd-setup`. Finally, create a `cron(8)` job which calls `spamd-setup` to update the tables at reasonable intervals.

On a typical gateway in front of a mail server, hosts will soon start getting trapped within a few seconds to several minutes.

PF also supports greylisting, which temporarily rejects messages from unknown hosts with 45n codes. Messages from greylisted hosts which try again within a reasonable time are let through.

Traffic from senders which are set up to behave within the limits set by RFC 1123 and RFC 2821 are immediately let through.

More information about greylisting as a technique can be found at the greylisting.org website. The most amazing thing about greylisting, apart from its simplicity, is that it still works. Spammers and malware writers have been very slow to adapt to bypass this technique.

The basic procedure for configuring greylisting is as follows:
Procedure: Configuring Greylisting

1. Make sure that fdescfs(5) is mounted as described in Step 1 of the previous Procedure.

2. To run spamd in greylisting mode, add this line to /etc/rc.conf:
   spamd_grey="YES"  # use spamd greylisting if YES

   Refer to the spamd man page for descriptions of additional related parameters.

3. To complete the greylisting setup:
   # service obspamd restart
   # service obspamlogd start

   Behind the scenes, the spamdb database tool and the spamlogd whitelist updater perform essential functions for the greylisting feature. spamdb is the administrator's main interface to managing the black, grey, and white lists via the contents of the /var/db/spamdb database.

This section describes how block-policy, scrub, and antispoof can be used to make the ruleset behave sanely.

**The block-policy** is an option which can be set in the options part of the ruleset, which precedes the redirection and filtering rules. This option determines which feedback, if any, PF sends to hosts that are blocked by a rule. The option has two possible values: drop drops blocked packets with no feedback, and return returns a status code such as Connection refused.

If not set, the default policy is drop. To change the block-policy, specify the desired value:

   set block-policy return

In PF, scrub is a keyword which enables network packet normalization. This process reassembles fragmented packets and drops TCP packets that have invalid flag combinations. Enabling scrub provides a measure of protection against certain kinds of attacks based on incorrect handling of packet fragments. A number of options are available, but the simplest form is suitable for most configurations:

   scrub in all

Some services, such as NFS, require specific fragment handling options. Refer to [https://home.nuug.no/~peter/pf/en/scrub.html](https://home.nuug.no/~peter/pf/en/scrub.html) for more information.

This example reassembles fragments, clears the "do not fragment" bit, and sets the maximum segment size to 1440 bytes:

   scrub in all fragment reassemble no-df max-mss 1440

The antispoof mechanism protects against activity from spoofed or forged IP addresses, mainly by blocking packets appearing on interfaces and in directions which are logically not possible.
These rules weed out spoofed traffic coming in from the rest of the world as well as any spoofed packets which originate in the local network:

antispoof for $ext_if
antispoof for $int_if

30.3.2.8. 处理不可路由 (Non-Routable) 的地址

Even with a properly configured gateway to handle network address translation, one may have to compensate for other people’s misconfigurations. A common misconfiguration is to let traffic with non-routable addresses out to the Internet. Since traffic from non-routeable addresses can play a part in several DoS attack techniques, consider explicitly blocking traffic from non-routeable addresses from entering the network through the external interface.

In this example, a macro containing non-routable addresses is defined, then used in blocking rules. Traffic to and from these addresses is quietly dropped on the gateway’s external interface.

martians = "{ 127.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12, 10.0.0.0/8, 169.254.0.0/16, 192.0.2.0/24, 0.0.0.0/8, 240.0.0.0/4 }

block drop in quick on $ext_if from $martians to any
block drop out quick on $ext_if from any to $martians

30.3.3. 开启 ALTQ

On FreeBSD, ALTQ can be used with PF to provide Quality of Service (QOS). Once ALTQ is enabled, queues can be defined in the ruleset which determine the processing priority of outbound packets. Before enabling ALTQ, refer to altq(4) to determine if the drivers for the network cards installed on the system support it.

ALTQ is not available as a loadable kernel module. If the system’s interfaces support ALTQ, create a custom kernel using the instructions in 設定 FreeBSD 核心. The following kernel options are available. The first is needed to enable ALTQ. At least one of the other options is necessary to specify the queueing scheduler algorithm:

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTQ</td>
<td>Enable ALTQ</td>
</tr>
<tr>
<td>ALTQ_CBQ</td>
<td>Class Based Queuing (CBQ)</td>
</tr>
<tr>
<td>ALTQ_RED</td>
<td>Random Early Detection (RED)</td>
</tr>
<tr>
<td>ALTQ_RIO</td>
<td>RED In/Out</td>
</tr>
<tr>
<td>ALTQ_HFSC</td>
<td>Hierarchical Packet Scheduler (HFSC)</td>
</tr>
<tr>
<td>ALTQ_PRIQ</td>
<td>Priority Queuing (PRIQ)</td>
</tr>
</tbody>
</table>

The following scheduler algorithms are available:

CBQ

Class Based Queuing (CBQ) is used to divide a connection’s bandwidth into different classes or queues to prioritize traffic based on filter rules.
Random Early Detection (RED) is used to avoid network congestion by measuring the length of the queue and comparing it to the minimum and maximum thresholds for the queue. When the queue is over the maximum, all new packets are randomly dropped.

In Random Early Detection In and Out (RIO) mode, RED maintains multiple average queue lengths and multiple threshold values, one for each QOS level.


Priority Queuing (PRIQ) always passes traffic that is in a higher queue first.

More information about the scheduling algorithms and example rulesets are available at the OpenBSD's web archive.

30.4. IPFW

IPFW is a state firewall written for FreeBSD and supports IPv4 and IPv6. It consists of a firewall filter processor, logging mechanisms, NAT, dummynet(4), traffic shaping, bridging mechanisms, and ipstealth mechanisms. FreeBSD provides a sample rule set in `/etc/rc.firewall`, which defines several common scenarios used by administrators to write rulesets.

IPFW provides powerful syntax for advanced users to configure rulesets to meet their security needs.

This section will introduce how to configure IPFW, a summary of rulesets, and a few common scenarios used by rulesets.

30.4.1. IPFW Configuration

IPFW is included in the basic FreeBSD install as a kernel loadable module, meaning that a custom kernel is not needed in order to enable IPFW.

For those users who wish to statically compile IPFW support into a custom kernel, see IPFW core options.

To configure the system to enable IPFW at boot time, add `firewall_enable="YES"` to `/etc/rc.conf`:

```bash
sysrc firewall_enable="YES"
```

To use one of the default firewall types provided by FreeBSD, add another line which specifies the type:

```bash
sysrc firewall_type="open"
```

The available types are:

- **open**: passes all traffic.
- **client**: protects only this machine.
- **simple**: protects the whole network.
- **closed**: entirely disables IP traffic except for the loopback interface.
• **workstation**: protects only this machine using stateful rules.

• **UNKNOWN**: disables the loading of firewall rules.

• **filename**: full path of the file containing the firewall ruleset.

If `firewall_type` is set to either **client** or **simple**, modify the default rules found in `/etc/rc.firewall` to fit the configuration of the system. Note that the **filename** type is used to load a custom ruleset. An alternate way to load a custom ruleset is to set the `firewall_script` variable to the absolute path of an executable script that includes IPFW commands. The examples used in this section assume that the `firewall_script` is set to `/etc/ipfw.rules`:

```bash
sysrc firewall_script="/etc/ipfw.rules"
```

To enable logging through `syslogd(8)`, include this line:

```bash
sysrc firewall_logging="YES"
```

Only firewall rules with the **log** option will be logged. The default rules do not include this option and it must be manually added. Therefore it is advisable that the default ruleset is edited for logging. In addition, log rotation may be desired if the logs are stored in a separate file.

There is no `/etc/rc.conf` variable to set logging limits. To limit the number of times a rule is logged per connection attempt, specify the number using this line in `/etc/sysctl.conf`:

```bash
echo "net.inet.ip.fw.verbose_limit=5" >> /etc/sysctl.conf
```

To enable logging through a dedicated interface named `ipfw0`, add this line to `/etc/rc.conf` instead:

```bash
sysrc firewall_logif="YES"
```

Then use `tcpdump` to see what is being logged:

```bash
tcpdump -t -n -i ipfw0
```

There is no overhead due to logging unless `tcpdump` is attached.

After saving the needed edits, start the firewall. To enable logging limits now, also set the `sysctl` value specified above:

```bash
service ipfw start
sysctl net.inet.ip.fw.verbose_limit=5
```
When a packet enters the IPFW firewall, it is compared against the first rule in the ruleset and progresses one rule at a time, moving from top to bottom in sequence. When the packet matches the selection parameters of a rule, the rule's action is executed and the search of the ruleset terminates for that packet. This is referred to as "first match wins". If the packet does not match any of the rules, it gets caught by the mandatory IPFW default rule number 65535, which denies all packets and silently discards them. However, if the packet matches a rule that contains the count, skipto, or tee keywords, the search continues. Refer to ipfw(8) for details on how these keywords affect rule processing.

When creating an IPFW rule, keywords must be written in the following order. Some keywords are mandatory while other keywords are optional. The words shown in uppercase represent a variable and the words shown in lowercase must precede the variable that follows it. The # symbol is used to mark the start of a comment and may appear at the end of a rule or on its own line. Blank lines are ignored.

CMD RULE_NUMBER set SET_NUMBER ACTION log LOG_AMOUNT PROTO from SRC SRC_PORT to DST DST_PORT OPTIONS

This section provides an overview of these keywords and their options. It is not an exhaustive list of every possible option. Refer to ipfw(8) for a complete description of the rule syntax that can be used when creating IPFW rules.

CMD
Every rule must start with ipfw add.

RULE_NUMBER
Each rule is associated with a number from 1 to 65534. The number is used to indicate the order of rule processing. Multiple rules can have the same number, in which case they are applied according to the order in which they have been added.

SET_NUMBER
Each rule is associated with a set number from 0 to 31. Sets can be individually disabled or enabled, making it possible to quickly add or delete a set of rules. If a SET_NUMBER is not specified, the rule will be added to set 0.

ACTION
A rule can be associated with one of the following actions. The specified action will be executed when the packet matches the selection criterion of the rule.

allow | accept | pass | permit: these keywords are equivalent and allow packets that match the rule.

check-state: checks the packet against the dynamic state table. If a match is found, execute the action associated with the rule which generated this dynamic rule, otherwise move to the next rule. A check-state rule does not have selection criterion. If no check-state rule is present in the ruleset, the dynamic rules table is checked at the first keep-state or limit rule.

count: updates counters for all packets that match the rule. The search continues with the next rule.

deny | drop: either word silently discards packets that match this rule.

Additional actions are available. Refer to ipfw(8) for details.

LOG_AMOUNT
When a packet matches a rule with the log keyword, a message will be logged to syslogd(8) with a facility name of SECURITY. Logging only occurs if the number of packets logged for that particular rule does not exceed a specified LOG_AMOUNT. If no LOG_AMOUNT is specified, the limit is taken from the value of net.inet.ip.fw.verbose_limit. A value of zero removes the logging.
Once the limit is reached, logging can be re-enabled by clearing the logging counter or the packet counter for that rule, using `ipfw resetlog`.

Logging is done after all other packet matching conditions have been met, and before performing the final action on the packet. The administrator decides which rules to enable logging on.

**PROTO**
This optional value can be used to specify any protocol name or number found in `/etc/protocols`.

**SRC**
The `from` keyword must be followed by the source address or a keyword that represents the source address. An address can be represented by `any`, `me` (any address configured on an interface on this system), `me6`, (any IPv6 address configured on an interface on this system), or `table` followed by the number of a lookup table which contains a list of addresses. When specifying an IP address, it can be optionally followed by its CIDR mask or subnet mask. For example, `1.2.3.4/25` or `1.2.3.4:255.255.255.128`.

**SRC_PORT**
An optional source port can be specified using the port number or name from `/etc/services`.

**DST**
The `to` keyword must be followed by the destination address or a keyword that represents the destination address. The same keywords and addresses described in the SRC section can be used to describe the destination.

**DST_PORT**
An optional destination port can be specified using the port number or name from `/etc/services`.

**OPTIONS**
Several keywords can follow the source and destination. As the name suggests, OPTIONS are optional. Commonly used options include `in` or `out`, which specify the direction of packet flow, `icmptypes` followed by the type of ICMP message, and `keep-state`. When a `keep-state` rule is matched, the firewall will create a dynamic rule which matches bidirectional traffic between the source and destination addresses and ports using the same protocol.

The dynamic rules facility is vulnerable to resource depletion from a SYN-flood attack which would open a huge number of dynamic rules. To counter this type of attack with IPFW, use `limit`. This option limits the number of simultaneous sessions by checking the open dynamic rules, counting the number of times this rule and IP address combination occurred. If this count is greater than the value specified by `limit`, the packet is discarded.

Dozens of OPTIONS are available. Refer to `ipfw(8)` for a description of each available option.

---

**Example ruleset**

This section demonstrates how to create an example stateful firewall ruleset script named `/etc/ipfw.rules`. In this example, all connection rules use `in` or `out` to clarify the direction. They also use `via` `interface-name` to specify the interface the packet is traveling over.

When first creating or testing a firewall ruleset, consider temporarily setting this tunable:

```
net.inet.ip.fw.default_to_accept="1"
```

This sets the default policy of `ipfw(8)` to be more permissive than the default `deny`.
The firewall script begins by indicating that it is a Bourne shell script and flushes any existing rules. It then creates the `cmd` variable so that `ipfw add` does not have to be typed at the beginning of every rule. It also defines the `pif` variable which represents the name of the interface that is attached to the Internet.

```
#!/bin/sh
Flush out the list before we begin.
ipfw -q -f flush
Set rules command prefix
cmd="ipfw -q add"
pif="dc0" # interface name of NIC attached to Internet
```

The first two rules allow all traffic on the trusted internal interface and on the loopback interface:

```
Change xl0 to LAN NIC interface name
$cmd 00005 allow all from any to any via xl0
No restrictions on Loopback Interface
$cmd 00010 allow all from any to any via lo0
```

The next rule allows the packet through if it matches an existing entry in the dynamic rules table:

```
$cmd 00101 check-state
```

The next set of rules defines which stateful connections internal systems can create to hosts on the Internet:

```
Allow access to public DNS
Replace x.x.x.x with the IP address of a public DNS server
and repeat for each DNS server in /etc/resolv.conf
$cmd 00110 allow tcp from any to x.x.x.x 53 out via $pif setup keep-state
$cmd 00111 allow udp from any to x.x.x.x 53 out via $pif keep-state
```

```
Allow access to ISP's DHCP server for cable/DSL configurations.
Use the first rule and check log for IP address.
Then, uncomment the second rule, input the IP address, and delete the first rule
$cmd 00120 allow log udp from any to any 67 out via $pif keep-state
#$cmd 00120 allow udp from any to x.x.x.x 67 out via $pif keep-state
```

```
Allow outbound HTTP and HTTPS connections
```
The next set of rules controls connections from Internet hosts to the internal network. It starts by denying packets typically associated with attacks and then explicitly allows specific types of connections. All the authorized services that originate from the Internet use limit to prevent flooding.

# Deny all inbound traffic from non-routable reserved address spaces

$cmd 00300 deny all from 192.168.0.0/16 to any in via $pif     #RFC 1918 private IP
$cmd 00301 deny all from 172.16.0.0/12 to any in via $pif      #RFC 1918 private IP
$cmd 00302 deny all from 10.0.0.0/8 to any in via $pif         #RFC 1918 private IP
$cmd 00303 deny all from 127.0.0.0/8 to any in via $pif        #loopback
$cmd 00304 deny all from 0.0.0.0/8 to any in via $pif          #loopback
$cmd 00305 deny all from 169.254.0.0/16 to any in via $pif     #DHCP auto-config
$cmd 00306 deny all from 192.0.2.0/24 to any in via $pif       #reserved for docs
$cmd 00307 deny all from 204.152.64.0/23 to any in via $pif    #Sun cluster interconnect
$cmd 00308 deny all from 224.0.0.0/3 to any in via $pif        #Class D & E multicast

# Deny public pings
$cmd 00310 deny icmp from any to any in via $pif

# Deny ident
$cmd 00315 deny tcp from any to any 113 in via $pif

# Deny all Netbios services.
$cmd 00320 deny tcp from any to any 137 in via $pif
The last rule logs all packets that do not match any of the rules in the ruleset:

```
Everything else is denied and logged
$cmd 00999 deny log all from any to any
```

30.4.4.

**IPFW firewall and NAT**

FreeBSD's IPFW firewall has two implementations of NAT: one being the userland `natd(8)` daemon, and the more recent IPFW's built-in NAT facility also known as in-kernel NAT. Both work in conjunction with IPFW to provide network address translation. This can be used to provide an Internet Connection Sharing solution so that several internal computers can connect to the Internet using a single public IP address.

To do this, the FreeBSD machine connected to the Internet must act as a gateway. This system must have two NICs, where one is connected to the Internet and the other is connected to the internal LAN. Each machine connected to the LAN should be assigned an IP address in the private network space, as defined by `RFC 1918`.

Some additional configuration is needed in order to enable the in-kernel NAT function of IPFW. To enable in-kernel NAT support at boot time, the following must be set in `/etc/rc.conf`:

```
gateway_enable="YES"
firewall_enable="YES"
```

640
When firewall_enable is not set, but firewall_nat_enable is, it will have no effect and do nothing, because the in-kernel NAT implementation is only compatible with IPFW.

When the ruleset contains stateful rules, the positioning of the NAT rule is critical and the skipto action is used. The skipto action requires a rule number so that it knows which rule to jump to. Furthermore, because of the architecture of libalias(3), a library implemented as a kernel module used for the in-kernel NAT facility of IPFW, it is necessary to disable TCP segmentation offloading, or in short TSO. TSO can be disabled on a per network interface basis by using ifconfig(8) or on a system wide basis using sysctl(8). To disable TSO system wide, the following must be set in /etc/sysctl.conf:

```
net.inet.tcp.tso="0"
```

The example below builds upon the firewall ruleset shown in the previous section. It adds some additional entries and modifies some existing rules in order to configure the firewall for in-kernel NAT. It starts by adding some additional variables which represent the rule number to skip to, the keep-state option, and a list of TCP ports which will be used to reduce the number of rules.

```
#!/bin/sh
ipfw -q -f flush
cmd="ipfw -q add"
skip="skipto 1000"
pif=dc0
ks="keep-state"
good_tcpo="22,25,37,53,80,443,110"
```

A NAT instance will also be configured. With in-kernel NAT it is possible to have multiple NAT instances each with their own configuration. Although, for this example only one NAT instance is needed; NAT instance number 1. The configuration takes a few arguments and flags such as:

- `if` which indicates the public interface,
- `same_ports` which takes care that all aliased ports and local port numbers are mapped the same,
- `unreg_only` will result in only unregistered (private) address spaces to be processed by the NAT instance, and
- `reset` which will help to keep a functioning NAT instance even when the public IP address of the IPFW machine changes. For all possible options that can be passed to a single NAT instance configuration consult ipfw(8).

Furthermore, because of the nature of a stateful NATing firewall, it is necessary to allow translated packets to be reinjected in the firewall for further processing, this can be achieved by disabling one_pass behavior at the start of the firewall script.

```
ipfw disable one_pass
```

```
ipfw -q nat 1 config if $pif same_ports unreg_only reset
```

The inbound NAT rule is inserted after the two rules which allow all traffic on the trusted and loopback interfaces and after the reassamble rule but before the check-state rule. It is important that the rule number selected for this NAT rule, in this example 100, is higher than the first three rules and lower than the check-state rule. Furthermore, because of the behavior of in-kernel NAT it is advised to place a reassamble rule just before the first NAT rule and after the rules that allow traffic on trusted interface. Normally, IP fragmentation should not happen, but when dealing with IPSEC/ESP/GRE tunneling traffic it might and the reassmbling of fragments is necessary before handing the complete packet over to the in-kernel NAT engine.
The reassemble rule was not needed with userland natd(8) because the internal workings of the IPFW divert action already takes care of this automatically as also stated in ipfw(8).

The current NAT instance number and NAT rule number does not match with the default NAT instance number and rule number created by rc.firewall which is a script to set up the baked-in default firewall rulesets present in FreeBSD.

$cmd 005 allow all from any to any via xl0  # exclude LAN traffic
$cmd 010 allow all from any to any via lo0  # exclude loopback traffic
$cmd 099 reass all from any to any in       # reassemble inbound packets
$cmd 100 nat 1 ip from any to any in via $pif # NAT any inbound packets
# Allow the packet through if it has an existing entry in the dynamic rules table
$cmd 101 check-state

The outbound rules are modified to replace the allow action with the $skip variable, indicating that rule processing will continue at rule 1000. The seven tcp rules have been replaced by rule 125 as the $good_tcpo variable contains the seven allowed outbound ports.

Remember that IPFW's firewall performance is largely determined by the number of rules present in the ruleset.

# Authorized outbound packets
$cmd 120 $skip udp from any to x.x.x.x 53 out via $pif $ks
$cmd 121 $skip udp from any to x.x.x.x 67 out via $pif $ks
$cmd 125 $skip tcp from any to any $good_tcpo out via $pif setup $ks
$cmd 130 $skip icmp from any to any out via $pif $ks

The inbound rules remain the same, except for the very last rule which removes the via $pif in order to catch both inbound and outbound rules. The NAT rule must follow this last outbound rule, must have a higher number than that last rule, and the rule number must be referenced by the skipto action. In this ruleset, rule number 1000 handles passing all packets to our configured instance for NAT processing. The next rule allows any packet which has undergone NAT processing to pass.

$cmd 999 deny log all from any to any
$cmd 1000 nat 1 ip from any to any out via $pif # skipto location for outbound stateful rules
$cmd 1001 allow ip from any to any

In this example, rules 100, 101, 125, 1000, and 1001 control the address translation of the outbound and inbound packets so that the entries in the dynamic state table always register the private LANIP address.

Consider an internal web browser which initializes a new outbound HTTP session over port 80. When the first outbound packet enters the firewall, it does not match rule 100 because it is headed out rather than in. It passes rule 101 because this is the first packet and it has not been posted to the dynamic state table yet. The packet finally matches rule 125 as it is outbound on an allowed port and has a source IP address from the internal LAN. On matching this rule, two actions take place. First, the keep-state action adds an entry to the dynamic state table and the specified action, skipto rule 1000, is executed. Next, the packet undergoes NAT and is sent out to the Internet. This packet makes its way to the destination web server, where a response packet is generated and sent...
back. This new packet enters the top of the ruleset. It matches rule 100 and has its destination IP address mapped back to the original internal address. It then is processed by the check-state rule, is found in the table as an existing session, and is released to the LAN.

On the inbound side, the ruleset has to deny bad packets and allow only authorized services. A packet which matches an inbound rule is posted to the dynamic state table and the packet is released to the LAN. The packet generated as a response is recognized by the check-state rule as belonging to an existing session. It is then sent to rule 1000 to undergo NAT before being released to the outbound interface.

Transition from userland natd(8) to in-kernel NAT might seem seamless at first but there is a small catch. When using the GENERIC kernel, IPFW will load the libalias.ko kernel module, when firewall_nat_enable is enabled in rc.conf. Although, the loaded module only provides basic NAT functionality, whereas the userland implementation natd(8) has all functionality available without any extra configuration from its userland library. All functionality refers to the following kernel modules that can additionally be loaded when needed besides the standard libalias.ko kernel module:

- alias_cuseeme.ko
- alias_ftp.ko
- alias_bbt.ko
- skinny.ko
- irc.ko
- alias_pptp.ko
- alias_smedia.ko

Using the kld_list directive in rc.conf to mimic the full functionality of the userland implementation. If a custom kernel is used, the full functionality of the userland library can be compiled in, in the kernel, using the option LIBALIAS.

30.4.4.1. Port

The drawback with NAT in general is that the LAN clients are not accessible from the Internet. Clients on the LAN can make outgoing connections to the world but cannot receive incoming ones. This presents a problem if trying to run Internet services on one of the LAN client machines. A simple way around this is to redirect selected Internet ports on the NAT providing machine to a LAN client.

For example, an IRC server runs on client A and a web server runs on client B. For this to work properly, connections received on ports 6667 (IRC) and 80 (HTTP) must be redirected to the respective machines.

With in-kernel NAT all configuration is done in the NAT instance configuration. For a full list of options that an in-kernel NAT instance can use, consult ipfw(8). The IPFW syntax follows the syntax of natd. The syntax for redirect_port is as follows:

```
redirect_port proto targetIP:targetPORT[-targetPORT]
[aliasIP:]aliasPORT[-aliasPORT]
[remoteIP[:remotePORT[-remotePORT]]]
```

To configure the above example setup, the arguments should be:

```
redirect_port tcp 192.168.0.2:6667 6667
redirect_port tcp 192.168.0.3:80 80
```

After adding these arguments to the configuration of NAT instance 1 in the above ruleset, the TCP ports will be port forwarded to the LAN client machines running the IRC and HTTP services.

```
ipfw -q nat 1 config if $pif same_ports unreg_only reset
redirect_port tcp 192.168.0.2:6667 6667
redirect_port tcp 192.168.0.3:80 80
```
Port ranges over individual ports can be indicated with `redirect_port`. For example, `tcp 192.168.0.2:2000-3000 2000-3000` would redirect all connections received on ports 2000 to 3000 to ports 2000 to 3000 on client A.

Address redirection is useful if more than one IP address is available. Each LAN client can be assigned its own external IP address by `ipfw(8)`, which will then rewrite outgoing packets from the LAN clients with the proper external IP address and redirects all traffic incoming on that particular IP address back to the specific LAN client. This is also known as static NAT. For example, if IP addresses 128.1.1.1, 128.1.1.2, and 128.1.1.3 are available, 128.1.1.1 can be used as the `ipfw(8)` machine's external IP address, while 128.1.1.2 and 128.1.1.3 are forwarded back to LAN clients A and B.

The `redirect_address` syntax is as below, where `localIP` is the internal IP address of the LAN client, and `publicIP` the external IP address corresponding to the LAN client.

```
redirect_address localIP publicIP
```

In the example, the arguments would read:

```
redirect_address 192.168.0.2 128.1.1.2
redirect_address 192.168.0.3 128.1.1.3
```

Like `redirect_port`, these arguments are placed in a NAT instance configuration. With address redirection, there is no need for port redirection, as all data received on a particular IP address is redirected.

The external IP addresses on the `ipfw(8)` machine must be active and aliased to the external interface. Refer to `rc.conf(5)` for details.

### Userspace NAT

Let us start with a statement: the userspace NAT implementation: `natd(8)`, has more overhead than in-kernel NAT. For `natd(8)` to translate packets, the packets have to be copied from the kernel to userspace and back which brings in extra overhead that is not present with in-kernel NAT.

要在開機時啟動Userspace的NAT daemon `natd(8)`需在 `/etc/rc.conf` 中做以下最小設定，其中 `natd_interface` 要設成連接到網路的NIC名稱，`rc(8)` script of `natd(8)` 會自動檢查是否使用動態IP位址，並且自行設定並處理。

```
gateway_enable="YES"
natd_enable="YES"
natd_interface="rl0"
```

In general, the above ruleset as explained for in-kernel NAT can also be used together with `natd(8)`. The only exceptions are the configuration of the in-kernel NAT instance (`ipfw -q nat 1 config …`) not being applicable any more, rule number 100 and 1000 will have to change sligthly as below, and reassemble rule 99 is not needed anymore as the `divert` action is used which covers fragmentation.

```
$cmd 100 divert natd ip from any to any in via $pif
$cmd 1000 divert natd ip from any to any out via $pif
```
To configure port or address redirection, a similar syntax as with in-kernel NAT is used. Although, now, instead of specifying the configuration in our ruleset script like with in-kernel NAT, configuration of `natd(8)` is best done in a configuration file. To do this, an extra flag must be passed via `/etc/rc.conf` which specifies the path of the configuration file.

```
natd_flags="-f /etc/natd.conf"
```

The specified file must contain a list of configuration options, one per line. For more information about the configuration file and possible variables, consult `natd(8)`. Below are two example entries, one per line:

```
redirect_port tcp 192.168.0.2:6667 6667
redirect_address 192.168.0.3 128.1.1.3
```

IPFW command `ipfw` can be used to make manual, single rule additions or deletions to the active firewall while it is running. The problem with using this method is that all the changes are lost when the system reboots. It is recommended to instead write all the rules in a file and to use that file to load the rules at boot time and to replace the currently running firewall rules whenever that file changes.

`ipfw` is a useful way to display the running firewall rules to the console screen. The IPFW accounting facility dynamically creates a counter for each rule that counts each packet that matches the rule. During the process of testing a rule, listing the rule with its counter is one way to determine if the rule is functioning as expected.

To list all the running rules in sequence:

```
ipfw list
```

To list all the running rules with a time stamp of when the last time the rule was matched:

```
ipfw -t list
```

The next example lists accounting information and the packet count for matched rules along with the rules themselves. The first column is the rule number, followed by the number of matched packets and bytes, followed by the rule itself.

```
ipfw -a list
```

To list dynamic rules in addition to static rules:

```
ipfw -d list
```

To also show the expired dynamic rules:

```
ipfw -d -e list
```
To zero the counters:

```
ipfw zero
```

To zero the counters for just the rule with number `NUM`:

```
ipfw zero NUM
```

Even with the logging facility enabled, IPFW will not generate any rule logging on its own. The firewall administrator decides which rules in the ruleset will be logged, and adds the `log` keyword to those rules. Normally only deny rules are logged. It is customary to duplicate the "ipfw default deny everything" rule with the `log` keyword included as the last rule in the ruleset. This way, it is possible to see all the packets that did not match any of the rules in the ruleset.

Logging is a two-edged sword. If one is not careful, an overabundance of log data or a DoS attack can fill the disk with log files. Log messages are not only written to syslogd, but also are displayed on the root console screen and soon become annoying.

The `IPFIREWALL_VERBOSE_LIMIT=5` kernel option limits the number of consecutive messages sent to `syslogd(8)`, concerning the packet matching of a given rule. When this option is enabled in the kernel, the number of consecutive messages concerning a particular rule is capped at the number specified. There is nothing to be gained from 200 identical log messages. With this option set to five, five consecutive messages concerning a particular rule would be logged to syslogd and the remainder identical consecutive messages would be counted and posted to syslogd with a phrase like the following:

```
last message repeated 45 times
```

All logged packets messages are written by default to `/var/log/security`, which is defined in `/etc/syslog.conf`.

### 30.4.5.2. 建立规则 Script

Most experienced IPFW users create a file containing the rules and code them in a manner compatible with running them as a script. The major benefit of doing this is the firewall rules can be refreshed in mass without the need of rebooting the system to activate them. This method is convenient in testing new rules as the procedure can be executed as many times as needed. Being a script, symbolic substitution can be used for frequently used values to be substituted into multiple rules.

This example script is compatible with the syntax used by the `sh(1)`, `csh(1)`, and `tcsh(1)` shells.

Symbolic substitution fields are prefixed with a dollar sign ($). Symbolic fields do not have the $ prefix. The value to populate the symbolic field must be enclosed in double quotes (".

Start the rules file like this:

```
############### start of example ipfw rules script #############
#
ipfw -q -f flush # Delete all rules
Set defaults
oif="tun0" # out interface
```
The rules are not important as the focus of this example is how the symbolic substitution fields are populated.

If the above example was in `/etc/ipfw.rules`, the rules could be reloaded by the following command:

```
sh /etc/ipfw.rules
```

`/etc/ipfw.rules` can be located anywhere and the file can have any name. The same thing could be accomplished by running these commands by hand:

```
ipfw -q -f flush
ipfw -q add check-state
ipfw -q add deny all from any to any frag
ipfw -q add deny tcp from any to any established
ipfw -q add allow tcp from any to any 80 out via tun0 setup keep-state
ipfw -q add allow tcp from any to 192.0.2.11 53 out via tun0 setup keep-state
ipfw -q add 00611 allow udp from any to 192.0.2.11 53 out via tun0 keep-state
```

### 30.4.6. IPFW

Core Options

In order to statically compile IPFW support into a custom kernel, refer to the instructions in the FreeBSD kernel. The following options are available for the custom kernel configuration file:

- `options    IPFIREWALL`       # enables IPFW
- `options    IPFIREWALL_VERBOSE`   # enables logging for rules with log keyword to syslogd(8)
- `options    IPFIREWALL_VERBOSE_LIMIT=5`   # limits number of logged packets per-entry
- `options    IPFIREWALL_DEFAULT_TO_ACCEPT` # sets default policy to pass what is not explicitly denied
- `options    IPFIREWALL_NAT`       # enables in-kernel NAT support
- `options    IPFIREWALL_NAT64`     # enables in-kernel NAT64 support
- `options    IPFIREWALL_NPTV6`     # enables in-kernel IPv6 NPT support
- `options    IPFIREWALL_PMOD`      # enables protocols modification module support
IPFW can be loaded as a kernel module: options above are built by default as modules or can be set at runtime using tunables.

30.5. IPFILTER (IPF)

IPFILTER, or IPF, is a platform- and open-source firewall, which has been ported to various operating systems, including FreeBSD, NetBSD, OpenBSD, and Solaris™.

IPFILTER is a kernel-side firewall and NAT mechanism can be controlled and monitored by Userland programs. Firewall rules can use ipf to set or delete, and NAT rules can use ipnat to set or delete. You can use ipfstat to list IPFILTER in the core section execution period statistics information, and you can use ipmon to record IPFILTER operation in the system log.

IPF was originally written with "last match wins" rule handling logic, and could only use stateless rules. Later, IPF was strengthened to support quick (quick) and keep state (keep state) options.


Due to FreeBSD also supporting IPF, special attention is given to this chapter to introduce it. Here are a few rules with quick (quick) and keep state (keep state) options as examples.

30.5.1. Enabling IPF

IPF is included in the basic FreeBSD install as a kernel loadable module, meaning that a custom kernel is not needed in order to enable IPF.

For users who prefer to statically compile IPF support into a custom kernel, refer to the instructions in FreeBSD kernel setup. The following kernel options are available:

- `options IPFILTER` enables support for IPFILTER
- `options IPFILTER_LOG` enables IPF logging using the ipl packet logging pseudo-device for every rule that has the `log` keyword
- `options IPFILTER_LOOKUP` enables IP pools in order to speed up IP lookups, and
- `options IPFILTER_DEFAULT_BLOCK` changes the default behavior so that any packet not matching a firewall pass rule gets blocked.

To configure the system to enable IPF at boot time, add the following entries to `/etc/rc.conf`. These entries will also enable logging and default pass all.

```
ipfilter_enable="YES" # Start ipf firewall
ipfilter_rules="/etc/ipf.rules" # loads rules definition text file
ipmon_enable="YES" # Start IP monitor log
ipmon_flags="-Ds" # D = start as daemon
s = log to syslog
v = log tcp window, ack, seq
```
n = map IP & port to names

If NAT functionality is needed, also add these lines:

- gateway_enable="YES"              # Enable as LAN gateway
- ipnat_enable="YES"                # Start ipnat function
- ipnat_rules="/etc/ipnat.rules"    # rules definition file for ipnat

Then, to start IPF now:

# service ipfilter start

To load the firewall rules, specify the name of the ruleset file using `ipf`. The following command can be used to replace the currently running firewall rules:

# ipf -Fa -f /etc/ipf.rules

where `-Fa` flushes all the internal rules tables and `-f` specifies the file containing the rules to load. This provides the ability to make changes to a custom ruleset and update the running firewall with a fresh copy of the rules without having to reboot the system. This method is convenient for testing new rules as the procedure can be executed as many times as needed. Refer to `ipf(8)` for details on the other flags available with this command.

30.5.2. IPF

This section describes the IPF rule syntax used to create stateful rules. When creating rules, keep in mind that unless the `quick` keyword appears in a rule, every rule is read in order, with the last matching rule being the one that is applied. This means that even if the first rule to match a packet is a `pass`, if there is a later matching rule that is a `block`, the packet will be dropped. Sample rulesets can be found in `/usr/shared/examples/ipfilter`.

When creating rules, a `#` character is used to mark the start of a comment and may appear at the end of a rule, to explain that rule's function, or on its own line. Any blank lines are ignored.

The keywords which are used in rules must be written in a specific order, from left to right. Some keywords are mandatory while others are optional. Some keywords have sub-options which may be keywords themselves and also include more sub-options. The keyword order is as follows, where the words shown in uppercase represent a variable and the words shown in lowercase must precede the variable that follows it:

```
ACTION DIRECTION OPTIONS proto PROTO_TYPE from SRC_ADDR SRC_PORT to DST_ADDR
DST_PORT TCP_FLAG|ICMP_TYPE keep state STATE
```

This section describes each of these keywords and their options. It is not an exhaustive list of every possible option. Refer to `ipf(5)` for a complete description of the rule syntax that can be used when creating IPF rules and examples for using each keyword.

**ACTION**

The action keyword indicates what to do with the packet if it matches that rule. Every rule must have an action. The following actions are recognized:

- `block`: drops the packet.
pass: allows the packet.

log: generates a log record.

count: counts the number of packets and bytes which can provide an indication of how often a rule is used.

auth: queues the packet for further processing by another program.

call: provides access to functions built into IPF that allow more complex actions.

decapsulate: removes any headers in order to process the contents of the packet.

DIRECTION

Next, each rule must explicitly state the direction of traffic using one of these keywords:
in: the rule is applied against an inbound packet.

out: the rule is applied against an outbound packet.

all: the rule applies to either direction.

If the system has multiple interfaces, the interface can be specified along with the direction. An example would be in on fxp0.

OPTIONS

Options are optional. However, if multiple options are specified, they must be used in the order shown here.

log: when performing the specified ACTION, the contents of the packet's headers will be written to the ipl(4) packet log pseudo-device.

quick: if a packet matches this rule, the ACTION specified by the rule occurs and no further processing of any following rules will occur for this packet.

on: must be followed by the interface name as displayed by ifconfig(8). The rule will only match if the packet is going through the specified interface in the specified direction.

When using the log keyword, the following qualifiers may be used in this order:

body: indicates that the first 128 bytes of the packet contents will be logged after the headers.

first: if the log keyword is being used in conjunction with a keep state option, this option is recommended so that only the triggering packet is logged and not every packet which matches the stateful connection.

Additional options are available to specify error return messages. Refer to ipf(5) for more details.

PROTO_TYPE

The protocol type is optional. However, it is mandatory if the rule needs to specify a SRC_PORT or a DST_PORT as it defines the type of protocol. When specifying the type of protocol, use the proto keyword followed by either a protocol number or name from /etc/protocols. Example protocol names include tcp, udp, or icmp. If PROTO_TYPE is specified but no SRC_PORT or DST_PORT is specified, all port numbers for that protocol will match that rule.

SRC_ADDR

The from keyword is mandatory and is followed by a keyword which represents the source of the packet. The source can be a hostname, an IP address followed by the CIDR mask, an address pool, or the keyword all. Refer to ipf(5) for examples.

There is no way to match ranges of IP addresses which do not express themselves easily using the dotted numeric form / mask-length notation. The net-mgmt/ipcalc package or port may be used.
used to ease the calculation of the CIDR mask. Additional information is available at the utility's web page: http://jodies.de/ipcalc.

**SRC_PORT**

The port number of the source is optional. However, if it is used, it requires PROTO_TYPE to be first defined in the rule. The port number must also be preceded by the `proto` keyword.

A number of different comparison operators are supported: `=` (equal to), `!=` (not equal to), `<` (less than), `>` (greater than), `⇐` (less than or equal to), and `>=` (greater than or equal to).

To specify port ranges, place the two port numbers between `<>` (less than and greater than), `>` (greater than and less than), or `:` (greater than or equal to and less than or equal to).

**DST_ADDR**

The `to` keyword is mandatory and is followed by a keyword which represents the destination of the packet. Similar to SRC_ADDR, it can be a hostname, an IP address followed by the CIDR mask, an address pool, or the keyword `all`.

**DST_PORT**

Similar to SRC_PORT, the port number of the destination is optional. However, if it is used, it requires PROTO_TYPE to be first defined in the rule. The port number must also be preceded by the `proto` keyword.

**TCP_FLAG|ICMP_TYPE**

If `tcp` is specified as the PROTO_TYPE, flags can be specified as letters, where each letter represents one of the possible TCP flags used to determine the state of a connection. Possible values are: `S` (SYN), `A` (ACK), `P` (PSH), `F` (FIN), `U` (URG), `R` (RST), `C` (CWN), and `E` (ECN).

If `icmp` is specified as the PROTO_TYPE, the ICMP type to match can be specified. Refer to `ipf(5)` for the allowable types.

**STATE**

If a `pass` rule contains `keep state`, IPF will add an entry to its dynamic state table and allow subsequent packets that match the connection. IPF can track state for TCP, UDP, and ICMP sessions. Any packet that IPF can be certain is part of an active session, even if it is a different protocol, will be allowed.

In IPF, packets destined to go out through the interface connected to the public Internet are first checked against the dynamic state table. If the packet matches the next expected packet comprising an active session conversation, it exits the firewall and the state of the session conversation flow is updated in the dynamic state table. Packets that do not belong to an already active session are checked against the outbound ruleset. Packets coming in from the interface connected to the public Internet are first checked against the dynamic state table. If the packet matches the next expected packet comprising an active session, it exits the firewall and the state of the session conversation flow is updated in the dynamic state table. Packets that do not belong to an already active session are checked against the inbound ruleset.

Several keywords can be added after `keep state`. If used, these keywords set various options that control stateful filtering, such as setting connection limits or connection age. Refer to `ipf(5)` for the list of available options and their descriptions.

### 30.5.3.範例規則集

This section demonstrates how to create an example ruleset which only allows services matching `pass` rules and blocks all others.

FreeBSD uses the loopback interface (`lo0`) and the IP address `127.0.0.1` for internal communication.

The firewall ruleset must contain rules to allow free movement of these internally used packets:

```plaintext
no restrictions on loopback interface
```
The public interface connected to the Internet is used to authorize and control access of all outbound and inbound connections. If one or more interfaces are cabled to private networks, those internal interfaces may require rules to allow packets originating from the LAN to flow between the internal networks or to the interface attached to the Internet. The ruleset should be organized into three major sections: any trusted internal interfaces, outbound connections through the public interface, and inbound connections through the public interface.

These two rules allow all traffic to pass through a trusted LAN interface named `xl0`:

```
no restrictions on inside LAN interface for private network
pass out quick on xl0 all
pass in quick on xl0 all
```

The rules for the public interface's outbound and inbound sections should have the most frequently matched rules placed before less commonly matched rules, with the last rule in the section blocking and logging all packets for that interface and direction.

This set of rules defines the outbound section of the public interface named `dc0`. These rules keep state and identify the specific services that internal systems are authorized for public Internet access. All the rules use `quick` and specify the appropriate port numbers and, where applicable, destination addresses.

```
interface facing Internet (outbound)
Matches session start requests originating from or behind the firewall, destined for the Internet.
Allow outbound access to public DNS servers.
Replace x.x.x.x with address listed in /etc/resolv.conf.
Repeat for each DNS server.
pass out quick on dc0 proto tcp from any to x.x.x.x port = 53 flags S keep state
pass out quick on dc0 proto udp from any to xxx port = 53 keep state

Allow access to ISP's specified DHCP server for cable or DSL networks.
Use the first rule, then check log for the IP address of DHCP server.
Then, uncomment the second rule, replace z.z.z.z with the IP address,
and comment out the first rule
pass out log quick on dc0 proto udp from any to any port = 67 keep state
#pass out quick on dc0 proto udp from any to z.z.z.z port = 67 keep state

Allow HTTP and HTTPS
pass out quick on dc0 proto tcp from any to any port = 80 flags S keep state
pass out quick on dc0 proto tcp from any to any port = 443 flags S keep state

Allow email
```
pass out quick on dc0 proto tcp from any to any port = 110 flags S keep state
pass out quick on dc0 proto tcp from any to any port = 25 flags S keep state
# Allow NTP
pass out quick on dc0 proto tcp from any to any port = 37 flags S keep state
# Allow FTP
pass out quick on dc0 proto tcp from any to any port = 21 flags S keep state
# Allow SSH
pass out quick on dc0 proto tcp from any to any port = 22 flags S keep state
# Allow ping
pass out quick on dc0 proto icmp from any to any icmp-type 8 keep state
# Block and log everything else
block out log first quick on dc0 all

This example of the rules in the inbound section of the public interface blocks all undesirable packets first. This reduces the number of packets that are logged by the last rule.

# interface facing Internet (inbound)
# Block all inbound traffic from non-routable or reserved address spaces
block in quick on dc0 from 192.168.0.0/16 to any    #RFC 1918 private IP
block in quick on dc0 from 172.16.0.0/12 to any     #RFC 1918 private IP
block in quick on dc0 from 10.0.0.0/8 to any        #RFC 1918 private IP
block in quick on dc0 from 127.0.0.0/8 to any       #loopback
block in quick on dc0 from 0.0.0.0/8 to any         #loopback
block in quick on dc0 from 169.254.0.0/16 to any    #DHCP auto-config
block in quick on dc0 from 192.0.2.0/24 to any      #reserved for docs
block in quick on dc0 from 204.152.64.0/23 to any   #Sun cluster interconnect
block in quick on dc0 from 224.0.0.0/3 to any       #Class D & E multicast
# Block fragments and too short tcp packets
block in quick on dc0 all with frags
block in quick on dc0 proto tcp all with short
# block source routed packets
block in quick on dc0 all with opt lsrr
block in quick on dc0 all with opt ssrr
# Block OS fingerprint attempts and log first occurrence
block in log first quick on dc0 proto tcp from any to any flags FUP

653
# Block anything with special options

block in quick on dc0 all with ipopts

# Block public pings and ident

block in quick on dc0 proto icmp all icmp-type 8

block in quick on dc0 proto tcp from any to any port = 113

# Block incoming Netbios services

block in log first quick on dc0 proto tcp/udp from any to any port = 137

block in log first quick on dc0 proto tcp/udp from any to any port = 138

block in log first quick on dc0 proto tcp/udp from any to any port = 139

block in log first quick on dc0 proto tcp/udp from any to any port = 81

Any time there are logged messages on a rule with the log first option, run ipfstat -hio to evaluate how many times the rule has been matched. A large number of matches may indicate that the system is under attack.

The rest of the rules in the inbound section define which connections are allowed to be initiated from the Internet. The last rule denies all connections which were not explicitly allowed by previous rules in this section.

# Allow traffic in from ISP's DHCP server. Replace z.z.z.z with the same IP address used in the outbound section.

pass in quick on dc0 proto udp from z.z.z.z to any port = 68 keep state

# Allow public connections to specified internal web server

pass in quick on dc0 proto tcp from any to x.x.x.x port = 80 flags S keep state

# Block and log only first occurrence of all remaining traffic.

block in log first quick on dc0 all

30.5.4.

設定

NAT

To enable NAT, add these statements to /etc/rc.conf and specify the name of the file containing the NAT rules:

gateway_enable="YES"

ipnat_enable="YES"

ipnat_rules="/etc/ipnat.rules"

NAT rules are flexible and can accomplish many different things to fit the needs of both commercial and home users. The rule syntax presented here has been simplified to demonstrate common usage. For a complete rule syntax description, refer to ipnat(5).

The basic syntax for a NAT rule is as follows, where map starts the rule and IF should be replaced with the name of the external interface:
The LAN_IP_RANGE is the range of IP addresses used by internal clients. Usually, it is a private address range such as 192.168.1.0/24. The PUBLIC_ADDRESS can either be the static external IP address or the keyword 0/32 which represents the IP address assigned to IF.

In IPF, when a packet arrives at the firewall from the LAN with a public destination, it first passes through the outbound rules of the firewall ruleset. Then, the packet is passed to the NAT ruleset which is read from the top down, where the first matching rule wins. IPF tests each NAT rule against the packet's interface name and source IP address. When a packet's interface name matches a NAT rule, the packet's source IP address in the private LAN is checked to see if it falls within the IP address range specified in LAN_IP_RANGE. On a match, the packet has its source IP address rewritten with the public IP address specified by PUBLIC_ADDRESS. IPF posts an entry in its internal NAT table so that when the packet returns from the Internet, it can be mapped back to its original private IP address before being passed to the firewall rules for further processing.

For networks that have large numbers of internal systems or multiple subnets, the process of funneling every private IP address into a single public IP address becomes a resource problem. Two methods are available to relieve this issue.

The first method is to assign a range of ports to use as source ports. By adding the portmap keyword, NAT can be directed to only use source ports in the specified range:

```
map dc0 192.168.1.0/24 -> 0/32 portmap tcp/udp 20000:60000
```

Alternately, use the auto keyword which tells NAT to determine the ports that are available for use:

```
map dc0 192.168.1.0/24 -> 0/32 portmap tcp/udp auto
```

The second method is to use a pool of public addresses. This is useful when there are too many LAN addresses to fit into a single public address and a block of public IP addresses is available. These public addresses can be used as a pool from which NAT selects an IP address as a packet's address is mapped on its way out.

The range of public IP addresses can be specified using a netmask or CIDR notation. These two rules are equivalent:

```
map dc0 192.168.1.0/24 -> 204.134.75.0/255.255.255.0
map dc0 192.168.1.0/24 -> 204.134.75.0/24
```

A common practice is to have a publically accessible web server or mail server segregated to an internal network segment. The traffic from these servers still has to undergo NAT, but port redirection is needed to direct inbound traffic to the correct server. For example, to map a web server using the internal address 10.0.10.25 to its public IP address of 20.20.20.5, use this rule:

```
rdr dc0 20.20.20.5/32 port 80 -> 10.0.10.25 port 80
```

If it is the only web server, this rule would also work as it redirects all external HTTP requests to 10.0.10.25:

```
rdr dc0 0.0.0.0/0 port 80 -> 10.0.10.25 port 80
```
IPF has a built-in FTP proxy which can be used with NAT. It monitors all outbound traffic for active or passive FTP connection requests and dynamically creates temporary filter rules containing the port number used by the FTP data channel. This eliminates the need to open large ranges of high-order ports for FTP connections.

In this example, the first rule calls the proxy for outbound FTP traffic from the internal LAN. The second rule passes the FTP traffic from the firewall to the Internet, and the third rule handles all non-FTP traffic from the internal LAN:

```
map dc0 10.0.10.0/29 -> 0/32 proxy port 21 ftp/tcp
map dc0 0.0.0.0/0 -> 0/32 proxy port 21 ftp/tcp
map dc0 10.0.10.0/29 -> 0/32
```

The FTP map rules go before the NAT rule so that when a packet matches an FTP rule, the FTP proxy creates temporary filter rules to let the FTP session packets pass and undergo NAT. All LAN packets that are not FTP will not match the FTP rules but will undergo NAT if they match the third rule.

Without the FTP proxy, the following firewall rules would instead be needed. Note that without the proxy, all ports above 1024 need to be allowed:

```
Allow out LAN PC client FTP to public Internet
Active and passive modes
pass out quick on rl0 proto tcp from any to any port = 21 flags S keep state
Allow out passive mode data channel high order port numbers
pass out quick on rl0 proto tcp from any to any port > 1024 flags S keep state
Active mode let data channel in from FTP server
pass in quick on rl0 proto tcp from any to any port = 20 flags S keep state
```

Whenever the file containing the NAT rules is edited, run `ipnat` with `-CF` to delete the current NAT rules and flush the contents of the dynamic translation table. Include `-f` and specify the name of the NAT ruleset to load:

```
ipnat -CF -f /etc/ipnat.rules
```

To display the NAT statistics:

```
ipnat -s
```

To list the NAT table's current mappings:

```
ipnat -l
```

To turn verbose mode on and display information relating to rule processing and active rules and table entries:
IP F includes `ipfstat(8)` which can be used to retrieve and display statistics which are gathered as packets match rules as they go through the firewall. Statistics are accumulated since the firewall was last started or since the last time they were reset to zero using `ipf -Z`.

The default `ipfstat` output looks like this:

```
input packets: blocked 99286 passed 1255609 nomatch 14686 counted 0
output packets: blocked 4200 passed 1284345 nomatch 14687 counted 0
input packets logged: blocked 99286 passed 0
output packets logged: blocked 0 passed 0
packets logged: input 0 output 0
log failures: input 3898 output 0
fragment state (in): kept 0 lost 0
fragment state (out): kept 0 lost 0
packet state (in): kept 169364 lost 0
packet state (out): kept 431395 lost 0
ICMP replies: 0 TCP RSTs sent: 0
Result cache hits (in): 1215208 (out): 1098963
IN Pullups succeeded: 2 failed: 0
OUT Pullups succeeded: 0 failed: 0
Fastroute successes: 0 failures: 0
TCP cksum fails (in): 0 (out): 0
Packet log flags set:
```

Several options are available. When supplied with either `-i` for inbound or `-o` for outbound, the command will retrieve and display the appropriate list of filter rules currently installed and in use by the kernel. To also see the rule numbers, include `-n`. For example, `ipfstat -on` displays the outbound rules table with rule numbers:

```
@1 pass out on xl0 from any to any
@2 block out on dc0 from any to any
@3 pass out quick on dc0 proto tcp/udp from any to any keep state
```

Include `-h` to prefix each rule with a count of how many times the rule was matched. For example, `ipfstat -oh` displays the outbound internal rules table, prefixing each rule with its usage count:

```
2451423 pass out on xl0 from any to any
354727 block out on dc0 from any to any
430918 pass out quick on dc0 proto tcp/udp from any to any keep state
```

To display the state table in a format similar to `top(1)`, use `ipfstat -t`. When the firewall is under
...
Do not forget to edit /etc/newsyslog.conf to rotate the new log file.

Messages generated by ipmon consist of data fields separated by white space. Fields common to all messages are:

1. The date of packet receipt.
2. The time of packet receipt. This is in the form HH:MM:SS.F, for hours, minutes, seconds, and fractions of a second.
3. The name of the interface that processed the packet.
4. The group and rule number of the rule in the format @0:17.
5. The action: p for passed, b for blocked, S for a short packet, n did not match any rules, and L for a log rule.
6. The addresses written as three fields: the source address and port separated by a comma, the symbol, and the destination address and port. For example: 209.53.17.22,80 → 198.73.220.17,1722.
7. PR followed by the protocol name or number: for example, PR tcp.
8. len followed by the header length and total length of the packet: for example, len 20 40.

If the packet is a TCP packet, there will be an additional field starting with a hyphen followed by letters corresponding to any flags that were set. Refer to ipf(5) for a list of letters and their flags.

If the packet is an ICMP packet, there will be two fields at the end: the first always being "icmp" and the next being the ICMP message and sub-message type, separated by a slash. For example: icmp 3/3 for a port unreachable message.

30.6. Blacklistd

Blacklistd is a daemon listening to sockets to receive notifications from other daemons about connection attempts that failed or were successful. It is most widely used in blocking too many connection attempts on open ports. A prime example is SSH running on the internet getting a lot of requests from bots or scripts trying to guess passwords and gain access. Using blacklistd, the daemon can notify the firewall to create a filter rule to block excessive connection attempts from a single source after a number of tries. Blacklistd was first developed on NetBSD and appeared there in version 7. FreeBSD 11 imported blacklistd from NetBSD.

This chapter describes how to set up blacklistd, configure it, and provides examples on how to use it. Readers should be familiar with basic firewall concepts like rules. For details, refer to the firewall chapter. PF is used in the examples, but other firewalls available on FreeBSD should be able to work with blacklistd, too.

30.6.1. 開啟 Blacklistd

The main configuration for blacklistd is stored in blacklistd.conf(5). Various command line options are also available to change blacklistd's run-time behavior. Persistent configuration across reboots should be stored in /etc/blacklistd.conf. To enable the daemon during system boot, add a blacklistd_enable line to /etc/rc.conf like this:

```
sysrc blacklistd_enable=yes
```

To start the service manually, run this command:

```
service blacklistd start
```
30.6.2.1. Local rules

An example blacklistd.conf entry for a local rule looks like this:

```
[local]
ssh stream * * * 3 24h
```

All rules that follow the `[local]` section are treated as local rules (which is the default), applying to the local machine. When a `[remote]` section is encountered, all rules that follow it are handled as remote machine rules.

Seven fields define a rule separated by either tabs or spaces. The first four fields identify the traffic that should be blacklisted. The three fields that follow define blacklistd's behavior. Wildcards are denoted as asterisks (`*`), matching anything in this field. The first field defines the location. In local rules, these are the network ports. The syntax for the location field is as follows:

```
[address|interface][/mask][:port]
```

Addresses can be specified as IPv4 in numeric format or IPv6 in square brackets. An interface name like `em0` can also be used.

The socket type is defined by the second field. TCP sockets are of type `stream`, whereas UDP is denoted as `dgram`. The example above uses TCP, since SSH is using that protocol.

A protocol can be used in the third field of a blacklistd rule. The following protocols can be used:
tcp, udp, tcp6, udp6, or numeric. A wildcard, like in the example, is typically used to match all protocols unless there is a reason to distinguish traffic by a certain protocol.

In the fourth field, the effective user or owner of the daemon process that is reporting the event is defined. The username or UID can be used here, as well as a wildcard (see example rule above).

The packet filter rule name is declared by the fifth field, which starts the behavior part of the rule. By default, blacklistd puts all blocks under a pf anchor called `blacklistd` in `pf.conf` like this:

```
anchor "blacklistd/*" in on $ext_if
block in
```

For separate blacklists, an anchor name can be used in this field. In other cases, the wildcard will suffice. When a name starts with a hyphen (`-`) it means that an anchor with the default rule name prepended should be used. A modified example from the above using the hyphen would look like this:

```
ssh stream * * -ssh 3 24h
```

With such a rule, any new blacklist rules are added to an anchor called `blacklistd-ssh`.

To block whole subnets for a single rule violation, a `/` in the rule name can be used. This causes the...
remaining portion of the name to be interpreted as the mask to be applied to the address specified in the rule. For example, this rule would block every address adjoining /24.

22              stream  tcp       *               */24    3       24h

It is important to specify the proper protocol here. IPv4 and IPv6 treat /24 differently, that is the reason why * cannot be used in the third field for this rule.

This rule defines that if any one host in that network is misbehaving, everything else on that network will be blocked, too.

The sixth field, called nfail, sets the number of login failures required to blacklist the remote IP in question. When a wildcard is used at this position, it means that blocks will never happen. In the example rule above, a limit of three is defined meaning that after three attempts to log into SSH on one connection, the IP is blocked.

The last field in a blacklistd rule definition specifies how long a host is blacklisted. The default unit is seconds, but suffixes like m, h, and d can also be specified for minutes, hours, and days, respectively.

The example rule in its entirety means that after three times authenticating to SSH will result in a new PF block rule for that host. Rule matches are performed by first checking local rules one after another, from most specific to least specific. When a match occurs, the remote rules are applied and the name, nfail, and disable fields are changed by the remote rule that matched.

30.6.2.2. 远端规则

Remote rules are used to specify how blacklistd changes its behavior depending on the remote host currently being evaluated. Each field in a remote rule is the same as in a local rule. The only difference is in the way blacklistd is using them. To explain it, this example rule is used:

[remote] 203.0.113.128/25 *      *       *               =/25    =       48h

The address field can be an IP address (either v4 or v6), a port or both. This allows setting special rules for a specific remote address range like in this example. The fields for type, protocol and owner are identically interpreted as in the local rule.

The name fields is different though: the equal sign (=) in a remote rule tells blacklistd to use the value from the matching local rule. It means that the firewall rule entry is taken and the /25 prefix (a netmask of 255.255.255.128) is added. When a connection from that address range is blacklisted, the entire subnet is affected. A PF anchor name can also be used here, in which case blacklistd will add rules for this address block to the anchor of that name. The default table is used when a wildcard is specified.

A custom number of failures in the nfail column can be defined for an address. This is useful for exceptions to a specific rule, to maybe allow someone a less strict application of rules or a bit more leniency in login tries. Blocking is disabled when an asterisk is used in this sixth field.

Remote rules allow a stricter enforcement of limits on attempts to log in compared to attempts coming from a local network like an office.

30.6.3. 黑listd 客戶端設定

There are a few software packages in FreeBSD that can utilize blacklistd's functionality. The two most prominent ones are ftpd(8) and sshd(8) to block excessive connection attempts. To activate blacklistd in the SSH daemon, add the following line to /etc/ssh/sshd_config:

661
UseBlacklist yes

接著重新啟動sshd來使變更生效。

Blacklisting for ftppd(8) is enabled using -B, either in /etc/inetd.conf or as a flag in /etc/rc.conf like this:

ftpd_flags=-B

That is all that is needed to make these programs talk to blacklistd.

30.6.4. Blacklistd

Blacklistd provides the user with a management utility called blacklistctl(8). It displays blocked addresses and networks that are blacklisted by the rules defined in blacklistd.conf(5). To see the list of currently blocked hosts, use dump combined with -b like this.

```
blacklistctl dump -b
```

address/ma:port  id  nfail   last access
213.0.123.128/25:22  OK      6/3     2019/06/08 14:30:19

This example shows that there were 6 out of three permitted attempts on port 22 coming from the address range 213.0.123.128/25. There are more attempts listed than are allowed because SSH allows a client to try multiple logins on a single TCP connection. A connection that is currently going on is not stopped by blacklistd. The last connection attempt is listed in the last access column of the output.

To see the remaining time that this host will be on the blacklist, add -r to the previous command.

```
blacklistctl dump -br
```

address/ma:port  id  nfail   remaining time
213.0.123.128/25:22  OK      6/3     36s

In this example, there are 36s seconds left until this host will not be blocked any more.

30.6.5. 除去封鎖清單

Sometimes it is necessary to remove a host from the block list before the remaining time expires. Unfortunately, there is no functionality in blacklistd to do that. However, it is possible to remove the address from the PF table using pfctl. For each blocked port, there is a child anchor inside the blacklistd anchor defined in /etc/pf.conf. For example, if there is a child anchor for blocking port 22 it is called blacklistd/22. There is a table inside that child anchor that contains the blocked addresses. This table is called port followed by the port number. In this example, it would be called port22. With that information at hand, it is now possible to use pfctl(8) to display all addresses listed like this:

```
pfctl -a blacklistd/22 -t port22 -T show
```

...
After identifying the address to be unblocked from the list, the following command removes it from the list:

```
pfctl -a blacklistd/22 -T delete 213.0.123.128/25
```

The address is now removed from PF, but will still show up in the blacklistctl list, since it does not know about any changes made in PF. The entry in blacklistd's database will eventually expire and be removed from its output eventually. The entry will be added again if the host is matching one of the block rules in blacklistd again.
Chapter 31. 進階網路設定

31.1. 概述

This chapter covers a number of advanced networking topics.

- The basics of gateways and routes.
- How to set up USB tethering.
- How to set up IEEE™ 802.11 and Bluetooth™ devices.
- How to make FreeBSD act as a bridge.
- How to set up network PXE booting.
- How to set up IPv6 on a FreeBSD machine.
- 如何在FreeBSD上設定多個VLAN。
- Configure bluetooth headset.

In order to read this chapter, you need:

- Understand the basics of the /etc/rc scripts.
- 熟悉基本網路術語。
- Know how to configure and install a new FreeBSD kernel (設定FreeBSD核心).
- 了解如何安装其他第三方軟體 (安裝應用程式: 套件與Port)。

31.2. 路由

Routing is the mechanism that allows a system to find the network path to another system. A route is a defined pair of addresses which represent the “destination” and a “gateway”. The route indicates that when trying to get to the specified destination, send the packets through the specified gateway. There are three types of destinations: individual hosts, subnets, and “default”. The “default route” is used if no other routes apply. There are also three types of gateways: individual hosts, interfaces, also called links, and Ethernet hardware (MAC) addresses. Known routes are stored in a routing table.

This section provides an overview of routing basics. It then demonstrates how to configure a FreeBSD system as a router and offers some troubleshooting tips.

31.2.1. 路由基礎概念

To view the routing table of a FreeBSD system, use netstat(1):

```
% netstat -r
```

Routing tables
Internet: Destination Gateway Flags Refs Use Netif Expire
default outside-gw UGS 37 418 em0
localhost localhost UH 0 181 lo0

664
The entries in this example are as follows:

**default**
The first route in this table specifies the default route. When the local system needs to make a connection to a remote host, it checks the routing table to determine if a known path exists. If the remote host matches an entry in the table, the system checks to see if it can connect using the interface specified in that entry.

If the destination does not match an entry, or if all known paths fail, the system uses the entry for the default route. For hosts on a local area network, the **Gateway** field in the default route is set to the system which has a direct connection to the Internet. When reading this entry, verify that the **Flags** column indicates that the gateway is usable (UG).

The default route for a machine which itself is functioning as the gateway to the outside world will be the gateway machine at the Internet Service Provider (ISP).

**localhost**
The second route is the localhost route. The interface specified in the **Netif** column for localhost is lo0, also known as the loopback device. This indicates that all traffic for this destination should be internal, rather than sending it out over the network.

**MAC address**
The addresses beginning with 0:e0: are MAC addresses. FreeBSD will automatically identify any hosts, test0 in the example, on the local Ethernet and add a route for that host over the Ethernet interface, re0. This type of route has a timeout, seen in the **Expire** column, which is used if the host does not respond in a specific amount of time. When this happens, the route to this host will be automatically deleted. These hosts are identified using the Routing Information Protocol (RIP), which calculates routes to local hosts based upon a shortest path determination.

**subnet**
FreeBSD will automatically add subnet routes for the local subnet. In this example, 10.20.30.255 is the broadcast address for the subnet 10.20.30 and example.com is the domain name associated with that subnet. The designation link#1 refers to the first Ethernet card in the machine.

Local network hosts and local subnets have their routes automatically configured by a daemon called routed(8). If it is not running, only routes which are statically defined by the administrator will exist.

**host**
The host1 line refers to the host by its Ethernet address. Since it is the sending host, FreeBSD knows to use the loopback interface (lo0) rather than the Ethernet interface.

The two host2 lines represent aliases which were created using ifconfig(8). The ⇒ symbol after the lo0 interface says that an alias has been set in addition to the loopback address. Such routes only show up on the host that supports the alias and all other hosts on the local network will have a link#1 line for such routes.
The final line (destination subnet 224) deals with multicasting. Various attributes of each route can be seen in the Flags column. Commonly seen flags and their meanings:

- **U**: The route is active (up).
- **H**: The route destination is a single host.
- **G**: Send anything for this destination on to this gateway, which will figure out from there where to send it.
- **S**: This route was statically configured.
- **C**: Clones a new route based upon this route for machines to connect to. This type of route is normally used for local networks.
- **W**: The route was auto-configured based upon a local area network (clone) route.
- **L**: Route involves references to Ethernet (link) hardware.

On a FreeBSD system, the default route can be defined in `/etc/rc.conf` by specifying the IP address of the default gateway:

```
defaultrouter="10.20.30.1"
```

It is also possible to manually add the route using `route`:

```
route add default 10.20.30.1
```

Note that manually added routes will not survive a reboot. For more information on manual manipulation of network routing tables, refer to `route(8)`.

A FreeBSD system can be configured as the default gateway, or router, for a network if it is a dual-homed system. A dual-homed system is a host which resides on at least two different networks. Typically, each network is connected to a separate network interface, though IP aliasing can be used to bind multiple addresses, each on a different subnet, to one physical interface.

In order for the system to forward packets between interfaces, FreeBSD must be configured as a router. Internet standards and good engineering practice prevent the FreeBSD Project from enabling this feature by default, but it can be configured to start at boot by adding this line to `/etc/rc.conf`:

```
gateway_enable="YES" # Set to YES if this host will be a gateway
```

To enable routing now, set the `sysctl(8)` variable `net.inet.ip.forwarding` to 1. To stop routing, reset this variable to 0.

The routing table of a router needs additional routes so it knows how to reach other networks.
Routes can be either added manually using static routes or routes can be automatically learned using a routing protocol. Static routes are appropriate for small networks and this section describes how to add a static routing entry for a small network.

For large networks, static routes quickly become unscalable. FreeBSD comes with the standard BSD routing daemon `routed(8)`, which provides the routing protocols RIP, versions 1 and 2, and IRDP. Support for the BGP and OSPF routing protocols can be installed using the `net/zebra` package or port.

Consider the following network:

In this scenario, RouterA is a FreeBSD machine that is acting as a router to the rest of the Internet. It has a default route set to 10.0.0.1 which allows it to connect with the outside world.

RouterB is already configured to use 192.168.1.1 as its default gateway.

Before adding any static routes, the routing table on RouterA looks like this:

```
% netstat -nr
Routing tables
Internet:
Destination Gateway Flags Refs Use Netif Expire
default 10.0.0.1 UGS 0 49378 xl0
127.0.0.1 127.0.0.1 UH 0 6 lo0
10.0.0.0/24 link1 UC 0 0 xl0
192.168.1.0/24 link2 UC 0 0 xl1
```

With the current routing table, RouterA does not have a route to the 192.168.2.0/24 network. The following command adds the Internal Net 2 network to RouterA’s routing table using 192.168.1.2 as the next hop:

```
667
```
Now, RouterA can reach any host on the 192.168.2.0/24 network. However, the routing information will not persist if the FreeBSD system reboots. If a static route needs to be persistent, add it to /etc/rc.conf:

```bash
Add Internal Net 2 as a persistent static route
static_routes="internalnet2"
route_internalnet2="-net 192.168.2.0/24 192.168.1.2"
```

The `static_routes` configuration variable is a list of strings separated by a space, where each string references a route name. The variable `route_internalnet2` contains the static route for that route name.

Using more than one string in `static_routes` creates multiple static routes. The following shows an example of adding static routes for the 192.168.0.0/24 and 192.168.1.0/24 networks:

```bash
static_routes="net1 net2"
route_net1="-net 192.168.0.0/24 192.168.0.1"
route_net2="-net 192.168.1.0/24 192.168.1.1"
```

When an address space is assigned to a network, the service provider configures their routing tables so that all traffic for the network will be sent to the link for the site. But how do external sites know to send their packets to the network's ISP?

There is a system that keeps track of all assigned address spaces and defines their point of connection to the Internet backbone, or the main trunk lines that carry Internet traffic across the country and around the world. Each backbone machine has a copy of a master set of tables, which direct traffic for a particular network to a specific backbone carrier, and from there down the chain of service providers until it reaches a particular network.

It is the task of the service provider to advertise to the backbone sites that they are the point of connection, and thus the path inward, for a site. This is known as route propagation.

Sometimes, there is a problem with route propagation and some sites are unable to connect. Perhaps the most useful command for trying to figure out where routing is breaking down is `traceroute`. It is useful when `ping` fails.

When using `traceroute`, include the address of the remote host to connect to. The output will show the gateway hosts along the path of the attempt, eventually either reaching the target host, or terminating because of a lack of connection. For more information, refer to `traceroute(8)`.

FreeBSD natively supports both multicast applications and multicast routing. Multicast applications do not require any special configuration in order to run on FreeBSD. Support for multicast routing requires that the following option be compiled into a custom kernel:

```bash
options MROUTING
```
The multicast routing daemon, mrouted can be installed using the net/mrouted package or port. This daemon implements the DVMRP multicast routing protocol and is configured by editing /usr/local/etc/mrouted.conf in order to set up the tunnels and DVMRP. The installation of mrouted also installs map-mbone and mrinfo, as well as their associated man pages. Refer to these for configuration examples.

DVMRP has largely been replaced by the PIM protocol in many multicast installations. Refer to pim(4) for more information.

31.3. 無線網路

31.3.1. 無線網路基礎

Most wireless networks are based on the IEEE™ 802.11 standards. A basic wireless network consists of multiple stations communicating with radios that broadcast in either the 2.4GHz or 5GHz band, though this varies according to the locale and is also changing to enable communication in the 2.3GHz and 4.9GHz ranges.

802.11 networks are organized in two ways. In infrastructure mode, one station acts as a master with all the other stations associating to it, the network is known as a BSS, and the master station is termed an access point (AP). In a BSS, all communication passes through the AP; even when one station wants to communicate with another wireless station, messages must go through the AP. In the second form of network, there is no master and stations communicate directly. This form of network is termed an IBSS and is commonly known as an ad-hoc network.

802.11 networks were first deployed in the 2.4GHz band using protocols defined by the IEEE™ 802.11 and 802.11b standard. These specifications include the operating frequencies and the MAC layer characteristics, including framing and transmission rates, as communication can occur at various rates. Later, the 802.11a standard defined operation in the 5GHz band, including different signaling mechanisms and higher transmission rates. Still later, the 802.11g standard defined the use of 802.11a signaling and transmission mechanisms in the 2.4GHz band in such a way as to be backwards compatible with 802.11b networks.

Separate from the underlying transmission techniques, 802.11 networks have a variety of security mechanisms. The original 802.11 specifications defined a simple security protocol called WEP. This protocol uses a fixed pre-shared key and the RC4 cryptographic cipher to encode data transmitted on a network. Stations must all agree on the fixed key in order to communicate. This scheme was shown to be easily broken and is now rarely used except to discourage transient users from joining networks. Current security practice is given by the IEEE™ 802.11i specification that defines new cryptographic ciphers and an additional protocol to authenticate stations to an access point and exchange keys for data communication. Cryptographic keys are periodically refreshed and there are mechanisms for detecting and countering intrusion attempts. Another security protocol specification commonly used in wireless networks is termed WPA, which was a precursor to 802.11i. WPA specifies a subset of the requirements found in 802.11i and is designed for implementation on legacy hardware. Specifically, WPA requires only the TKIP cipher that is derived from the original WEP cipher. 802.11i permits use of TKIP but also requires support for a stronger cipher, AES-CCM, for encrypting data. The AES cipher was not required in WPA because it was deemed too computationally costly to be implemented on legacy hardware.

The other standard to be aware of is 802.11e. It defines protocols for deploying multimedia applications, such as streaming video and voice over IP (VoIP), in an 802.11 network. Like 802.11i, 802.11e also has a precursor specification termed WME (later renamed WMM) that has been defined by an industry group as a subset of 802.11e that can be deployed now to enable multimedia applications while waiting for the final ratification of 802.11e. The most important thing to know about 802.11e and WME/WMM is that it enables prioritized traffic over a wireless network through Quality of Service (QoS) protocols and enhanced media access protocols. Proper implementation of these protocols enables high speed bursting of data and prioritized traffic flow.

FreeBSD supports networks that operate using 802.11a, 802.11b, and 802.11g. The WPA and 802.11i security protocols are likewise supported (in conjunction with any of 11a, 11b, and 11g) and QoS and traffic prioritization required by the WME/WMM protocols are supported for a limited set of...
Connecting a computer to an existing wireless network is a very common situation. This procedure shows the steps required.

1. Obtain the SSID (Service Set Identifier) and PSK (Pre-Shared Key) for the wireless network from the network administrator.
2. Identify the wireless adapter. The FreeBSD GENERIC kernel includes drivers for many common wireless adapters. If the wireless adapter is one of those models, it will be shown in the output from `ifconfig(8)`:
   ```
 % ifconfig | grep -B3 -i wireless
   ```
   On FreeBSD 11 or higher, use this command instead:
   ```
 % sysctl net.wlan.devices
   ```
   If a wireless adapter is not listed, an additional kernel module might be required, or it might be a model not supported by FreeBSD.
   This example shows the Atheros ath0 wireless adapter.
3. Add an entry for this network to `/etc/wpa_supplicant.conf`. If the file does not exist, create it. Replace `myssid` and `mypsk` with the SSID and PSK provided by the network administrator.
   ```
 network={
 ssid="myssid"
 psk="mypsk"
 }
   ```
4. Add entries to `/etc/rc.conf` to configure the network on startup:
   ```
 wlans_ath0="wlan0"
 ifconfig_wlan0="WPA SYNCDHCP"
   ```
5. Restart the computer, or restart the network service to connect to the network:
   ```
 # service netif restart
   ```
The most commonly used wireless devices are those that use parts made by Atheros. These devices are supported by `ath(4)` and require the following line to be added to `/boot/loader.conf`:

```
if_ath_load="YES"
```

The Atheros driver is split up into three separate pieces: the driver (`ath(4)`), the hardware support layer that handles chip-specific functions (`ath_hal(4)`), and an algorithm for selecting the rate for transmitting frames. When this support is loaded as kernel modules, any dependencies are automatically handled. To load support for a different type of wireless device, specify the module for that device. This example is for devices based on the Intersil Prism parts (`wi(4)`):

```
if_wi_load="YES"
```

The examples in this section use an `ath(4)` device and the device name in the examples must be changed according to the configuration. A list of available wireless drivers and supported adapters can be found in the FreeBSD Hardware Notes, available on the Release Information page of the FreeBSD website. If a native FreeBSD driver for the wireless device does not exist, it may be possible to use the Windows™ driver with the help of the `NDIS` driver wrapper.

In addition, the modules that implement cryptographic support for the security protocols to use must be loaded. These are intended to be dynamically loaded on demand by the `wlan(4)` module, but for now they must be manually configured. The following modules are available:

- `wlan_wep(4)`
- `wlan_ccmp(4)`
- `wlan_tkip(4)`

The `wlan_ccmp(4)` and `wlan_tkip(4)` drivers are only needed when using the WPA or 802.11i security protocols. If the network does not use encryption, `wlan_wep(4)` support is not needed. To load these modules at boot time, add the following lines to `/boot/loader.conf`:

```
wlan_wep_load="YES"
wlan_ccmp_load="YES"
wlan_tkip_load="YES"
```

Once this information has been added to `/boot/loader.conf`, reboot the FreeBSD box. Alternately, load the modules by hand using `kldload(8)`.

For users who do not want to use modules, it is possible to compile these drivers into the kernel by adding the following lines to a custom kernel configuration file:

```
device wlan # 802.11 support
device wlan_wep # 802.11 WEP support
device wlan_ccmp # 802.11 CCMP support
device wlan_tkip # 802.11 TKIP support
device wlan_amrr # AMRR transmit rate control algorithm
device ath # Atheros pci/cardbus NIC's
device ath_hal # pci/cardbus chip support
options AH_SUPPORT_AR5416 # enable AR5416 tx/rx descriptors
device ath_rate_sample # SampleRate tx rate control for ath
```
With this information in the kernel configuration file, recompile the kernel and reboot the FreeBSD machine.

Information about the wireless device should appear in the boot messages, like this:

```
ath0: <Atheros 5212> mem 0x88000000-0x8800ffff irq 11 at device 0.0 on cardbus1
```

31.3.3.2.

Since the regulatory situation is different in various parts of the world, it is necessary to correctly set the domains that apply to your location to have the correct information about what channels can be used.

The available region definitions can be found in `/etc/regdomain.xml`. To set the data at runtime, use `ifconfig`:

```
ifconfig wlan0 regdomain ETSI country AT
```

To persist the settings, add it to `/etc/rc.conf`:

```
sysrc create_args_wlan0="country AT regdomain ETSI"
```

31.3.4.

Infrastructure (BSS) mode is the mode that is typically used. In this mode, a number of wireless access points are connected to a wired network. Each wireless network has its own name, called the SSID. Wireless clients connect to the wireless access points.

31.3.4.1. FreeBSD client

31.3.4.1.1. How to find access points

To scan for available networks, use `ifconfig(8)`. This request may take a few moments to complete as it requires the system to switch to each available wireless frequency and probe for available access points. Only the superuser can initiate a scan:

```
ifconfig wlan0 create wlandev ath0
ifconfig wlan0 up scan
```

<table>
<thead>
<tr>
<th>SSID/MESH ID</th>
<th>BSSID</th>
<th>CHAN RATE</th>
<th>S:N</th>
<th>INT CAPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>dlinkap</td>
<td>00:13:46:49:41:76</td>
<td>11</td>
<td>54M</td>
<td>-90</td>
</tr>
<tr>
<td>freebsdap</td>
<td>00:11:95:c3:0d:ac</td>
<td>1</td>
<td>54M</td>
<td>-83</td>
</tr>
</tbody>
</table>

The interface must be `up` before it can scan. Subsequent scan requests do not require the interface to be marked as `up` again.

The output of a scan request lists each BSS/IBSS network found. Besides listing the name of the network, the SSID, the output also shows the BSSID, which is the MAC address of the access point.

The CAPS field identifies the type of each network and the capabilities of the stations operating.
Table 29.

Station Function Code

Extended Service Set (ESS). Indicates that the station is part of an infrastructure network rather than an IBSS/ad-hoc network.

IBSS/ad-hoc network. Indicates that the station is part of an ad-hoc network rather than an ESS network.

Privacy. Encryption is required for all data frames exchanged within the BSS using cryptographic means such as WEP, TKIP or AES-CCMP.

Short Preamble. Indicates that the network is using short preambles, defined in 802.11b High Rate/DSSS PHY, and utilizes a 56 bit sync field rather than the 128 bit field used in long preamble mode.

Short slot time. Indicates that the 802.11g network is using a short slot time because there are no legacy (802.11b) stations present.

One can also display the current list of known networks with:

```
ifconfig wlan0 list scan
```

This information may be updated automatically by the adapter or manually with a scan request.

Old data is automatically removed from the cache, so over time this list may shrink unless more scans are done.

31.3.4.1.2.

This section provides a simple example of how to make the wireless network adapter work in FreeBSD without encryption. Once familiar with these concepts, it is strongly recommended to use WPA to set up the wireless network.

There are three basic steps to configure a wireless network: select an access point, authenticate the station, and configure an IP address. The following sections discuss each step.

31.3.4.1.2.1.

Selection Process

Most of the time, it is sufficient to let the system choose an access point using the built-in heuristics. This is the default behavior when an interface is marked as up or it is listed in `/etc/rc.conf`:

```
wlans_ath0="wlan0"
ifconfig_wlan0="DHCP"
```

If there are multiple access points, a specific one can be selected by its SSID:

```
wlans_ath0="wlan0"
ifconfig_wlan0="ssid your_ssid_here DHCP"
```
In an environment where there are multiple access points with the same SSID, which is often done to simplify roaming, it may be necessary to associate to one specific device. In this case, the BSSID of the access point can be specified, with or without the SSID:

```
wlans_ath0="wlan0"
ifconfig_wlan0="ssid your_ssid_here bssid xx:xx:xx:xx:xx:xx DHCP"
```

There are other ways to constrain the choice of an access point, such as limiting the set of frequencies the system will scan on. This may be useful for a multi-band wireless card as scanning all the possible channels can be time-consuming. To limit operation to a specific band, use the `mode` parameter:

```
wlans_ath0="wlan0"
ifconfig_wlan0="mode 11g ssid your_ssid_here DHCP"
```

This example will force the card to operate in 802.11g, which is defined only for 2.4GHz frequencies so any 5GHz channels will not be considered. This can also be achieved with the `channel` parameter, which locks operation to one specific frequency, and the `chanlist` parameter, to specify a list of channels for scanning. More information about these parameters can be found in `ifconfig(8)`.

### 31.3.4.1.2.2. 認證

Once an access point is selected, the station needs to authenticate before it can pass data. Authentication can happen in several ways. The most common scheme, open authentication, allows any station to join the network and communicate. This is the authentication to use for test purposes the first time a wireless network is setup. Other schemes require cryptographic handshakes to be completed before data traffic can flow, either using pre-shared keys or secrets, or more complex schemes that involve backend services such as RADIUS. Open authentication is the default setting. The next most common setup is WPA-PSK, also known as WPA Personal, which is described in [WPA-PSK](#).

If using an Apple™AirPort™ Extreme base station for an access point, shared-key authentication together with a WEP key needs to be configured. This can be configured in `/etc/rc.conf` or by using `wpa_supplicant(8)`. For a single AirPort™ base station, access can be configured with:

```
wlans_ath0="wlan0"
ifconfig_wlan0="authmode shared wepmode on weptxkey 1 wepkey 01234567 DHCP"
```

In general, shared key authentication should be avoided because it uses the WEP key material in a highly-constrained manner, making it even easier to crack the key. If WEP must be used for compatibility with legacy devices, it is better to use WEP with open authentication. More information regarding WEP can be found in [WEP](#).

### 31.3.4.1.2.3. 使用 DHCP 取得 IP 位址

Once an access point is selected and the authentication parameters are set, an IP address must be obtained in order to communicate. Most of the time, the IP address is obtained via DHCP. To achieve that, edit `/etc/rc.conf` and add `DHCP` to the configuration for the device:
The wireless interface is now ready to bring up:

```
service netif start
```

Once the interface is running, use `ifconfig(8)` to see the status of the interface `ath0`:

```
ifconfig wlan0
wlan0: flags = 8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 ether 00:11:95:d5:43:62
 inet 192.168.1.100 netmask 0xffffff00 broadcast 192.168.1.255
 media: IEEE 802.11 Wireless Ethernet OFDM/54Mbps mode 11g
 status: associated
 ssid dlinkap channel 11
 (2462 Mhz 11g)
 bssid 00:13:46:49:41:76
 country US ecm authmode OPEN privacy OFF txpower 21.5 bmiss 7
 scanvalid 60 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7
 roam:rate 5 protmode CTS wme burst
```
The `status: associated` line means that it is connected to the wireless network. The `bssid 00:13:46:49:41:76` is the MAC address of the access point and `authmode OPEN` indicates that the communication is not encrypted.

If an IP address cannot be obtained from a DHCP server, set a fixed IP address. Replace the `DHCP` keyword shown above with the address information. Be sure to retain any other parameters for selecting the access point:

```
wlan_ath0="wlan0"
ifconfig_wlan0="inet 192.168.1.100 netmask 255.255.255.0 ssid your_ssid_here"
```

31.3.4.1.2.4. WPA

Wi-Fi Protected Access (WPA) is a security protocol used together with 802.11 networks to address the lack of proper authentication and the weakness of WEP. WPA leverages the 802.1X authentication protocol and uses one of several ciphers instead of WEP for data integrity. The only cipher required by WPA is the Temporary Key Integrity Protocol (TKIP). TKIP is a cipher that extends the basic RC4 cipher used by WEP by adding integrity checking, tamper detection, and measures for responding to detected intrusions. TKIP is designed to work on legacy hardware with only software modification. It represents a compromise that improves security but is still not entirely immune to attack. WPA also specifies the AES-CCMP cipher as an alternative to TKIP, and that is preferred when possible. For this specification, the term WPA2 or RSN is commonly used.

WPA defines authentication and encryption protocols. Authentication is most commonly done using one of two techniques: by 802.1X and a backend authentication service such as RADIUS, or by a minimal handshake between the station and the access point using a pre-shared secret. The former is commonly termed WPA Enterprise and the latter is known as WPA Personal. Since most people will not set up a RADIUS backend server for their wireless network, WPA-PSK is by far the most common way to set up Wi-Fi security.
The control of the wireless connection and the key negotiation or authentication with a server is done using `wpa_supplicant(8)`. This program requires a configuration file, `/etc/wpa_supplicant.conf`, to run. More information regarding this file can be found in `wpa_supplicant.conf(5)`.

### 31.3.4.1.3.1. WPA-PSK

WPA-PSK, also known as WPA Personal, is based on a pre-shared key (PSK) which is generated from a given password and used as the master key in the wireless network. This means every wireless user will share the same key. WPA-PSK is intended for small networks where the use of an authentication server is not possible or desired.

Always use strong passwords that are sufficiently long and made from a rich alphabet so that they will not be easily guessed or attacked.

The first step is the configuration of `/etc/wpa_supplicant.conf` with the SSID and the pre-shared key of the network:

```plaintext
network=
 ssid="freebsdap"
 psk="freebsdmall"
}
```

Then, in `/etc/rc.conf`, indicate that the wireless device configuration will be done with WPA and the IP address will be obtained with DHCP:

```plaintext
wlans_ath0="wlan0"
ifconfig_wlan0="WPA DHCP"
```

Then, bring up the interface:

```
service netif start
Starting wpa_supplicant.
DHCPDISCOVER on wlan0 to 255.255.255.255 port 67 interval 5
DHCPDISCOVER on wlan0 to 255.255.255.255 port 67 interval 6
DHCPOFFER from 192.168.0.1
DHCPREQUEST on wlan0 to 255.255.255.255 port 67
DHCPACK from 192.168.0.1
bound to 192.168.0.254
--
renewal in 300 seconds.
```

```
wlans_ath0: flags = 8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 ether 00:11:95:d5:43:62
 inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255
 media: IEEE 802.11 Wireless Ethernet OFDM/36Mbps mode 11g
 status: associated
 ssid freebsdap channel 1 (2412 Mhz 11g)
 bssid 00:11:95:c3:0d:ac
 country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF
```

676
AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS

Or, try to configure the interface manually using the information in /etc/wpa_supplicant.conf:

# wpa_supplicant -i wlan0 -c /etc/wpa_supplicant.conf

Trying to associate with 00:11:95:c3:0d:ac (SSID='freebsdap' freq=2412 MHz)

Associated with 00:11:95:c3:0d:ac

WPA: Key negotiation completed with 00:11:95:c3:0d:ac [PTK=CCMP GTK=CCMP]

CTRL-EVENT-CONNECTED - Connection to 00:11:95:c3:0d:ac completed (auth)

id=

id_str=

The next operation is to launch dhclient(8) to get the IP address from the DHCP server:

# dhclient wlan0

DHCPREQUEST on wlan0 to 255.255.255.255 port 67

DHCPACK from 192.168.0.1

bound to 192.168.0.254

--

renewal in 300 seconds.

# ifconfig wlan0

wlan0:

flags = 8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

ether 00:11:95:d5:43:62

inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255

media: IEEE 802.11 Wireless Ethernet OFDM/36Mbps mode 11g

status: associated

ssid freebsdap channel 1 (2412 Mhz 11g)

bssid 00:11:95:c3:0d:ac

country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF

AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS

If /etc/rc.conf has an ifconfig_wlan0="DHCP" entry, dhclient(8) will be launched automatically after wpa_supplicant(8) associates with the access point.

If DHCP is not possible or desired, set a static IP address after wpa_supplicant(8) has authenticated the station:

# ifconfig wlan0 inet 192.168.0.100 netmask 255.255.255.0

# ifconfig wlan0

wlan0:

flags = 8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

ether 00:11:95:d5:43:62

inet 192.168.0.100 netmask 0xffffff00 broadcast 192.168.0.255

media: IEEE 802.11 Wireless Ethernet OFDM/36Mbps mode 11g

status: associated
When DHCP is not used, the default gateway and the nameserver also have to be manually set:

```
route add default your_default_router
echo "nameserver your_DNS_server" >> /etc/resolv.conf
```

The second way to use WPA is with an 802.1X backend authentication server. In this case, WPA is called WPA Enterprise to differentiate it from the less secure WPA Personal. Authentication in WPA Enterprise is based on the Extensible Authentication Protocol (EAP).

EAP does not come with an encryption method. Instead, EAP is embedded inside an encrypted tunnel. There are many EAP authentication methods, but EAP-TLS, EAP-TTLS, and EAP-PEAP are the most common.

EAP with Transport Layer Security (EAP-TLS) is a well-supported wireless authentication protocol since it was the first EAP method to be certified by the Wi-Fi Alliance. EAP-TLS requires three certificates to run: the certificate of the Certificate Authority (CA) installed on all machines, the server certificate for the authentication server, and one client certificate for each wireless client. In this EAP method, both the authentication server and wireless client authenticate each other by presenting their respective certificates, and then verify that these certificates were signed by the organization's CA.

As previously, the configuration is done via `/etc/wpa_supplicant.conf`:

```
network={
 ssid="freebsdap"
 proto=RSN
 key_mgmt=WPA-EAP
 eap=TLS
 identity="loader"
 ca_cert="/etc/certs/cacert.pem"
 client_cert="/etc/certs/clientcert.pem"
 private_key="/etc/certs/clientkey.pem"
 private_key_passwd="freebsdmallclient"
}
```

1. This field indicates the network name (SSID).
2. This example uses the RSN IEEE™ 802.11i protocol, also known as WPA2.
3. The `key_mgmt` line refers to the key management protocol to use. In this example, it is WPA using EAP authentication.
4. This field indicates the EAP method for the connection.
5. The `identity` field contains the identity string for EAP.
The `ca_cert` field indicates the pathname of the CA certificate file. This file is needed to verify the server certificate.

The `client_cert` line gives the pathname to the client certificate file. This certificate is unique to each wireless client of the network.

The `private_key` field is the pathname to the client certificate private key file.

The `private_key_passwd` field contains the passphrase for the private key.

Then, add the following lines to `/etc/rc.conf`:

```
wlan0_ath0="wlan0"
ifconfig_wlan0="WPA DHCP"
```

The next step is to bring up the interface:

```
service netif start
Starting wpa_supplicant.
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 7
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 15
DHCPACK from 192.168.0.20
bound to 192.168.0.254 -- renewal in 300 seconds.
wlan0: flags = 8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
ether 00:11:95:d5:43:62
inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255
media: IEEE 802.11 Wireless Ethernet DS/11Mbps mode 11g
status: associated
ssid freebsdap channel 1 (2412 Mhz 11g)
bssid 00:11:95:c3:0d:ac
country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF
AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan
bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS
wme burst roaming MANUAL
```

It is also possible to bring up the interface manually using `wpa_supplicant(8)` and `ifconfig(8)`.

3.3.4.1.3.3. WPA

With EAP-TLS, both the authentication server and the client need a certificate. With EAP-TTLS, a client certificate is optional. This method is similar to a web server which creates a secure SSL tunnel even if visitors do not have client-side certificates. EAP-TTLS uses an encrypted TLS tunnel for safe transport of the authentication data.

The required configuration can be added to `/etc/wpa_supplicant.conf`:

```
network={
 ssid="freebsdap"
 proto=RSN
 key_mgmt=WPA-EAP
 eap=TTLS
 ...}
```
① This field specifies the EAP method for the connection.

② The `identity` field contains the identity string for EAP authentication inside the encrypted TLS tunnel.

③ The `password` field contains the passphrase for the EAP authentication.

④ The `ca_cert` field indicates the pathname of the CA certificate file. This file is needed to verify the server certificate.

⑤ This field specifies the authentication method used in the encrypted TLS tunnel. In this example, EAP with MD5-Challenge is used. The "inner authentication" phase is often called "phase2".

Next, add the following lines to `/etc/rc.conf`:

```
wlans_ath0="wlan0"
ifconfig_wlan0="WPA DHCP"
```

The next step is to bring up the interface:

```
service netif start
Starting wpa_supplicant.
```

DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 7

DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 15

DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 21

DHCPACK from 192.168.0.20

bound to 192.168.0.254

-- renewal in 300 seconds.

wlan0:
  flags = 8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
  ether 00:11:95:d5:43:62
  inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255
  media: IEEE 802.11 Wireless Ethernet DS/11Mbps mode 11g
  status: associated
  ssid freebsdap channel 1 (2412 Mhz 11g)
  bssid 00:11:95:c3:0d:ac
  country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF
  AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan
  bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS
```

31.3.4.1.3.4. WPA
加上 EAP-PEAP

PEAPv0/EAP-MSCHAPv2 is the most common PEAP method. In this chapter, the term PEAP is used to refer to that method.

Protected EAP (PEAP) is designed as an alternative to EAP-TTLS and is the most used EAP standard.
After EAP-TLS. In a network with mixed operating systems, PEAP should be the most supported standard after EAP-TLS.

PEAP is similar to EAP-TTLS as it uses a server-side certificate to authenticate clients by creating an encrypted TLS tunnel between the client and the authentication server, which protects the ensuing exchange of authentication information. PEAP authentication differs from EAP-TTLS as it broadcasts the username in the clear and only the password is sent in the encrypted TLS tunnel. EAP-TTLS will use the TLS tunnel for both the username and password.

Add the following lines to `/etc/wpa_supplicant.conf` to configure the EAP-PEAP related settings:

```
network={
  ssid="freebsdap"
  proto=RSN
  key_mgmt=WPA-EAP
  eap=PEAP
  identity="test"
  password="test"
  ca_cert="/etc/certs/cacert.pem"
  phase1="peaplabel=0"
  phase2="auth=MSCHAPV2"
}
```

1. This field specifies the EAP method for the connection.
2. The `identity` field contains the identity string for EAP authentication inside the encrypted TLS tunnel.
3. The `password` field contains the passphrase for the EAP authentication.
4. The `ca_cert` field indicates the pathname of the CA certificate file. This file is needed to verify the server certificate.
5. This field contains the parameters for the first phase of authentication, the TLS tunnel. According to the authentication server used, specify a specific label for authentication. Most of the time, the label will be "client EAP encryption" which is set by using `peaplabel=0`. More information can be found in `wpa_supplicant.conf(5)`.
6. This field specifies the authentication protocol used in the encrypted TLS tunnel. In the case of PEAP, it is `auth=MSCHAPV2`.

将以下参数加到 `/etc/rc.conf`:

```
wlans_ath0="wlan0"
ifconfig_wlan0="WPA DHCP"
```

Then, bring up the interface:

```
# service netif start
Starting wpa_supplicant.
```

```
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 7
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 15
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 21
681
```
Wired Equivalent Privacy (WEP) is part of the original 802.11 standard. There is no authentication mechanism, only a weak form of access control which is easily cracked.

WEP can be set up using `ifconfig(8)`:
```
# ifconfig wlan0 create wlandev ath0
# ifconfig wlan0 inet 192.168.1.100 netmask 255.255.255.0 
  ssid my_net wepmode on weptxkey 3 wepkey 3:0x3456789012
```

- The `weptxkey` specifies which WEP key will be used in the transmission. This example uses the third key. This must match the setting on the access point. When unsure which key is used by the access point, try `1` (the first key) for this value.
- The `wepkey` selects one of the WEP keys. It should be in the format `index:key`. Key `1` is used by default; the index only needs to be set when using a key other than the first key.

Replace the `0x3456789012` with the key configured for use on the access point. Refer to `ifconfig(8)` for further information.

The `wpa_supplicant(8)` facility can be used to configure a wireless interface with WEP. The example above can be set up by adding the following lines to `/etc/wpa_supplicant.conf`:

```
network={
  ssid="my_net"
  key_mgmt=NONE
  wep_key3=3456789012
  wep_tx_keyidx=3
}
```

Then:
```
# wpa_supplicant -i wlan0 -c /etc/wpa_supplicant.conf
```

682
IBSS mode, also called ad-hoc mode, is designed for point to point connections. For example, to establish an ad-hoc network between the machines A and B, choose two IP addresses and a SSID.

On A:
```
# ifconfig wlan0 create wlandev ath0 wlanmode adhoc
# ifconfig wlan0 inet 192.168.0.1 netmask 255.255.255.0 ssid freebsdap
# ifconfig wlan0
wlan0:  flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
       ether 00:11:95:c3:0d:ac
       inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255
media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <adhoc>
status: running
ssid freebsdap channel 2 (2417 Mhz 11g)
bssid 02:11:95:c3:0d:ac
country US ecm authmode OPEN privacy OFF txpower 21.5 scanvalid 60
protmode CTS wme burst
```
The adhoc parameter indicates that the interface is running in IBSS mode. B should now be able to detect A:
```
# ifconfig wlan0 create wlandev ath0 wlanmode adhoc
# ifconfig wlan0 up scan
SSID/MESH ID    BSSID              CHAN RATE   S:N     INT CAPS
freebsdap       02:11:95:c3:0d:ac    2   54M
-64:-96  100 IS   WME
```
The I in the output confirms that A is in ad-hoc mode. Now, configure B with a different IP address:
```
# ifconfig wlan0 inet 192.168.0.2 netmask 255.255.255.0 ssid freebsdap
# ifconfig wlan0
wlan0:  flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
       ether 00:11:95:d5:43:62
       inet 192.168.0.2 netmask 0xffffff00 broadcast 192.168.0.255
media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <adhoc>
status: running
ssid freebsdap channel 2 (2417 Mhz 11g)
bssid 02:11:95:c3:0d:ac
country US ecm authmode OPEN privacy OFF txpower 21.5 scanvalid 60
protmode CTS wme burst
```
Both A and B are now ready to exchange information.
FreeBSD can act as an Access Point (AP) which eliminates the need to buy a hardware AP or run an ad-hoc network. This can be particularly useful when a FreeBSD machine is acting as a gateway to another network such as the Internet.

31.3.6.1. 基礎設定

Before configuring a FreeBSD machine as an AP, the kernel must be configured with the appropriate networking support for the wireless card as well as the security protocols being used. For more details, see 基礎設定.

The NDIS driver wrapper for Windows™ drivers does not currently support AP operation. Only native FreeBSD wireless drivers support AP mode.

Once wireless networking support is loaded, check if the wireless device supports the host-based access point mode, also known as hostap mode:

```
# ifconfig wlan0 create wlandev ath0
# ifconfig wlan0 list caps
drivercaps = 6f85edc1<STA,FF,TURBOP,IBSS,HOSTAP,AHDEMO,TXPMGT,SHSLOT,SHPREAMBLE,MONITOR,MBSS,WPA1,WPA2,BURST,WME,WDS,BGSCAN,TXFRAG>
cryptocaps = 1f<WEP,TKIP,AES,AES_CCM,TKIPMIC>
```

This output displays the card's capabilities. The HOSTAP word confirms that this wireless card can act as an AP. Various supported ciphers are also listed: WEP, TKIP, and AES. This information indicates which security protocols can be used on the AP.

The wireless device can only be put into hostap mode during the creation of the network pseudo-device, so a previously created device must be destroyed first:

```
# ifconfig wlan0 destroy
```

then regenerated with the correct option before setting the other parameters:

```
# ifconfig wlan0 create wlandev ath0 wlanmode hostap
# ifconfig wlan0 inet 192.168.0.1 netmask 255.255.255.0 ssid freebsdap mode 11g channel 1
```

Use `ifconfig(8)` again to see the status of the `wlan0` interface:

```
# ifconfig wlan0
wlan0: flags = 8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
ether 00:11:95:c3:0d:ac
inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255
media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <hostap>
status: running
ssid freebsdap channel 1 (2412 Mhz 11g)
bssid 00:11:95:c3:0d:ac
country US ecm authmode OPEN privacy OFF txpower 21.5 scanvalid 60
```
The hostap parameter indicates the interface is running in the host-based access point mode. The interface configuration can be done automatically at boot time by adding the following lines to /etc/rc.conf:

```
wlans_ath0="wlan0"
create_args_wlan0="wlanmode hostap"
ifconfig_wlan0="inet 192.168.0.1 netmask 255.255.255.0 ssid freebsdap mode 11g channel 31.3.6.2.
```

Although it is not recommended to run an AP without any authentication or encryption, this is a simple way to check if the AP is working. This configuration is also important for debugging client issues.

Once the AP is configured, initiate a scan from another wireless machine to find the AP:

```
# ifconfig wlan0 create wlandev ath0
# ifconfig wlan0 up scan

SSID/MESH ID    BSSID              CHAN RATE   S:N     INT   CAPS
freebsdap       00:11:95:c3:0d:ac    1   54M   -66   -96  100 ES   WME
```

The client machine found the AP and can be associated with it:

```
# ifconfig wlan0 inet 192.168.0.2 netmask 255.255.255.0 ssid freebsdap
# ifconfig wlan0

wlan0:
  flags = 8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
  ether 00:11:95:d5:43:62
  inet 192.168.0.2 netmask 0xffffff00 broadcast 192.168.0.255
  media: IEEE 802.11 Wireless Ethernet OFDM/54Mbps mode 11g
  status: associated
  ssid freebsdap channel 1 (2412 Mhz 11g)
  bssid 00:11:95:c3:0d:ac
  country US ecm authmode OPEN privacy OFF txpower 21.5 bmiss 7
  scanvalid 60 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7
  roam:rate 5 protmode CTS wme burst
```

WPA2 Host-based Access Point

This section focuses on setting up a FreeBSD access point using the WPA2 security protocol. More details regarding WPA and the configuration of WPA-based wireless clients can be found in WPA.

The hostapd(8) daemon is used to deal with client authentication and key management on the WPA2-enabled AP.

The following configuration operations are performed on the FreeBSD machine acting as the AP. Once the AP is correctly working, hostapd(8) can be automatically started at boot with this line in /etc/rc.conf:
Before trying to configure `hostapd(8)`, first configure the basic settings introduced in 基本設定.

31.3.6.3.1 WPA2-PSK

WPA2-PSK is intended for small networks where the use of a backend authentication server is not possible or desired.

The configuration is done in `/etc/hostapd.conf`:

```sh
interface=wlan0
debug=1
ctrl_interface=/var/run/hostapd
ctrl_interface_group=wheel
ssid=freebsdap
wpa=2
wpa_passphrase=freebsdmall
wpa_key_mgmt=WPA-PSK
wpa_pairwise=CCMP
```

- **①**: Wireless interface used for the access point.
- **②**: Level of verbosity used during the execution of `hostapd(8)`. A value of 1 represents the minimal level.
- **③**: Pathname of the directory used by `hostapd(8)` to store domain socket files for communication with external programs such as `hostapd_cli(8)`. The default value is used in this example.
- **④**: The group allowed to access the control interface files.
- **⑤**: The wireless network name, or SSID, that will appear in wireless scans.
- **⑥**: Enable WPA and specify which WPA authentication protocol will be required. A value of 2 configures the AP for WPA2 and is recommended. Set to 1 only if the obsolete WPA is required.
- **⑦**: ASCII passphrase for WPA authentication.
- **⑧**: The key management protocol to use. This example sets WPA-PSK.
- **⑨**: Encryption algorithms accepted by the access point. In this example, only the CCMP (AES) cipher is accepted. CCMP is an alternative to TKIP and is strongly preferred when possible. TKIP should be allowed only when there are stations incapable of using CCMP.

The next step is to start `hostapd(8)`:

```sh
# service hostapd forcestart
# ifconfig wlan0
wlan0:
  flags = 8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> metric 0
  mtu 1500
  ether 04:f0:21:16:8e:10
  inet6 fe80::6f0:21ff:fe16:8e10%wlan0 prefixlen 64 scopeid 0x9
```
Once the AP is running, the clients can associate with it. See WPA for more details. It is possible to see the stations associated with the AP using ifconfig wlan0 list sta.

31.3.6.4. WEP Host-based

It is not recommended to use WEP for setting up an AP since there is no authentication mechanism and the encryption is easily cracked. Some legacy wireless cards only support WEP and these cards will only support an AP without authentication or encryption.

The wireless device can now be put into hostap mode and configured with the correct SSID and IP address:

```bash
# ifconfig wlan0 create wlandev ath0 wlanmode hostap
# ifconfig wlan0 inet 192.168.0.1 netmask 255.255.255.0 
  ssid freebsdap wepmode on weptxkey 3 wepkey 3:0x3456789012 mode 11g
```

- The `weptxkey` indicates which WEP key will be used in the transmission. This example uses the third key as key numbering starts with 1. This parameter must be specified in order to encrypt the data.
- The `wepkey` sets the selected WEP key. It should be in the format `index:key`. If the index is not given, key 1 is set. The index needs to be set when using keys other than the first key.

Use `ifconfig(8)` to see the status of the wlan0 interface:

```bash
# ifconfig wlan0
wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
  ether 00:11:95:c3:0d:ac
  inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255
  media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <hostap>
  status: running
  ssid freebsdap channel 4
    (2427 Mhz 11g)
  bssid 00:11:95:c3:0d:ac
  country US ecm authmode OPEN privacy ON deftxkey 3 wepkey 3:40-bit
  txpower 21.5 scanvalid 60 protmode CTS wme burst dtimperiod 1
```

From another wireless machine, it is now possible to initiate a scan to find the AP:

```bash
# ifconfig wlan0 create wlandev ath0
```

- dfs
In this example, the client machine found the AP and can associate with it using the correct parameters. See WEP for more details.

31.3.7. 同時使用有線及無線連線

A wired connection provides better performance and reliability, while a wireless connection provides flexibility and mobility. Laptop users typically want to roam seamlessly between the two types of connections.

On FreeBSD, it is possible to combine two or even more network interfaces together in a "failover" fashion. This type of configuration uses the most preferred and available connection from a group of network interfaces, and the operating system switches automatically when the link state changes.

Link aggregation and failover is covered in Link Aggregation and an example for using both wired and wireless connections is provided at乙太網路與無線介面之間的容錯轉模式.

31.3.8. 疑難排解

This section describes a number of steps to help troubleshoot common wireless networking problems.

• If the access point is not listed when scanning, check that the configuration has not limited the wireless device to a limited set of channels.

• If the device cannot associate with an access point, verify that the configuration matches the settings on the access point. This includes the authentication scheme and any security protocols. Simplify the configuration as much as possible. If using a security protocol such as WPA or WEP, configure the access point for open authentication and no security to see if traffic will pass.

Debugging support is provided by wpa_supplicant(8). Try running this utility manually with -dd and look at the system logs.

• Once the system can associate with the access point, diagnose the network configuration using tools like ping(8).

• There are many lower-level debugging tools. Debugging messages can be enabled in the 802.11 protocol support layer using wlandebug(8). For example, to enable console messages related to scanning for access points and the 802.11 protocol handshakes required to arrange communication:

```
# wlandebug -i wlan0 +scan+auth+debug+assoc
net.wlan.0.debug: 0 = 0xc80000<assoc,auth,scan>
```

Many useful statistics are maintained by the 802.11 layer and wlanstats, found in /usr/src/tools/tools/net80211, will dump this information. These statistics should display all errors identified by the 802.11 layer. However, some errors are identified in the device drivers that lie below the 802.11 layer so they may not show up. To diagnose device-specific problems, refer to the drivers' documentation.

If the above information does not help to clarify the problem, submit a problem report and include output from the above tools.
Many cellphones provide the option to share their data connection over USB (often called "tethering"). This feature uses either the RNDIS, CDC or a custom Apple™iPhone™/iPad™ protocol.

- Android™ devices generally use the `urndis(4)` driver.
- Apple™ devices use the `ipheth(4)` driver.
- Older devices will often use the `cdce(4)` driver.

Before attaching a device, load the appropriate driver into the kernel:

```
# kldload if_urndis
# kldload if_cdce
# kldload if_ipheth
```

Once the device is attached, `/dev/ue0` will be available for use like a normal network device. Be sure that the "USB tethering" option is enabled on the device.

31.5. 藍牙

Bluetooth is a wireless technology for creating personal networks operating in the 2.4 GHz unlicensed band, with a range of 10 meters. Networks are usually formed ad-hoc from portable devices such as cellular phones, handhelds, and laptops. Unlike Wi-Fi wireless technology, Bluetooth offers higher level service profiles, such as FTP-like file servers, file pushing, voice transport, serial line emulation, and more.

This section describes the use of a USB Bluetooth dongle on a FreeBSD system. It then describes the various Bluetooth protocols and utilities.

31.5.1. 載入藍牙支援

The Bluetooth stack in FreeBSD is implemented using the `netgraph(4)` framework. A broad variety of Bluetooth USB dongles is supported by `ng_ubt(4)`. Broadcom BCM2033 based Bluetooth devices are supported by the `ubtbcmfw(4)` and `ng_ubt(4)` drivers. The 3Com Bluetooth PC Card 3CRWB60-A is supported by the `ng_bt3c(4)` driver. Serial and UART based Bluetooth devices are supported by `sio(4)`, `ng_h4(4)`, and `hcseriald(8)`.

Before attaching a device, determine which of the above drivers it uses, then load the driver. For example, if the device uses the `ng_ubt(4)` driver:

```
# kldload ng_ubt
```

If the Bluetooth device will be attached to the system during system startup, the system can be configured to load the module at boot time by adding the driver to `/boot/loader.conf`:

```
ng_ubt_load="YES"
```

Once the driver is loaded, plug in the USB dongle. If the driver load was successful, output similar to the following should appear on the console and in `/var/log/messages`:

```
ubt0: vendor 0x0a12 product 0x0001, rev 1.10/5.25, addr 2
ubt0: Interface 0 endpoints: interrupt = 0x81, bulk-in = 0x82, bulk-out = 0x2
```

```bash
689
```
To start and stop the Bluetooth stack, use its startup script. It is a good idea to stop the stack before unplugging the device. Starting the bluetooth stack might require `hcsecd(8)` to be started. When starting the stack, the output should be similar to the following:

```
# service bluetooth start ubt0
BD_ADDR: 00:02:72:00:d4:1a
Features: 0xff 0xff 0xf 00 00 00 00 00
<3-Slot> <5-Slot> <Encryption> <Slot offset>
<Timing accuracy> <Switch> <Hold mode> <Sniff mode>
<Park mode> <RSSI> <Channel quality> <SCO link>
<HV2 packets> <HV3 packets> <u-law log> <A-law log> <CVSD>
Max. ACL packet size: 192 bytes
Number of ACL packets: 8
Max. SCO packet size: 64 bytes
Number of SCO packets: 8
```

31.5.2. 寻找其他蓝牙装置

The Host Controller Interface (HCI) provides a uniform method for accessing Bluetooth baseband capabilities. In FreeBSD, a netgraph HCI node is created for each Bluetooth device. For more details, refer to `ng_hci(4)`.

One of the most common tasks is discovery of Bluetooth devices within RF proximity. This operation is called inquiry. Inquiry and other HCI related operations are done using `hccontrol(8)`.

The example below shows how to find out which Bluetooth devices are in range. The list of devices should be displayed in a few seconds. Note that a remote device will only answer the inquiry if it is set to discoverable mode.

```
% hccontrol -n ubt0hci inquiry
Inquiry result, num_responses = 1
Inquiry result #0
BD_ADDR: 00:80:37:29:19:a4
Page Scan Rep. Mode: 0x1
Page Scan Period Mode: 00
Page Scan Mode: 00
Class: 52:02:04
Clock offset: 0x78ef
Inquiry complete. Status: No error
```

The `BD_ADDR` is the unique address of a Bluetooth device, similar to the MAC address of a network card. This address is needed for further communication with a device and it is possible to assign a human readable name to a `BD_ADDR`. Information regarding the known Bluetooth hosts is contained in `/etc/bluetooth/hosts`. The following example shows how to obtain the human readable name that was assigned to the remote device:
Remote devices can be assigned aliases in `/etc/bluetooth/hosts`. More information about `/etc/bluetooth/hosts` file might be found in `bluetooth.hosts(5)`.

The Bluetooth system provides a point-to-point connection between two Bluetooth units, or a point-to-multipoint connection which is shared among several Bluetooth devices. The following example shows how to create a connection to a remote device:

```
% hccontrol
-n
ubt0hci create_connection BT_ADDR
```

The following example shows how to obtain the list of active baseband connections for the local device:

```
% hccontrol
-n
ubt0hci read_connection_list
```

A connection handle is useful when termination of the baseband connection is required, though it is normally not required to do this by hand. The stack will automatically terminate inactive baseband connections.

```
# hccontrol -n ubt0hci disconnect 41
Connection handle: 41
Reason: Connection terminated by local host
```

By default, Bluetooth communication is not authenticated, and any device can talk to any other device. A Bluetooth device, such as a cellular phone, may choose to require authentication to provide a particular service. Bluetooth authentication is normally done with a PIN code, an ASCII string up to 16 characters in length. The user is required to enter the same PIN code on both devices. Once the user has entered the PIN code, both devices will generate a link key. After that, the link key can be stored either in the devices or in a persistent storage. Next time, both devices will use the previously generated link key. This procedure is called pairing. Note that if the link key is lost by either device, the pairing must be repeated.

The `hcsecd(8)` daemon is responsible for handling Bluetooth authentication requests. The default configuration file is `/etc/bluetooth/hcsecd.conf`. An example section for a cellular phone with the PIN code set to 1234 is shown below:
The only limitation on PIN codes is length. Some devices, such as Bluetooth headsets, may have a fixed PIN code built in. The -d switch forces hcsecd(8) to stay in the foreground, so it is easy to see what is happening. Set the remote device to receive pairing and initiate the Bluetooth connection to the remote device. The remote device should indicate that pairing was accepted and request the PIN code. Enter the same PIN code listed in hcsecd.conf. Now the computer and the remote device are paired. Alternatively, pairing can be initiated on the remote device.

The following line can be added to /etc/rc.conf to configure hcsecd(8) to start automatically on system start:

hcsecd_enable="YES"

The following is a sample of the hcsecd(8) daemon output:

hcsecd[16484]: Got Link_Key_Request event from 'ubt0hci', remote bdaddr 0:80:37:29:19:a4
hcsecd[16484]: Found matching entry, remote bdaddr 0:80:37:29:19:a4, name 'Pav's T39', link key doesn't exist
hcsecd[16484]: Sending Link_Key_Negative_Reply to 'ubt0hci' for remote bdaddr 0:80:37:29:19:a4
hcsecd[16484]: Got PIN_Code_Request event from 'ubt0hci', remote bdaddr 0:80:37:29:19:a4
hcsecd[16484]: Found matching entry, remote bdaddr 0:80:37:29:19:a4, name 'Pav's T39', PIN code exists
hcsecd[16484]: Sending PIN_Code_Reply to 'ubt0hci' for remote bdaddr 0:80:37:29:19:a4

31.5.4.

使用PPP Profile 存取網路

A Dial-Up Networking (DUN) profile can be used to configure a cellular phone as a wireless modem for connecting to a dial-up Internet access server. It can also be used to configure a computer to receive data calls from a cellular phone.

Network access with a PPP profile can be used to provide LAN access for a single Bluetooth device or multiple Bluetooth devices. It can also provide PC to PC connection using PPP networking over serial cable emulation.

In FreeBSD, these profiles are implemented with ppp(8) and the rfcomm_pppd(8) wrapper which converts a Bluetooth connection into something PPP can use. Before a profile can be used, a new PPP label must be created in /etc/ppp/ppp.conf. Consult rfcomm_pppd(8) for examples.

In this example, rfcomm_pppd(8) is used to open a connection to a remote device with a BD_ADDR of 00:80:37:29:19:a4 on a DUNRFCOMM channel:
The actual channel number will be obtained from the remote device using the SDP protocol. It is possible to specify the RFCOMM channel by hand, and in this case `rfcomm_pppd(8)` will not perform the SDP query. Use `sdpcontrol(8)` to find out the RFCOMM channel on the remote device.

In order to provide network access with the PPPLAN service, `sdpd(8)` must be running and a new entry for LAN clients must be created in `/etc/ppp/ppp.conf`. Consult `rfcomm_pppd(8)` for examples.

Finally, start the RFCOMMPPP server on a valid RFCOMM channel number. The RFCOMMPPP server will automatically register the Bluetooth LAN service with the local SDP daemon. The example below shows how to start the RFCOMMPPP server.

```
# rfcomm_pppd -s -C 7 -l rfcomm-server
```

This section provides an overview of the various Bluetooth protocols, their function, and associated utilities.

31.5.5.1. Logical Link Control and Adaptation Protocol (L2CAP)

The Logical Link Control and Adaptation Protocol (L2CAP) provides connection-oriented and connectionless data services to upper layer protocols. L2CAP permits higher level protocols and applications to transmit and receive L2CAP data packets up to 64 kilobytes in length.

L2CAP is based around the concept of **channels**. A channel is a logical connection on top of a baseband connection, where each channel is bound to a single protocol in a many-to-one fashion. Multiple channels can be bound to the same protocol, but a channel cannot be bound to multiple protocols. Each L2CAP packet received on a channel is directed to the appropriate higher level protocol. Multiple channels can share the same baseband connection.

In FreeBSD, a netgraph L2CAP node is created for each Bluetooth device. This node is normally connected to the downstream Bluetooth HCI node and upstream Bluetooth socket nodes. The default name for the L2CAP node is "devicel2cap". For more details refer to `ng_l2cap(4)`.

A useful command is `l2ping(8)`, which can be used to ping other devices. Some Bluetooth implementations might not return all of the data sent to them, so 0 bytes in the following example is normal.

```
# l2ping -a 00:80:37:29:19:a4
0 bytes from 0:80:37:29:19:a4
seq_no = 0
time = 48.633 ms
result = 0
```

```
0 bytes from 0:80:37:29:19:a4
seq_no = 1
time = 37.551 ms
result = 0
```

```
0 bytes from 0:80:37:29:19:a4
seq_no = 2
time = 28.324 ms
result = 0
```

```
0 bytes from 0:80:37:29:19:a4
seq_no = 3
time = 46.150 ms
result = 0
```

The `l2control(8)` utility is used to perform various operations on L2CAP nodes. This example shows how to obtain the list of logical connections (channels) and the list of baseband connections for the local device:

```
% l2control
-a
```

```
L2CAP channels:
Remote BD_ADDR     SCID/ DCID   PSM  IMTU/ OMTU State
```

Another diagnostic tool is `btsockstat(1)`. It is similar to `netstat(1)`, but for Bluetooth network-related data structures. The example below shows the same logical connection as `l2control(8)` above.

```
% btsockstat
```

Active L2CAP sockets

<table>
<thead>
<tr>
<th>PCB</th>
<th>Recv-Q</th>
<th>Send-Q</th>
<th>Local address/PSM</th>
<th>Foreign address</th>
<th>CID</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>c2afe900</td>
<td>0</td>
<td>0</td>
<td>00:02:72:00:d4:1a/3</td>
<td>00:07:e0:00:0b:ca</td>
<td>66</td>
<td>OPEN</td>
</tr>
</tbody>
</table>

Active RFCOMM sessions

<table>
<thead>
<tr>
<th>L2PCB</th>
<th>PCB</th>
<th>Flag</th>
<th>MTU</th>
<th>Out-Q</th>
<th>DLCs</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>c2afe900</td>
<td>c2b53380</td>
<td>1</td>
<td>127</td>
<td>0</td>
<td>Yes</td>
<td>OPEN</td>
</tr>
</tbody>
</table>

Active RFCOMM sockets

<table>
<thead>
<tr>
<th>PCB</th>
<th>Recv-Q</th>
<th>Send-Q</th>
<th>Local address</th>
<th>Foreign address</th>
<th>Chan</th>
<th>DLCI</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>c2e8bc80</td>
<td>0</td>
<td>250</td>
<td>00:02:72:00:d4:1a</td>
<td>00:07:e0:00:0b:ca</td>
<td>3</td>
<td>6</td>
<td>OPEN</td>
</tr>
</tbody>
</table>

31.5.5.2. Radio Frequency Communication (RFCOMM)

The RFCOMM protocol provides emulation of serial ports over the L2CAP protocol. RFCOMM is a simple transport protocol, with additional provisions for emulating the 9 circuits of RS-232 (EIA/TIA-232-E) serial ports. It supports up to 60 simultaneous connections (RFCOMM channels) between two Bluetooth devices.

For the purposes of RFCOMM, a complete communication path involves two applications running on the communication endpoints with a communication segment between them. RFCOMM is intended to cover applications that make use of the serial ports of the devices in which they reside. The communication segment is a direct connect Bluetooth link from one device to another. RFCOMM is only concerned with the connection between the devices in the direct connect case, or between the device and a modem in the network case. RFCOMM can support other configurations, such as modules that communicate via Bluetooth wireless technology on one side and provide a wired interface on the other side.

In FreeBSD, RFCOMM is implemented at the Bluetooth sockets layer.

31.5.5.3. Service Discovery Protocol (SDP)

The Service Discovery Protocol (SDP) provides the means for client applications to discover the existence of services provided by server applications as well as the attributes of those services. The attributes of a service include the type or class of service offered and the mechanism or protocol information needed to utilize the service.

SDP involves communication between a SDP server and a SDP client. The server maintains a list of service records that describe the characteristics of services associated with the server. Each service record contains information about a single service. A client may retrieve information from a service record maintained by the SDP server by issuing a SDP request. If the client, or an application associated with the client, decides to use a service, it must open a separate connection to the service provider in order to utilize the service. SDP provides a mechanism for discovering services and their attributes, but it does not provide a mechanism for utilizing those services.
Normally, a SDP client searches for services based on some desired characteristics of the services. However, there are times when it is desirable to discover which types of services are described by an SDP server's service records without any prior information about the services. This process of looking for any offered services is called **browsing**.

The Bluetooth SDP server, `sdpd(8)`, and command line client, `sdpcontrol(8)`, are included in the standard FreeBSD installation. The following example shows how to perform a SDP browse query.

```
% sdpcontrol -a 00:01:03:fc:6e:ec browse
Record Handle: 0x00000000
Service Class ID List:
  Service Discovery Server (0x1000)
Protocol Descriptor List:
  L2CAP (0x0100)
  Protocol specific parameter #1: u/int/uuid16 1
  Protocol specific parameter #2: u/int/uuid16 1
Record Handle: 0x00000001
Service Class ID List:
  Browse Group Descriptor (0x1001)
Record Handle: 0x00000002
Service Class ID List:
  LAN Access Using PPP (0x1102)
Protocol Descriptor List:
  L2CAP (0x0100)
  RFCOMM (0x0003)
  Protocol specific parameter #1: u/int8/bool 1
Bluetooth Profile Descriptor List:
  LAN Access Using PPP (0x1102) ver. 1.0
```

Note that each service has a list of attributes, such as the RFCOMM channel. Depending on the service, the user might need to make note of some of the attributes. Some Bluetooth implementations do not support service browsing and may return an empty list. In this case, it is possible to search for the specific service. The example below shows how to search for the OBEX Object Push (OPUSH) service:

```
% sdpcontrol -a 00:01:03:fc:6e:ec search OPUSH
```

Offering services on FreeBSD to Bluetooth clients is done with the `sdpd(8)` server. The following line can be added to `/etc/rc.conf`:

```
sdpd_enable="YES"
```

Then the `sdpd(8)` daemon can be started with:
The local server application that wants to provide a Bluetooth service to remote clients will register the service with the local SDP daemon. An example of such an application is `rfcomm_pppd(8)`. Once started, it will register the Bluetooth LAN service with the local SDP daemon.

The list of services registered with the local SDP server can be obtained by issuing a SDP browse query via the local control channel:

```
# sdpcontrol -l browse
```

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| OBEX Object Push (OPUSH) | Object Exchange (OBEX) is a widely used protocol for simple file transfers between mobile devices. Its main use is in infrared communication, where it is used for generic file transfers between notebooks or PDAs, and for sending business cards or calendar entries between cellular phones and other devices with Personal Information Manager (PIM) applications. The OBEX server and client are implemented by `obexapp`, which can be installed using the `comms/obexapp` package or port. The OBEX client is used to push and/or pull objects from the OBEX server. An example object is a business card or an appointment. The OBEX client can obtain the RFCOMM channel number from the remote device via SDP. This can be done by specifying the service name instead of the RFCOMM channel number. Supported service names are: `IrMC`, `FTRN`, and `OPUSH`. It is also possible to specify the RFCOMM channel as a number. Below is an example of an OBEX session where the device information object is pulled from the cellular phone, and a new object, the business card, is pushed into the phone's directory.

```
% obexapp -a 00:80:37:29:19:a4 -C IrMC
obex> get telecom/devinfo.txt devinfo-t39.txt
Success, response: OK, Success (0x20)
obex> put new.vcf
Success, response: OK, Success (0x20)
obex> di
Success, response: OK, Success (0x20)
```

In order to provide the OPUSH service, `sdpd(8)` must be running and a root folder, where all incoming objects will be stored, must be created. The default path to the root folder is `/var/spool/obex`. Finally, start the OBEX server on a valid RFCOMM channel number. The OBEX server will automatically register the OPUSH service with the local SDP daemon. The example below shows how to start the OBEX server.

```
# obexapp -s -C 10
```

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Port Profile (SPP)</td>
<td>The Serial Port Profile (SPP) allows Bluetooth devices to perform serial cable emulation. This profile allows legacy applications to use Bluetooth as a cable replacement, through a virtual serial port abstraction. In FreeBSD, <code>rfcomm_sppd(1)</code> implements SPP and a pseudo tty is used as a virtual serial port.</td>
</tr>
</tbody>
</table>
abstraction. The example below shows how to connect to a remote device's serial port service. A RFCOMM channel does not have to be specified as rfcomm_sppd(1) can obtain it from the remote device via SDP. To override this, specify a RFCOMM channel on the command line.

```
# rfcomm_sppd -a 00:07:E0:00:0B:CA -t
```

/dev/pts/6

Once connected, the pseudo tty can be used as serial port:

```
# cu -l /dev/pts/6
```

The pseudo tty is printed on stdout and can be read by wrapper scripts:

```
PTS=`rfcomm_sppd -a 00:07:E0:00:0B:CA -t`
querry

```cu -l $PTS```

31.5.6.

By default, when FreeBSD is accepting a new connection, it tries to perform a role switch and become master. Some older Bluetooth devices which do not support role switching will not be able to connect. Since role switching is performed when a new connection is being established, it is not possible to ask the remote device if it supports role switching. However, there is a HCI option to disable role switching on the local side:

```
# hccontrol -n ubt0hci write_node_role_switch 0
```

To display Bluetooth packets, use the third-party package hcidump, which can be installed using the `comms/hcidump` package or port. This utility is similar to `tcpdump(1)` and can be used to display the contents of Bluetooth packets on the terminal and to dump the Bluetooth packets to a file.

31.6.

It is sometimes useful to divide a network, such as an Ethernet segment, into network segments without having to create IP subnets and use a router to connect the segments together. A device that connects two networks together in this fashion is called a "bridge".

A bridge works by learning the MAC addresses of the devices on each of its network interfaces. It forwards traffic between networks only when the source and destination MAC addresses are on different networks. In many respects, a bridge is like an Ethernet switch with very few ports. A FreeBSD system with multiple network interfaces can be configured to act as a bridge.

Bridging can be useful in the following situations:

Connecting Networks

The basic operation of a bridge is to join two or more network segments. There are many reasons to use a host-based bridge instead of networking equipment, such as cabling constraints or firewalling. A bridge can also connect a wireless interface running in hostap mode to a wired network and act as an access point.
Filtering/Traffic Shaping Firewall

A bridge can be used when firewall functionality is needed without routing or Network Address Translation (NAT).

An example is a small company that is connected via DSL or ISDN to an ISP. There are thirteen public IP addresses from the ISP and ten computers on the network. In this situation, using a router-based firewall is difficult because of subnetting issues. A bridge-based firewall can be configured without any IP addressing issues.

Network Tap

A bridge can join two network segments in order to inspect all Ethernet frames that pass between them using `bpf(4)` and `tcpdump(1)` on the bridge interface or by sending a copy of all frames out an additional interface known as a span port.

Layer 2 VPN

Two Ethernet networks can be joined across an IP link by bridging the networks to an EtherIP tunnel or a `tap(4)` based solution such as OpenVPN.

Layer 2 Redundancy

A network can be connected together with multiple links and use the Spanning Tree Protocol (STP) to block redundant paths.

This section describes how to configure a FreeBSD system as a bridge using `if_bridge(4)`. A netgraph bridging driver is also available, and is described in `ng_bridge(4)`.

Packet filtering can be used with any firewall package that hooks into the `pfil(9)` framework. The bridge can be used as a traffic shaper with `altq(4)` or `dummynet(4)`.

31.6.1. 開啟橋接

In FreeBSD, `if_bridge(4)` is a kernel module which is automatically loaded by `ifconfig(8)` when creating a bridge interface. It is also possible to compile bridge support into a custom kernel by adding `device if_bridge` to the custom kernel configuration file.

The bridge is created using interface cloning. To create the bridge interface:

```
# ifconfig bridge create
bridge0
# ifconfig bridge0
bridge0:
  flags = 8802<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500
  ether 96:3d:4b:f1:79:7a
  id 00:00:00:00:00:00 priority 32768 hellotime 2 fwddelay 15
  maxage 20 holdcnt 6 proto rstp maxaddr 100
  timeout 1200

root id 00:00:00:00:00:00 priority 0 ifcost 0 port 0
```

When a bridge interface is created, it is automatically assigned a randomly generated Ethernet address. The `maxaddr` and `timeout` parameters control how many MAC addresses the bridge will keep in its forwarding table and how many seconds before each entry is removed after it is last seen. The other parameters control how STP operates.

Next, specify which network interfaces to add as members of the bridge. For the bridge to forward packets, all member interfaces and the bridge need to be up:
The bridge can now forward Ethernet frames between `fxp0` and `fxp1`. Add the following lines to `/etc/rc.conf` so the bridge is created at startup:

```
cloned_interfaces="bridge0"
ifconfig_bridge0="addm fxp0 addm fxp1 up"
ifconfig_fxp0="up"
ifconfig_fxp1="up"
```

If the bridge host needs an IP address, set it on the bridge interface, not on the member interfaces.

The address can be set statically or via DHCP. This example sets a static IP address:

```
# ifconfig bridge0 inet 192.168.0.1/24
```

It is also possible to assign an IPv6 address to a bridge interface. To make the changes permanent, add the addressing information to `/etc/rc.conf`.

When packet filtering is enabled, bridged packets will pass through the filter inbound on the originating interface on the bridge interface, and outbound on the appropriate interfaces. Either stage can be disabled. When direction of the packet flow is important, it is best to firewall on the member interfaces rather than the bridge itself.

The bridge has several configurable settings for passing non-IP and IP packets, and layer2 firewalling with `ipfw(8)`. See `if_bridge(4)` for more information.

31.6.2.

開啟 Spanning Tree

For an Ethernet network to function properly, only one active path can exist between two devices. The STP protocol detects loops and puts redundant links into a blocked state. Should one of the active links fail, STP calculates a different tree and enables one of the blocked paths to restore connectivity to all points in the network.

The Rapid Spanning Tree Protocol (RSTP or 802.1w) provides backwards compatibility with legacy STP. RSTP provides faster convergence and exchanges information with neighboring switches to quickly transition to forwarding mode without creating loops. FreeBSD supports RSTP and STP as operating modes, with RSTP being the default mode.

STP can be enabled on member interfaces using `ifconfig(8)`. For a bridge with `fxp0` and `fxp1` as the current interfaces, enable STP with:

```
# ifconfig bridge0 stp fxp0 stp fxp1
```

```
bridge0:
flags = 8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
ether d6:cf:d5:a0:94:6d
id 00:01:02:4b:d4:50 priority 32768 hellotime 2 fwddelay 15
maxage 20 holdcnt 6 proto rstp maxaddr 100
timeout 1200
root id 00:01:02:4b:d4:50 priority 32768 ifcost 0 port 0
```

```
This bridge has a spanning tree ID of 00:01:02:4b:d4:50 and a priority of 32768. As the root id is the same, it indicates that this is the root bridge for the tree.

Another bridge on the network also has STP enabled:

```
bridge0:
 flags = 8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST>
 metric 0 mtu 1500
 ether 96:3d:4b:f1:79:7a
 id 00:13:d4:9a:06:7a priority 32768 hellotime 2 fwddelay 15
 maxage 20 holdcnt 6 proto rstp maxaddr 100
 timeout 1200
 root id 00:01:02:4b:d4:50 priority 32768 ifcost 400000 port 4
```

The line `root id 00:01:02:4b:d4:50 priority 32768 ifcost 400000 port 4` shows that the root bridge is 00:01:02:4b:d4:50 and has a path cost of 400000 from this bridge. The path to the root bridge is via port 4 which is fxp0.

Several `ifconfig` parameters are unique to bridge interfaces. This section summarizes some common uses for these parameters. The complete list of available parameters is described in `ifconfig(8)`.

**Private**

A private interface does not forward any traffic to any other port that is also designated as a private interface. The traffic is blocked unconditionally so no Ethernet frames will be forwarded, including ARP packets. If traffic needs to be selectively blocked, a firewall should be used instead.

**Span**

A span port transmits a copy of every Ethernet frame received by the bridge. The number of span ports configured on a bridge is unlimited, but if an interface is designated as a span port, it cannot also be used as a regular bridge port. This is most useful for snooping a bridged network passively on another host connected to one of the span ports of the bridge. For example, to send a copy of all frames out the interface named `fxp4`:

```
ifconfig bridge0 span fxp4
```
If a bridge member interface is marked as sticky, dynamically learned address entries are treated as static entries in the forwarding cache. Sticky entries are never aged out of the cache or replaced, even if the address is seen on a different interface. This gives the benefit of static address entries without the need to pre-populate the forwarding table. Clients learned on a particular segment of the bridge cannot roam to another segment.

An example of using sticky addresses is to combine the bridge with VLANs in order to isolate customer networks without wasting IP address space. Consider that CustomerA is on vlan100, CustomerB is on vlan101, and the bridge has the address 192.168.0.1:

```bash
ifconfig bridge0 addm vlan100 sticky vlan100 addm vlan101 sticky vlan101
ifconfig bridge0 inet 192.168.0.1/24
```

In this example, both clients see 192.168.0.1 as their default gateway. Since the bridge cache is sticky, one host cannot spoof the MAC address of the other customer in order to intercept their traffic.

Any communication between the VLANs can be blocked using a firewall or, as seen in this example, private interfaces:

```bash
ifconfig bridge0 private vlan100 private vlan101
```

The customers are completely isolated from each other and the full /24 address range can be allocated without subnetting.

The number of unique source MAC addresses behind an interface can be limited. Once the limit is reached, packets with unknown source addresses are dropped until an existing host cache entry expires or is removed.

The following example sets the maximum number of Ethernet devices for CustomerA on vlan100 to 10:

```bash
ifconfig bridge0 ifmaxaddr vlan100 10
```

Bridge interfaces also support monitor mode, where the packets are discarded after bpf(4) processing and are not processed or forwarded further. This can be used to multiplex the input of two or more interfaces into a single bpf(4) stream. This is useful for reconstructing the traffic for network taps that transmit the RX/TX signals out through two separate interfaces. For example, to read the input from four network interfaces as one stream:

```bash
ifconfig bridge0 addm fxp0 addm fxp1 addm fxp2 addm fxp3 monitor up
tcpdump -i bridge0
```

31.6.4 SNMP

The bridge interface and STP parameters can be monitored via bsnmpd(1) which is included in the FreeBSD base system. The exported bridge MIBs conform to IETF standards so any SNMP client or monitoring package can be used to retrieve the data.

To enable monitoring on the bridge, uncomment this line in `/etc/snmpd.config` by removing the beginning `#` symbol:
Other configuration settings, such as community names and access lists, may need to be modified in this file. See bsnmpd(1) and snmp_bridge(3) for more information. Once these edits are saved, add this line to /etc/rc.conf:

```
bsnmpd_enable="YES"
```

Then, start bsnmpd(1):

```
service bsnmpd start
```

The following examples use the Net-SNMP software (net-mgmt/net-snmp) to query a bridge from a client system. The net-mgmt/bsnmptools port can also be used. From the SNMP client which is running Net-SNMP, add the following lines to $HOME/.snmp/snmp.conf in order to import the bridge MIB definitions:

```
mibdirs +/usr/shared/snmp/mibs
mibs +BRIDGE-MIB:RSTP-MIB:BEGEMOT-MIB:BEGEMOT-BRIDGE-MIB
```

To monitor a single bridge using the IETF BRIDGE-MIB (RFC4188):

```
% snmpwalk -v 2c -c public bridge1.example.com mib-2.dot1dBridge
```

```
BRIDGE-MIB::dot1dBaseBridgeAddress.0 = STRING: 66:fb:9b:6e:5c:44
```

```
BRIDGE-MIB::dot1dBaseNumPorts.0 = INTEGER: 1 ports
```

```
BRIDGE-MIB::dot1dStpTimeSinceTopologyChange.0 = Timeticks: (189959)
```

```
0:31:39.59 centiseconds
```

```
BRIDGE-MIB::dot1dStpTopChanges.0 = Counter32: 2
```

```
BRIDGE-MIB::dot1dStpDesignatedRoot.0 = Hex-STRING: 80 00 00 01 02 4B D4 50
```

```
...
```

```
BRIDGE-MIB::dot1dStpPortState.3 = INTEGER: forwarding (5)
```

```
BRIDGE-MIB::dot1dStpPortEnable.3 = INTEGER: enabled (1)
```

```
BRIDGE-MIB::dot1dStpPortPathCost.3 = INTEGER: 200000
```

```
BRIDGE-MIB::dot1dStpPortDesignatedRoot.3 = Hex-STRING: 80 00 00 01 02 4B D4 50
```

```
BRIDGE-MIB::dot1dStpPortDesignatedCost.3 = INTEGER: 0
```

```
BRIDGE-MIB::dot1dStpPortDesignatedBridge.3 = Hex-STRING: 80 00 00 01 02 4B D4 50
```

```
BRIDGE-MIB::dot1dStpPortDesignatedPort.3 = Hex-STRING: 03 80
```

```
BRIDGE-MIB::dot1dStpPortForwardTransitions.3 = Counter32: 1
```

```
RSTP-MIB::dot1dStpVersion.0 = INTEGER: rstp (2)
```

The dot1dStpTopChanges.0 value is two, indicating that the STP bridge topology has changed twice. A topology change means that one or more links in the network have changed or failed and a new tree has been calculated. The dot1dStpTimeSinceTopologyChange.0 value will show when this happened.
To monitor multiple bridge interfaces, the private BEGEMOT-BRIDGE-MIB can be used:

% snmpwalk
-v 2c
-c public bridge1.example.com
enterprises.fokus.begemot.begemotBridge
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseName.
"bridge0" = STRING: bridge0
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseName.
"bridge2" = STRING: bridge2
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseAddress.
"bridge0" = STRING: e:ce:3b:5a:9e:13
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseAddress.
"bridge2" = STRING: 12:5e:4d:74:dc:fc
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseNumPorts.
"bridge0" = INTEGER: 1
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseNumPorts.
"bridge2" = INTEGER: 1

...
BEGEMOT-BRIDGE-MIB::begemotBridgeStpTimeSinceTopologyChange.
"bridge0" = Timeticks: (116927) 0:19:29.27 centi-seconds
BEGEMOT-BRIDGE-MIB::begemotBridgeStpTimeSinceTopologyChange.
"bridge2" = Timeticks: (82773) 0:13:47.73 centi-seconds
BEGEMOT-BRIDGE-MIB::begemotBridgeStpTopChanges.
"bridge0" = Counter32: 1
BEGEMOT-BRIDGE-MIB::begemotBridgeStpTopChanges.
"bridge2" = Counter32: 1
BEGEMOT-BRIDGE-MIB::begemotBridgeStpDesignatedRoot.
"bridge0" = Hex-STRING: 80 00
00 40 95 30 5E 31
BEGEMOT-BRIDGE-MIB::begemotBridgeStpDesignatedRoot.
"bridge2" = Hex-STRING: 80 00
00 50 8B B8 C6 A9

To change the bridge interface being monitored via the mib-2.dot1dBridge subtree:

% snmpset
-v 2c
-c private bridge1.example.com
BEGEMOT-BRIDGE-MIB::begemotBridgeDefaultBridgeIf.
0 = bridge2
31.7. Link Aggregation

FreeBSD provides the lagg(4) interface which can be used to aggregate multiple network interfaces into one virtual interface in order to provide failover and link aggregation. Failover allows traffic to continue to flow as long as at least one aggregated network interface has an established link. Link aggregation works best on switches which support LACP, as this protocol distributes traffic bi-directionally while responding to the failure of individual links.

The aggregation protocols supported by the lagg interface determine which ports are used for outgoing traffic and whether or not a specific port accepts incoming traffic. The following protocols are supported by lagg(4):

- **failover**
  This mode sends and receives traffic only through the master port. If the master port becomes unavailable, the next active port is used. The first interface added to the virtual interface is the master port and all subsequently added interfaces are used as failover devices. If failover to a non-master port occurs, the original port becomes master once it becomes available again.
- **fec / loadbalance**
  Cisco™ Fast EtherChannel™ (FEC) is found on older Cisco™ switches. It provides a static setup and does not negotiate aggregation with the peer or exchange frames to monitor the link. If the switch supports LACP, that should be used instead.
The IEEE™ 802.3ad Link Aggregation Control Protocol (LACP) negotiates a set of aggregable links with the peer into one or more Link Aggregated Groups (LAGs). Each LAG is composed of ports of the same speed, set to full-duplex operation, and traffic is balanced across the ports in the LAG with the greatest total speed. Typically, there is only one LAG which contains all the ports. In the event of changes in physical connectivity, LACP will quickly converge to a new configuration.

LACP balances outgoing traffic across the active ports based on hashed protocol header information and accepts incoming traffic from any active port. The hash includes the Ethernet source and destination address and, if available, the VLAN tag, and the IPv4 or IPv6 source and destination address.

LACP distributes outgoing traffic using a round-robin scheduler through all active ports and accepts incoming traffic from any active port. Since this mode violates Ethernet frame ordering, it should be used with caution.

This section demonstrates how to configure a Cisco™ switch and a FreeBSD system for LACP load balancing. It then shows how to configure two Ethernet interfaces in failover mode as well as how to configure failover mode between an Ethernet and a wireless interface.

This example connects two fxp(4) Ethernet interfaces on a FreeBSD machine to the first two Ethernet ports on a Cisco™ switch as a single load balanced and fault tolerant link. More interfaces can be added to increase throughput and fault tolerance. Replace the names of the Cisco™ ports, Ethernet devices, channel group number, and IP address shown in the example to match the local configuration.

Frame ordering is mandatory on Ethernet links and any traffic between two stations always flows over the same physical link, limiting the maximum speed to that of one interface. The transmit algorithm attempts to use as much information as it can to distinguish different traffic flows and balance the flows across the available interfaces.

On the Cisco™ switch, add the FastEthernet0/1 and FastEthernet0/2 interfaces to channel group 1:

```
interface FastEthernet0/1
channel-group 1 mode active
channel-protocol lacp
!
interface FastEthernet0/2
channel-group 1 mode active
channel-protocol lacp
```

On the FreeBSD system, create the lagg(4) interface using the physical interfaces fxp0 and fxp1 and bring the interfaces up with an IP address of 10.0.0.3/24:

```
ifconfig fxp0 up
ifconfig fxp1 up
ifconfig lagg0 create
ifconfig lagg0 up laggproto lacp laggport fxp0 laggport fxp1 10.0.0.3/24
```
Next, verify the status of the virtual interface:

```
ifconfig lagg0
lagg0:
 flags = 8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
 options = 8<VLAN_MTU>
 ether 00:05:5d:71:8d:b8
 inet 10.0.0.3 netmask 0xffffff00 broadcast 10.0.0.255
 media: Ethernet autoselect
 status: active
 laggproto lacp
 laggport: fxp1
 flags = 1c<ACTIVE,COLLECTING,DISTRIBUTING>
 laggport: fxp0
 flags = 1c<ACTIVE,COLLECTING,DISTRIBUTING>
```

Ports marked as `ACTIVE` are part of the LAG that has been negotiated with the remote switch. Traffic will be transmitted and received through these active ports. Add `-v` to the above command to view the LAG identifiers.

To see the port status on the Cisco™ switch:

```
switch# show lacp neighbor
```

<table>
<thead>
<tr>
<th>Flags</th>
<th>S - Device is requesting Slow LACPDUs</th>
<th>F - Device is requesting Fast LACPDUs</th>
<th>A - Device is in Active mode</th>
<th>P - Device is in Passive mode</th>
</tr>
</thead>
</table>

Channel group 1 neighbors

<table>
<thead>
<tr>
<th>Partner's information:</th>
</tr>
</thead>
<tbody>
<tr>
<td>LACP port</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Fa0/1</td>
</tr>
<tr>
<td>Fa0/2</td>
</tr>
</tbody>
</table>

For more detail, type `show lacp neighbor detail`.

To retain this configuration across reboots, add the following entries to `/etc/rc.conf` on the FreeBSD system:

```
ifconfig_fxp0="up"
ifconfig_fxp1="up"
cloned_interfaces="lagg0"
ifconfig_lagg0="laggproto lacp laggport fxp0 laggport fxp1 10.0.0.3/24"
```
Failover mode can be used to switch over to a secondary interface if the link is lost on the master interface. To configure failover, make sure that the underlying physical interfaces are up, then create the lagg(4) interface. In this example, fxp0 is the master interface, fxp1 is the secondary interface, and the virtual interface is assigned an IP address of 10.0.0.15/24:

```
ifconfig fxp0 up
ifconfig fxp1 up
ifconfig lagg0 create
ifconfig lagg0 up laggproto failover laggport fxp0 laggport fxp1 10.0.0.15/24
```

The virtual interface should look something like this:

```
ifconfig lagg0
lagg0:
 flags = 8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
 options = 8<VLAN_MTU>
 ether 00:05:5d:71:8d:b8
 inet 10.0.0.15 netmask 0xffffff00 broadcast 10.0.0.255
 media: Ethernet autoselect
 status: active
 laggproto failover
 laggport: fxp1
 flags = 0>
 laggport: fxp0
 flags = 5<MASTER,ACTIVE>
```

Traffic will be transmitted and received on fxp0. If the link is lost on fxp0, fxp1 will become the active link. If the link is restored on the master interface, it will once again become the active link.

To retain this configuration across reboots, add the following entries to /etc/rc.conf:

```
ifconfig_fxp0="up"
ifconfig_fxp1="up"
cloned_interfaces="lagg0"
ifconfig_lagg0="laggproto failover laggport fxp0 laggport fxp1 10.0.0.15/24"
```

For laptop users, it is usually desirable to configure the wireless device as a secondary which is only used when the Ethernet connection is not available. With lagg(4), it is possible to configure a failover which prefers the Ethernet connection for both performance and security reasons, while maintaining the ability to transfer data over the wireless connection.

This is achieved by overriding the physical wireless interface's MAC address with that of the Ethernet interface.

In this example, the Ethernet interface, bge0, is the master and the wireless interface, wlan0, is the failover. The wlan0 device was created from iwn0 wireless interface, which will be configured with the MAC address of the Ethernet interface. First, determine the MAC address of 706.
the Ethernet interface:

```
ifconfig bge0
bge0: flags = 8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
options = 19b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM,TSO4>
ether 00:21:70:da:ae:37
inet6 fe80::221:70ff:feda:ae37%bge0 prefixlen 64 scopeid 0x2
nd6 options = 29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL>
media: Ethernet autoselect (1000baseT <full-duplex>)
status: active
```

Replace `bge0` to match the system's Ethernet interface name. The `ether` line will contain the MAC address of the specified interface. Now, change the MAC address of the underlying wireless interface:

```
ifconfig iwn0 ether 00:21:70:da:ae:37
```

Bring the wireless interface up, but do not set an IP address:

```
ifconfig wlan0 create wlandev iwn0 ssid my_router up
```

Make sure the `bge0` interface is up, then create the `lagg(4)` interface with `bge0` as master with failover to `wlan0`:

```
ifconfig bge0 up
ifconfig lagg0 create
ifconfig lagg0 up laggproto failover laggport bge0 laggport wlan0
```

The virtual interface should look something like this:

```
ifconfig lagg0
lagg0: flags = 8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
options = 8<VLAN_MTU>
ether 00:21:70:da:ae:37
media: Ethernet autoselect
status: active
laggproto failover
laggport: wlan0 flags = 0<>
laggport: bge0 flags = 5<MASTER,ACTIVE>
```

Then, start the DHCP client to obtain an IP address:
To retain this configuration across reboots, add the following entries to `/etc/rc.conf`:

```
ifconfig_bge0="up"
wlan0_iwn0="wlan0"
ifconfig_wlan0="WPA"
create_args_wlan0="wlanaddr 00:21:70:da:ae:37"
cloned_interfaces="lagg0"
ifconfig_lagg0="up laggproto failover laggport bge0 laggport wlan0 DHCP"
```

The Intel™ Preboot eXecution Environment (PXE) allows an operating system to boot over the network. For example, a FreeBSD system can boot over the network and operate without a local disk, using file systems mounted from an NFS server. PXE support is usually available in the BIOS.

To use PXE when the machine starts, select the **Boot from network** option in the BIOS setup or type a function key during system initialization.

In order to provide the files needed for an operating system to boot over the network, a PXE setup also requires properly configured DHCP, TFTP, and NFS servers, where:

- Initial parameters, such as an IP address, executable boot filename and location, server name, and root path are obtained from the DHCP server.
- The operating system loader file is booted using TFTP.
- The file systems are loaded using NFS.

When a computer PXE boots, it receives information over DHCP about where to obtain the initial boot loader file. After the host computer receives this information, it downloads the boot loader via TFTP and then executes the boot loader. In FreeBSD, the boot loader file is `/boot/pxeboot`. After `/boot/pxeboot` executes, the FreeBSD kernel is loaded and the rest of the FreeBSD bootup sequence proceeds, as described in *FreeBSD*.

This section describes how to configure these services on a FreeBSD system so that other systems can PXE boot into FreeBSD. Refer to `diskless(8)` for more information.

As described, the system providing these services is insecure. It should live in a protected area of a network and be untrusted by other hosts.

### 31.8.1. Setting up PXE Environment

The steps shown in this section configure the built-in NFS and TFTP servers. The next section demonstrates how to install and configure the DHCP server. In this example, the directory which will contain the files used by PXE users is `/b/tftpboot/FreeBSD/install`. It is important that this directory exists and that the same directory name is set in both `/etc/inetd.conf` and `/usr/local/etc/dhcpd.conf`.

1. Create the root directory which will contain a FreeBSD installation to be NFS mounted:

   ```
 # export NFSROOTDIR=/b/tftpboot/FreeBSD/install
   ```
2. Enable the NFS server by adding this line to /etc/rc.conf:

```
nfs_server_enable="YES"
```

3. Export the diskless root directory via NFS by adding the following to /etc/exports:

```
/b -ro -alldirs -maproot=root
```

4. Start the NFS server:

```
service nfsd start
```

5. Enable `inetd(8)` by adding the following line to /etc/rc.conf:

```
inetd_enable="YES"
```

6. Uncomment the following line in /etc/inetd.conf by making sure it does not start with a `#` symbol:

```
tftp dgram udp wait root /usr/libexec/tftpd tftpd -l -s /b/tftpboot
```

Some PXE versions require the TCP version of TFTP. In this case, uncomment the second `tftp` line which contains `stream tcp`.

7. Start `inetd(8)`:

```
service inetd start
```

8. Install the base system into `${NFSROOTDIR}`, either by decompressing the official archives or by rebuilding the FreeBSD kernel and userland (refer to FreeBSD for more detailed instructions, but do not forget to add `DESTDIR=${NFSROOTDIR}` when running the `make installkernel` and `make installworld` commands.

9. Test that the TFTP server works and can download the boot loader which will be obtained via PXE:

```
tftp localhost
 tftp> get FreeBSD/install/boot/pxeboot

Received 264951 bytes in 0.1 seconds
```

10. Edit `${NFSROOTDIR}/etc/fstab` and create an entry to mount the root file system over NFS:

```
Device Mountpoint FSType Options Dump Pass
```

709
Replace `myhost.example.com` with the hostname or IP address of the NFS server. In this example, the root file system is mounted read-only in order to prevent NFS clients from potentially deleting the contents of the root file system.

11. Set the root password in the PXE environment for client machines which are PXE booting:
   ```bash
 # chroot ${NFSROOTDIR}
 # passwd
   ```

12. If needed, enable `sshd(1)` root logins for client machines which are PXE booting by editing ${NFSROOTDIR}/etc/ssh/sshd_config and enabling `PermitRootLogin`. This option is documented in `sshd_config(5)`.

13. Perform any other needed customizations of the PXE environment in ${NFSROOTDIR}.
   These customizations could include things like installing packages or editing the password file with `vipw(8)`.

When booting from an NFS root volume, `/etc/rc` detects the NFS boot and runs `/etc/rc.initdiskless`.

In this case, `/etc` and `/var` need to be memory backed file systems so that these directories are writable but the NFS root directory is read-only:

```bash
chroot ${NFSROOTDIR}
mkdir -p conf/base
tar -c -v -f conf/base/etc.cpio.gz --format cpio --gzip etc
tar -c -v -f conf/base/var.cpio.gz --format cpio --gzip var
```

When the system boots, memory file systems for `/etc` and `/var` will be created and mounted and the contents of the `cpio.gz` files will be copied into them. By default, these file systems have a maximum capacity of 5 megabytes. If your archives do not fit, which is usually the case for `/var` when binary packages have been installed, request a larger size by putting the number of 512 byte sectors needed (e.g., 5 megabytes is 10240 sectors) in `${NFSROOTDIR}/conf/base/etc/md_size` and `${NFSROOTDIR}/conf/base/var/md_size` files for `/etc` and `/var` file systems respectively.

31.8.2. 設定 DHCP 伺服器

The DHCP server does not need to be the same machine as the TFTP and NFS server, but it needs to be accessible in the network.

DHCP is not part of the FreeBSD base system but can be installed using the `net/isc-dhcp44-server` port or package.

Once installed, edit the configuration file, `/usr/local/etc/dhcpd.conf`.

Configure the `next-server`, `filename`, and `root-path` settings as seen in this example:

```text
subnet 192.168.0.0 netmask 255.255.255.0 {
range 192.168.0.2 192.168.0.3 ;
option subnet-mask 255.255.255.0 ;
option routers 192.168.0.1 ;
option broadcast-address 192.168.0.255 ;
```
The next-server directive is used to specify the IP address of the TFTP server. The filename directive defines the path to `/boot/pxeboot`. A relative filename is used, meaning that `/b/tftpboot` is not included in the path. The root-path option defines the path to the NFS root file system.

Once the edits are saved, enable DHCP at boot time by adding the following line to `/etc/rc.conf`:

```
dhcpd_enable="YES"
```

Then start the DHCP service:

```
service isc-dhcpd start
```

Once all of the services are configured and started, PXE clients should be able to automatically load FreeBSD over the network. If a particular client is unable to connect, when that client machine boots up, enter the BIOS configuration menu and confirm that it is set to boot from the network.

This section describes some troubleshooting tips for isolating the source of the configuration problem should no clients be able to PXE boot.

1. Use the `net/wireshark` package or port to debug the network traffic involved during the PXE booting process, which is illustrated in the diagram below.
On the TFTP server, read /var/log/xferlog to ensure that pxeboot is being retrieved from the correct location. To test this example configuration:

```
tftp 192.168.0.1
```
```
tftp> get FreeBSD/install/boot/pxeboot
```
```
Received 264951 bytes in 0.1 seconds
```

The BUGS sections in tftpd(8) and tftp(1) document some limitations with TFTP.

Make sure that the root file system can be mounted via NFS. To test this example configuration:

```
mount -t nfs 192.168.0.1:/b/tftpboot/FreeBSD/install /mnt
```

IPv6

IPv6 is the new version of the well known IP protocol, also known as IPv4. IPv6 provides several advantages over IPv4 as well as many new features:

- Its 128-bit address space allows for $340,282,366,920,938,463,463,374,607,431,768,211,456$ addresses. This addresses the IPv4 address shortage and eventual IPv4 address exhaustion.
- Routers only store network aggregation addresses in their routing tables, thus reducing the average space of a routing table to 8192 entries. This addresses the scalability issues associated with IPv4, which required every allocated block of IPv4 addresses to be exchanged between Internet routers, causing their routing tables to become too large to allow efficient routing.
- Address autoconfiguration (RFC2462).
- Mandatory multicast addresses.
- Built-in IPsec (IP security).
- Simplified header structure.
- Support for mobile IP.
- IPv6-to-IPv4 transition mechanisms.

FreeBSD includes the http://www.kame.net/IPv6 reference implementation and comes with everything needed to use IPv6. This section focuses on getting IPv6 configured and running.
There are three different types of IPv6 addresses:

- **Unicast**: A packet sent to a unicast address arrives at the interface belonging to the address.

- **Anycast**: These addresses are syntactically indistinguishable from unicast addresses but address a group of interfaces. The packet destined for an anycast address will arrive at the nearest router interface. Anycast addresses are only used by routers.

- **Multicast**: These addresses identify a group of interfaces. A packet destined for a multicast address will arrive at all interfaces belonging to the multicast group. The IPv4 broadcast address, usually xxx.xxx.xxx.255, is expressed by multicast addresses in IPv6.

When reading an IPv6 address, the canonical form is represented as $x:x:x:x:x:x:x:x$, where each $x$ represents a 16 bit hex value. An example is $\text{FEBC:A574:382B:23C1:AA49:4592:4EFE:9982}$.

Often, an address will have long substrings of all zeros. A :: (double colon) can be used to replace one substring per address. Also, up to three leading 0s per hex value can be omitted. For example, $\text{fe80::1}$ corresponds to the canonical form $\text{fe80:0000:0000:0000:0000:0000:0000:0001}$.

A third form is to write the last 32 bits using the well known IPv4 notation. For example, $\text{2002::10.0.0.1}$ corresponds to the hexadecimal canonical representation $\text{2002:0000:0000:0000:0000:0000:0a00:0001}$, which in turn is equivalent to $\text{2002::a00:1}$.

To view a FreeBSD system's IPv6 address, use `ifconfig(8)`:

```
ifconfig
```

```
rl0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500
inet 10.0.0.10 netmask 0xffffff00 broadcast 10.0.0.255
inet6 fe80::200:21ff:fe03:8e1%rl0 prefixlen 64 scopeid 0x1
ether 00:00:21:03:08:e1
media: Ethernet autoselect (100baseTX)
status: active
```

In this example, the `rl0` interface is using $\text{fe80::200:21ff:fe03:8e1%rl0}$, an auto-configured link-local address which was automatically generated from the MAC address.

Some IPv6 addresses are reserved. A summary of these reserved addresses is seen in the following table:

<table>
<thead>
<tr>
<th>IPv6 address</th>
<th>Prefixlength (Bits)</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>::</td>
<td>128 bits</td>
<td>unspecified</td>
</tr>
<tr>
<td>::1</td>
<td>128 bits</td>
<td>loopback address</td>
</tr>
</tbody>
</table>

:: Equivalent to 0.0.0.0 in IPv4.
::1 Equivalent to 127.0.0.1 in IPv4.
IPv6 address
Prefixlength (Bits)
説明

::00:xx:xx:xx:xx
96 bits
embedded IPv4
The lower 32 bits are the compatible IPv4 address.

::ff:xx:xx:xx:xx
96 bits
IPv4 mapped IPv6 address
The lower 32 bits are the IPv4 address for hosts which do not support IPv6.

fe80::/10
10 bits
link-local
Equivalent to 169.254.0.0/16 in IPv4.

fc00::/7
7 bits
unique-local
Unique local addresses are intended for local communication and are only routable within a set of cooperating sites.

ff00::
8 bits
multicast

2000::-3fff:
3 bits
global unicast
All global unicast addresses are assigned from this pool. The first 3 bits are 001.

For further information on the structure of IPv6 addresses, refer to RFC3513.

To configure a FreeBSD system as an IPv6 client, add these two lines to rc.conf:
ifconfig_rl0_ipv6="inet6 accept_rtadv"
rtsold_enable="YES"
The first line enables the specified interface to receive router advertisement messages. The second line enables the router solicitation daemon, rtsol(8).

If the interface needs a statically assigned IPv6 address, add an entry to specify the static address and associated prefix length:
ifconfig_rl0_ipv6="inet6 2001:db8:4672:6565:2026:5043:2d42:5344 prefixlen 64"
To assign a default router, specify its address:
ipv6_defaultrouter="2001:db8:4672:6565::1"

In order to connect to other IPv6 networks, one must have a provider or a tunnel that supports IPv6:
• Contact an Internet Service Provider to see if they offer IPv6.
• Hurricane Electric offers tunnels with end-points all around the globe.

Install the net/freenet6 package or port for a dial-up connection.
This section demonstrates how to take the directions from a tunnel provider and convert them into /etc/rc.conf settings that will persist through reboots.

The first /etc/rc.conf entry creates the generic tunneling interface gif0:

```plaintext
cloned_interfaces="gif0"
```

Next, configure that interface with the IPv4 addresses of the local and remote endpoints. Replace MY_IPv4_ADDR and REMOTE_IPv4_ADDR with the actual IPv4 addresses:

```plaintext
create_args_gif0="tunnel MY_IPv4_ADDR REMOTE_IPv4_ADDR"
```

To apply the IPv6 address that has been assigned for use as the IPv6 tunnel endpoint, add this line, replacing MY_ASSIGNED_IPv6_TUNNEL_ENDPOINT_ADDR with the assigned address:

```plaintext
ifconfig_gif0_ipv6="inet6 MY_ASSIGNED_IPv6_TUNNEL_ENDPOINT_ADDR"
```

Then, set the default route for the other side of the IPv6 tunnel. Replace MY_IPv6_REMOTE_TUNNEL_ENDPOINT_ADDR with the default gateway address assigned by the provider:

```plaintext
ipv6_defaultrouter="MY_IPv6_REMOTE_TUNNEL_ENDPOINT_ADDR"
```

If the FreeBSD system will route IPv6 packets between the rest of the network and the world, enable the gateway using this line:

```plaintext
ipv6_gateway_enable="YES"
```

31.9.4. Router Advertisement 与 Host Auto Configuration

This section demonstrates how to setup rtadvd(8) to advertise the IPv6 default route.

To enable rtadvd(8), add the following to /etc/rc.conf:

```plaintext
rtadvd_enable="YES"
```

It is important to specify the interface on which to do IPv6 router advertisement. For example, to tell rtadvd(8) to use rl0:

```plaintext
rtadvd_interfaces="rl0"
```

Next, create the configuration file, /etc/rtadvd.conf as seen in this example:

```plaintext
rl0:
:addrs#1:addr="2001:db8:1f11:246::":prefixlen#64:tc=ether:
```

715
Replace \texttt{rl0} with the interface to be used and \texttt{2001:db8:1f11:246::} with the prefix of the allocation. For a dedicated /64 subnet, nothing else needs to be changed. Otherwise, change the \texttt{prefixlen#} to the correct value.

When IPv6 is enabled on a server, there may be a need to enable IPv4 mapped IPv6 address communication. This compatibility option allows for IPv4 addresses to be represented as IPv6 addresses. Permitting IPv6 applications to communicate with IPv4 and vice versa may be a security issue. This option may not be required in most cases and is available only for compatibility. This option will allow IPv6-only applications to work with IPv4 in a dual stack environment. This is most useful for third party applications which may not support an IPv6-only environment. To enable this feature, add the following to \texttt{/etc/rc.conf}:

\begin{verbatim}
ipv6_ipv4mapping="YES"
\end{verbatim}

Reviewing the information in RFC 3493, section 3.6 and 3.7 as well as RFC 4038 section 4.2 may be useful to some administrators.

The Common Address Redundancy Protocol (CARP) allows multiple hosts to share the same IP address and Virtual Host ID (VHID) in order to provide high availability for one or more services. This means that one or more hosts can fail, and the other hosts will transparently take over so that users do not see a service failure.

In addition to the shared IP address, each host has its own IP address for management and configuration. All of the machines that share an IP address have the same VHID. The VHID for each virtual IP address must be unique across the broadcast domain of the network interface.

High availability using CARP is built into FreeBSD, though the steps to configure it vary slightly depending upon the FreeBSD version. This section provides the same example configuration for versions before and equal to or after FreeBSD 10.

This example configures failover support with three hosts, all with unique IP addresses, but providing the same web content. It has two different masters named \texttt{hosta.example.org} and \texttt{hostb.example.org}, with a shared backup named \texttt{hostc.example.org}.

These machines are load balanced with a Round Robin DNS configuration. The master and backup machines are configured identically except for their hostnames and management IP addresses. These servers must have the same configuration and run the same services. When the failover occurs, requests to the service on the shared IP address can only be answered correctly if the backup server has access to the same content. The backup machine has two additional CARP interfaces, one for each of the master content server's IP addresses. When a failure occurs, the backup server will pick up the failed master machine's IP address.

Enable boot-time support for CARP by adding an entry for the \texttt{carp.ko} kernel module in \texttt{/boot/loader.conf}:

\begin{verbatim}
carp_load="YES"
\end{verbatim}
For users who prefer to use a custom kernel, include the following line in the custom kernel configuration file and compile the kernel as described in FreeBSD:

```
device carp
```

The hostname, management IP address and subnet mask, shared IP address, and VHID are all set by adding entries to `/etc/rc.conf`. This example is for `hosta.example.org`:

```
hostname="hosta.example.org"
ifconfig_em0="inet 192.168.1.3 netmask 255.255.255.0"
ifconfig_em0_alias0="inet vhid 1 pass testpass alias 192.168.1.50/32"
```

The next set of entries are for `hostb.example.org` since it represents a second master, it uses a different shared IP address and VHID. However, the passwords specified with `pass` must be identical as CARP will only listen to and accept advertisements from machines with the correct password.

```
hostname="hostb.example.org"
ifconfig_em0="inet 192.168.1.4 netmask 255.255.255.0"
ifconfig_em0_alias0="inet vhid 2 pass testpass alias 192.168.1.51/32"
```

The third machine, `hostc.example.org`, is configured to handle failover from either master. This machine is configured with two CARPVHIDs, one to handle the virtual IP address for each of the master hosts. The CARP advertising skew, `advskew`, is set to ensure that the backup host advertises later than the master, since `advskew` controls the order of precedence when there are multiple backup servers.

```
hostname="hostc.example.org"
ifconfig_em0="inet 192.168.1.5 netmask 255.255.255.0"
ifconfig_em0_alias0="inet vhid 1 advskew 100 pass testpass alias 192.168.1.50/32"
ifconfig_em0_alias1="inet vhid 2 advskew 100 pass testpass alias 192.168.1.51/32"
```

Having two CARPVHIDs configured means that `hostc.example.org` will notice if either of the master servers becomes unavailable. If a master fails to advertise before the backup server, the backup server will pick up the shared IP address until the master becomes available again.

If the original master server becomes available again, `hostc.example.org` will not release the virtual IP address back to it automatically. For this to happen, preemption has to be enabled. The feature is disabled by default; it is controlled via the `sysctl(8)` variable `net.inet.carp.preempt`. The administrator can force the backup server to return the IP address to the master:

```
ifconfig em0 vhid 1 state backup
```

Once the configuration is complete, either restart networking or reboot each system.
CARP functionality can be controlled via several `sysctl(8)` variables documented in the `carp(4)` manual pages. Other actions can be triggered from CARP events by using `devd(8)`.

### 31.10.2. 使用 CARP 於 FreeBSD 9 及 其它版本

The configuration for these versions of FreeBSD is similar to the one described in the previous section, except that a CARP device must first be created and referred to in the configuration.

Enable boot-time support for CARP by loading the `if_carp.ko` kernel module in `/boot/loader.conf`:

```
if_carp_load="YES"
```

To load the module now without rebooting:

```
kldload carp
```

For users who prefer to use a custom kernel, include the following line in the custom kernel configuration file and compile the kernel as described in [設定 FreeBSD 核心](#):

```
device carp
```

Next, on each host, create a CARP device:

```
ifconfig carp0 create
```

Set the hostname, management IP address, the shared IP address, and VHID by adding the required lines to `/etc/rc.conf`. Since a virtual CARP device is used instead of an alias, the actual subnet mask of `/24` is used instead of `/32`. Here are the entries for `hosta.example.org`:

```
hostname="hosta.example.org"
ifconfig_fxp0="inet 192.168.1.3 netmask 255.255.255.0"
cloned_interfaces="carp0"
ifconfig_carp0="vhid 1 pass testpass 192.168.1.50/24"
```

On `hostb.example.org`:

```
hostname="hostb.example.org"
ifconfig_fxp0="inet 192.168.1.4 netmask 255.255.255.0"
cloned_interfaces="carp0"
ifconfig_carp0="vhid 2 pass testpass 192.168.1.51/24"
```

The third machine, `hostc.example.org`, is configured to handle failover from either of the master hosts:

```
hostname="hostc.example.org"
```
ifconfig fxp0="inet 192.168.1.5 netmask 255.255.255.0"
cloned_interfaces="carp0 carp1"
ifconfig carp0="vhid 1 advskew 100 pass testpass 192.168.1.50/24"
ifconfig carp1="vhid 2 advskew 100 pass testpass 192.168.1.51/24"

Preemption is disabled in the GENERIC FreeBSD kernel. If preemption has been enabled with a custom kernel, hostc.example.org may not release the IP address back to the original content server. The administrator can force the backup server to return the IP address to the master with the command:

```
ifconfig carp0 down && ifconfig carp0 up
```
This should be done on the carp interface which corresponds to the correct host.

Once the configuration is complete, either restart networking or reboot each system. High availability is now enabled.

31.11. VLANs

VLANs are a way of virtually dividing up a network into many different subnetworks, also referred to as segmenting. Each segment will have its own broadcast domain and be isolated from other VLANs.

When configuring a VLAN, a couple pieces of information must be known. First, which network interface? Second, what is the VLAN tag?

To configure VLANs at run time, with a NIC of `em0` and a VLAN tag of `5` the command would look like this:

```
ifconfig em0.5 create vlan 5 vlandev em0 inet 192.168.20.20/24
```
See how the interface name includes the NIC driver name and the VLAN tag, separated by a period? This is a best practice to make maintaining the VLAN configuration easy when many VLANs are present on a machine.

To configure VLANs at boot time, `/etc/rc.conf` must be updated. To duplicate the configuration above, the following will need to be added:

```
vlans_em0="5"
ifconfig_em0_5="inet 192.168.20.20/24"
```
Additional VLANs may be added, by simply adding the tag to the `vlans em0` field and adding an additional line configuring the network on that VLAN tag's interface.

It is useful to assign a symbolic name to an interface so that when the associated hardware is changed, only a few configuration variables need to be updated. For example, security cameras need to be run over VLAN 1 on `em0`. Later, if the `em0` card is replaced with a card that uses the `ixgb(4)` driver, all references to `em0.1` will not have to change to `ixgb0.1`. 
To configure VLAN 5, on the NIC em0, assign the interface name cameras, and assign the interface an IP address of 192.168.20.20 with a 24-bit prefix, use this command:

```
ifconfig em0.5 create vlan 5 vlandev em0 name cameras inet 192.168.20.20/24
```

For an interface named video, use the following:

```
ifconfig video.5 create vlan 5 vlandev video name cameras inet 192.168.20.20/24
```

To apply the changes at boot time, add the following lines to /etc/rc.conf:

```
vlans_video="camera"
create_args_camera="vlan 5"
ifconfig_camera="inet 192.168.20.20/24"
```
A.1. CD & DVD

FreeBSD CD & DVD can be purchased online from the following vendors:

- **FreeBSD Mall, Inc.**
  - 2420 Sand Creek Rd C-1 #347
  - Brentwood, CA 94513 USA
  - Phone: +1 925 240-6652
  - Fax: +1 925 674-0821
  - Email: <info@freebsdmall.com>
  - WWW: https://www.freebsdmall.com

- **Getlinux**
  - 78 Rue de la Croix Rochopt
  - Épinay-sous-Sénart 91860 France
  - Email: <contact@getlinux.fr>
  - WWW: http://www.getlinux.fr/

- **Dr. Hinner EDV**
  - Kochelseestr. 11
  - D-81371 München Germany
  - Phone: (0177) 428 419 0
  - Email: <infow@hinner.de>
  - WWW: http://www.hinner.de/ linux/freebsd.html

- **Linux Center**
  - Galernaya Street, 55
  - Saint-Petersburg 190000 Russia
  - Phone: +7-812-309-06-86
  - Email: <info@linuxcenter.ru>
  - WWW: http://linuxcenter.ru/shop/freebsd

A.2. FTP

FreeBSD's official source code can be obtained via anonymous FTP from any mirror site. The FTP site ftp://ftp.FreeBSD.org/pub/FreeBSD/ is one FTP site that can be used in combination with HTTP, and the site is managed by multiple volunteers. After GeoDNS, the site will be directed to the nearest available mirror site.

In addition, FreeBSD can be obtained via anonymous FTP from the following mirror sites. When obtaining FreeBSD via anonymous FTP, please try the site closest to your location. Sites listed under "main mirror" usually have complete FreeBSD archives (for all architectures and versions available), but you may want to consider downloading from a site in your country or region. Sites in your country or region will typically have the most recent versions in each architecture, but will not have complete FreeBSD archives. All sites provide anonymous FTP access, but some sites may provide additional access methods. The available access methods are indicated in parentheses following the site name.
Central Servers:

Primary Mirror Sites:
In case of problems, please contact the hostmaster <mirror-admin@FreeBSD.org>


Armenia:
In case of problems, please contact the hostmaster <hostmaster@am.FreeBSD.org>


Australia:
In case of problems, please contact the hostmaster <hostmaster@au.FreeBSD.org>


Austria:
In case of problems, please contact the hostmaster <hostmaster@at.FreeBSD.org>


[as of UTC]
Brazil
In case of problems, please contact the hostmaster <hostmaster@br.FreeBSD.org> for this domain.

- rsync://ftp4.br.FreeBSD.org/pub/FreeBSD

Czech Republic
In case of problems, please contact the hostmaster <hostmaster@cz.FreeBSD.org> for this domain.


Denmark
In case of problems, please contact the hostmaster <staff@dotsrc.org> for this domain.


Estonia
In case of problems, please contact the hostmaster <hostmaster@ee.FreeBSD.org> for this domain.


Finland
In case of problems, please contact the hostmaster <hostmaster@fi.FreeBSD.org> for this domain.


France
In case of problems, please contact the hostmaster <hostmaster@fr.FreeBSD.org> for this domain.


Germany
In case of problems, please contact the hostmaster <de-bsd-hubs@de.FreeBSD.org> for this domain.

Greece
In case of problems, please contact the hostmaster <hostmaster@gr.FreeBSD.org> for this domain.

Hong Kong

Ireland
In case of problems, please contact the hostmaster <hostmaster@ie.FreeBSD.org> for this domain.

Japan
ftp://ftp2.jp.FreeBSD.org/pub/FreeBSD
ftp://ftp5.jp.FreeBSD.org/pub/FreeBSD
ftp://ftp7.jp.FreeBSD.org/pub/FreeBSD

Korea

Latvia
In case of problems, please contact the hostmaster <hostmaster@lv.FreeBSD.org> for this domain.


Lithuania
In case of problems, please contact the hostmaster <hostmaster@lt.FreeBSD.org> for this domain.


Netherlands
In case of problems, please contact the hostmaster <hostmaster@nl.FreeBSD.org> for this domain.


New Zealand

Norway
In case of problems, please contact the hostmaster <hostmaster@no.FreeBSD.org> for this domain.


Poland
In case of problems, please contact the hostmaster <hostmaster@pl.FreeBSD.org> for this domain.


Russia
In case of problems, please contact the hostmaster <hostmaster@ru.FreeBSD.org> for this domain.


Saudi Arabia
In case of problems, please contact the hostmaster <ftpadmin@isu.net.sa> for this domain.

ftp://ftp.isu.net.sa/pub/

Slovenia
In case of problems, please contact the hostmaster <hostmaster@si.FreeBSD.org> for this domain.
South Africa
In case of problems, please contact the hostmaster <hostmaster@za.FreeBSD.org> for this domain.
• ftp://ftp2.za.FreeBSD.org/pub/FreeBSD/

Spain
In case of problems, please contact the hostmaster <hostmaster@es.FreeBSD.org> for this domain.
• ftp://ftp3.es.FreeBSD.org/pub/FreeBSD/
• ftp://ftp4.es.FreeBSD.org/pub/FreeBSD/

Sweden
In case of problems, please contact the hostmaster <hostmaster@se.FreeBSD.org> for this domain.
• ftp://ftp.se.FreeBSD.org/pub/FreeBSD/
• ftp://ftp2.se.FreeBSD.org/pub/FreeBSD/
• ftp://ftp3.se.FreeBSD.org/pub/FreeBSD/
• ftp://ftp4.se.FreeBSD.org/pub/FreeBSD/

Switzerland
In case of problems, please contact the hostmaster <hostmaster@ch.FreeBSD.org> for this domain.
• ftp://ftp2.ch.FreeBSD.org/pub/FreeBSD/
• ftp://ftp4.ch.FreeBSD.org/pub/FreeBSD/

Taiwan
In case of problems, please contact the hostmaster <hostmaster@tw.FreeBSD.org> for this domain.
• ftp://ftp2.tw.FreeBSD.org/pub/FreeBSD/
• ftp://ftp5.tw.FreeBSD.org/pub/FreeBSD/
• ftp://ftp7.tw.FreeBSD.org/pub/FreeBSD/
• ftp://ftp11.tw FreeBSD.org/pub/FreeBSD/
Ukraine

United Kingdom
ftp://ftp2.uk.FreeBSD.org/pub/FreeBSD/
ftp://ftp3.uk.FreeBSD.org/pub/FreeBSD/
ftp://ftp5.uk.FreeBSD.org/pub/FreeBSD/

United States of America
ftp://ftp1.us.FreeBSD.org/pub/FreeBSD/
ftp://ftp2.us.FreeBSD.org/pub/FreeBSD/
ftp://ftp5.us.FreeBSD.org/pub/FreeBSD/
ftp://ftp15.us.FreeBSD.org/pub/FreeBSD/

In case of problems, please contact the hostmaster <hostmaster@uk.FreeBSD.org> for this domain.

In case of problems, please contact the hostmaster <hostmaster@us.FreeBSD.org> for this domain.

A.3. 使用 Subversion 728
自2012年7月起，FreeBSD存储所有FreeBSD的原始码、文件与Port套件集均使用Subversion作为其唯一的版本控制系统。

Subversion只是一套开发人员工具。一般使用者可能会较喜欢使用`freebsd-update`（FreeBSD更新）来更新FreeBSD基础系统及`portsnap`（使用Port套件集）来更新FreeBSD Port套件集。

本节将示範如何在FreeBSD系统安装Subversion以及使用它建立一个本地的FreeBSD档案库副本，也包含使用Subversion的其他资讯。

### A.3.2. 根SSL凭证
安装`security/ca_root_nss`可让Subversion能够验证HTTPS档案库伺服器的身份。root SSL凭证可从Port安装:

```
cd /usr/ports/security/ca_root_nss
make install clean
```
或从套件:

```
pkg install ca_root_nss
```

### A.3.3. Svnlite
轻量化版的Subversion`svnlite`已会随FreeBSD安装。Port或套件版的Subversion仅在要使用其Python或Perl API时需要，或是新想要使用最新版本Subversion时才需要。与正常Subversion唯一的差别只是指令名称改为`svnlite`。

### A.3.4. 安装
若无法使用`svnlite`或需要完整版本的Subversion就必须安装。Subversion可从Port套件集安装:

```
cd /usr/ports/devel/subversion
make install clean
```
Subversion也可以以套件安装:

```
pkg install subversion
```

### A.3.5. 执行
Subversion要下载原始码乾净的副本到本地目录可使用`svn`。在此目录中的档案称作本地工作副本（Local working copy）。

在第一次使用`checkout`前请先移动或删除目地现有的目录。

在现有非svn目录存在的情况下做取出(Checkout)。
動作會導致現有檔案與檔案庫中的檔案發生衝突。


使用指令從指定的檔案庫取出 (Checkout) 原始碼如下:

```bash
svn checkout https://svn.FreeBSD.org/repository/branch lwcdir
```

where:

- repository 要是下列專案檔案庫其中之一：base, ports 或 doc。
- branch 則依據使用的檔案庫來決定。
- ports 與 doc 大部份的更新皆在 head 分支，而 base 則會將 -CURRENT 的最新版本存放於 head 下，-STABLE 分支各自最新的版本則會放於 stable/9 (9.x) 與 stable/10 (10.x) 下。
- lwcdir 則是要存放指定分支內容的目標目錄，通常 ports 會置於 /usr/ports, base 會置於 /usr/src 以及 doc 會置於 /usr/doc。

以下範例會使用 HTTPS 協定從 FreeBSD 的檔案庫取出 Port 套件集，並將本地工作複本放置於 /usr/ports。若 /usr/ports 已存在，且不是由 svn 所建立的，記得要在取出之前重新命名或刪除。

```bash
svn checkout https://svn.FreeBSD.org/ports/head /usr/ports
```

由於首次取出的動作必須下載遠端檔案庫中完整的分支，會需要花費一點時間，請耐心等候。

首次取出之後，往後要更新本地工作複本可以執行:

```bash
svn update lwcdir
```

要更新上述範例所建立的 /usr/ports 可執行:

```bash
svn update /usr/ports
```

因為只會傳輸有更新的檔案，更新的動作會比取出還要快速。

另一種在取出之後更新本地工作複本的方式是透過 /usr/ports, /usr/src 以及 /usr/doc 目錄所提供的 Makefile。設定 SVN_UPDATE 並使用 update 目標。例如要更新 /usr/src:

```bash
cd /usr/src
make update SVN_UPDATE=yes
```

A.3.6. Subversion 鏡像站 FreeBSD Subversion 的檔案庫為: svn.FreeBSD.org
這是公開存取的鏡像站,使用了GeoDNS會自動選擇適合的後端伺服器。若要由瀏覽器檢视Subversion檔案庫可以使用https://svnweb.FreeBSD.org/。HTTPS是預備選的協定,但是security/ca_root_nss包需要安裝才能自動驗證憑證。

A.3.7. 要取得其他相關使用Subversion的資訊請參考"Subversion Book",其書名為Version Control with Subversion或是Subversion Documentation。

A.4. 使用rsync這些站台讓FreeBSD可透過rsync通訊協定取得。rsync工具只會傳輸兩個檔案集之間的差異,所以能夠大大加快在網路上同步的速度,這對大多數FreeBSD FTP伺服器的鏡像站非常有用。rsync在許多作業系統上也可以使用,在FreeBSD上請參考net/rsync Port或使用套件。

捷克（Czech Republic）
rsync://ftp.cz.FreeBSD.org/可用的檔案集:
- ftp: FreeBSD FTP伺服器的部份鏡像。
- FreeBSD: FreeBSD FTP伺服器的整體鏡像。

荷蘭（Netherlands）
rsync://ftp.nl.FreeBSD.org/可用的檔案集:
- FreeBSD: FreeBSD FTP伺服器的整體鏡像。

俄羅斯（Russia）
rsync://ftp.mtu.ru/可用的檔案集:
- FreeBSD: FreeBSD FTP伺服器的整體鏡像。
- FreeBSD-Archive: FreeBSD封存FTP伺服器的鏡像。

瑞典（Sweden）
rsync://ftp4.se.freebsd.org/可用的檔案集:
- FreeBSD: FreeBSD FTP伺服器的整體鏡像。

台灣（Taiwan）
rsync://ftp2.tw.FreeBSD.org/
rsync://ftp6.tw.FreeBSD.org/可用的檔案集:
- FreeBSD: FreeBSD FTP伺服器的整體鏡像。

英國（United Kingdom）
rsync://rsync.mirrorservice.org/
可用的档案集：
• ftp.freebsd.org: FreeBSD FTP 服务器的完整镜像。
• rsync://ftp-master.FreeBSD.org/ 此服务器仅供 FreeBSD 主要镜像站使用。
可用的档案集：
• FreeBSD: FreeBSD FTP 服务器的主要存。
• acl: FreeBSD 主要 ACL 清单。
• rsync://ftp13.FreeBSD.org/
附錄

B.

B.1. FreeBSD 相關書籍

國外書籍:

• FreeBSD 入門與應用(光碟豪華版)(繁體中文), 博碩文化出版, 1997. ISBN 9-578-39435-7。

• FreeBSD 技術内幕(FreeBSD Unleashed 簡體中譯版), 機械工業出版社出版. ISBN 7-111-10201-0。

• FreeBSD 使用大全第二版(簡體中文), 機械工業出版社出版. ISBN 7-111-10286-X。

• FreeBSD Handbook 第二版(簡體中譯版), 人民郵電出版社出版. ISBN 7-115-10541-3。

• FreeBSD & Windows 集成組網實務(簡體中文), 中國鐵道出版社出版. ISBN 7-113-03845-X。

• FreeBSD 網站架設實務(簡體中文), 中國鐵道出版社出版. ISBN 7-113-03423-3。

• FreeBSD (日文), CUTT 出版. ISBN 4-906391-22-2 C3055 P2400E。

• Complete Introduction to FreeBSD (日文), Shoeisha Co., Ltd 出版. ISBN 4-88135-473-6 P3600E。

• Personal UNIX Starter Kit FreeBSD (日文), ASCII 出版. ISBN 4-7561-1733-3 P3000E。

• FreeBSD Handbook (日譯版), ASCII 出版. ISBN 4-7561-1580-2 P3800E。

• FreeBSD mit Methode (德文), Computer und Literatur Verlag/Vertrieb Hanser 出版, 1998. ISBN 3-932311-31-0。

• FreeBSD de Luxe (德文), Verlag Modere Industrie 出版, 2003. ISBN 3-8266-1343-0。

• FreeBSD Install and Utilization Manual (日文), Mainichi Communications Inc. 出版, 1998. ISBN 4-8399-0112-0。

• Onno W Purbo, Dodi Maryanto, Syahrial Hubbany, Widjil Widodo Building Internet Server with FreeBSD (印尼文), Elex Media Komputindo 出版。


• FreeBSD 6.0 架設管理與應用(繁體中文), 博碩出版, 2006. ISBN 9-575-27878-X。

英文書籍:


• Teach Yourself FreeBSD in 24 Hours, published by Sams, 2002. ISBN: 0672324245。


B.2. 使用指南

• Ohio State University has written a UNIX Introductory Course which is available online in HTML and PostScript format。
Edinburgh University has written an Online Guide for newcomers to the UNIX environment.


(Chapter 2 of this book is available online as part of the FreeBSD Documentation Project.)


B.6. 安全参考文献


-B.7. 硬体参考文献

- Intel Corporation publishes documentation on their CPUs, chipsets and standards on their developer web site, usually as PDF files.

-B.8. UNIX™ 历史

- The BSD family tree. [https://svnweb.freebsd.org/base/head/shared/misc/bsd-family-tree?view=co](https://svnweb.freebsd.org/base/head/shared/misc/bsd-family-tree?view=co) or [/usr/shared/misc/bsd-family-tree](/usr/shared/misc/bsd-family-tree) on a FreeBSD machine.
Old BSD releases from the Computer Systems Research group (CSRG).

http://www.mckusick.com/csrg/:
The 4CD set covers all BSD versions from 1BSD to 4.4BSD and 4.4BSD-Lite2 (but not 2.11BSD, unfortunately). The last disk also holds the final sources plus the SCCS files.

B.9.

期刊與雜誌

• Admin Magazin (in German), published by Medialinx AG. ISSN: 2190-1066
• BSD Magazine, published by Software Press Sp. z o.o. ISSN: 1898-9144
• BSD Now — Video Podcast, published by Jupiter Broadcasting LLC
• BSD Talk Podcast, by Will Backman
The rapid pace of FreeBSD progress makes print media impractical as a means of following the latest developments. Electronic resources are the best, if not often the only, way to stay informed of the latest advances. Since FreeBSD is a volunteer effort, the user community itself also generally serves as a "technical support department" of sorts, with electronic mail, web forums, and USENET news being the most effective way of reaching that community.

The most important points of contact with the FreeBSD user community are outlined below. Please send other resources not mentioned here to the FreeBSD documentation project mailing list so that they may also be included.

C.1. 網站

• The FreeBSD Forums provide a web based discussion forum for FreeBSD questions and technical discussion.

• The BSDConferences YouTube Channel provides a collection of high quality videos from BSD conferences around the world. This is a great way to watch key developers give presentations about new work in FreeBSD.

C.2. 郵遞論壇 (Mailing List)

The mailing lists are the most direct way of addressing questions or opening a technical discussion to a concentrated FreeBSD audience. There are a wide variety of lists on a number of different FreeBSD topics. Sending questions to the most appropriate mailing list will invariably assure a faster and more accurate response.

The charters for the various lists are given at the bottom of this document. Please read the charter before joining or sending mail to any list. Most list subscribers receive many hundreds of FreeBSD related messages every day, and the charters and rules for use are meant to keep the signal-to-noise ratio of the lists high. To do less would see the mailing lists ultimately fail as an effective communications medium for the Project.

To test the ability to send email to FreeBSD lists, send a test message to freebsd-test. Please do not send test messages to any other list.

When in doubt about what list to post a question to, see How to get best results from the FreeBSD-questions mailing list.

Before posting to any list, please learn about how to best use the mailing lists, such as how to help avoid frequently-repeated discussions, by reading the Mailing List Frequently Asked Questions (FAQ) document.

Archives are kept for all of the mailing lists and can be searched using the FreeBSD World Wide Web server. The keyword searchable archive offers an excellent way of finding answers to frequently asked questions and should be consulted before posting a question. Note that this also means that messages sent to FreeBSD mailing lists are archived in perpetuity. When protecting privacy is a concern, consider using a disposable secondary email address and posting only public information.

C.2.1. 論壇摘要

General lists:
The following are general lists which anyone is free (and encouraged) to join:

List 用途
freebsd-advocacy FreeBSD Evangelism
freebsd-announce Important events and Project milestones (moderated)
The following lists are for technical discussion. Read the charter for each list carefully before joining or sending mail to one as there are firm guidelines for their use and content.

- **freebsd-acpi**: ACPI and power management development
- **freebsd-afs**: Porting AFS to FreeBSD
- **freebsd-amd64**: Porting FreeBSD to AMD64 systems (moderated)
- **freebsd-apache**: Discussion about Apache related ports
- **freebsd-arm**: Porting FreeBSD to ARM™ processors
- **freebsd-atm**: Using ATM networking with FreeBSD
- **freebsd-bluetooth**: Using Bluetooth™ technology in FreeBSD
- **freebsd-cloud**: FreeBSD on cloud platforms (EC2, GCE, Azure, etc.)
- **freebsd-cluster**: Using FreeBSD in a clustered environment
- **freebsd-database**: Discussing database use and development under FreeBSD
- **freebsd-desktop**: Using and improving FreeBSD on the desktop
- **dev-ci**: Build and test reports from the Continuous Integration servers
- **dev-reviews**: Notifications of the FreeBSD review system
- **freebsd-doc**: Creating FreeBSD related documents
- **freebsd-drivers**: Writing device drivers for FreeBSD
- **freebsd-dtrace**: Using and working on DTrace in FreeBSD
<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>freebsd-eclipse</td>
<td>FreeBSD users of Eclipse IDE, tools, rich client applications and ports.</td>
</tr>
<tr>
<td>freebsd-elastic</td>
<td>FreeBSD-specific ElasticSearch discussions</td>
</tr>
<tr>
<td>freebsd-embedded</td>
<td>Using FreeBSD in embedded applications</td>
</tr>
<tr>
<td>freebsd-eol</td>
<td>Peer support of FreeBSD-related software that is no longer supported by the</td>
</tr>
<tr>
<td></td>
<td>FreeBSD Project.</td>
</tr>
<tr>
<td>freebsd-emulation</td>
<td>Emulation of other systems such as Linux/MS-DOS™/Windows™</td>
</tr>
<tr>
<td>freebsd-enlightenment</td>
<td>Porting Enlightenment and Enlightenment applications</td>
</tr>
<tr>
<td>freebsd-erlang</td>
<td>FreeBSD-specific Erlang discussions</td>
</tr>
<tr>
<td>freebsd-firewire</td>
<td>FreeBSD FireWire™ (iLink, IEEE 1394) technical discussion</td>
</tr>
<tr>
<td>freebsd-fortran</td>
<td>Fortran on FreeBSD</td>
</tr>
<tr>
<td>freebsd-fs</td>
<td>File systems</td>
</tr>
<tr>
<td>freebsd-games</td>
<td>Support for Games on FreeBSD</td>
</tr>
<tr>
<td>freebsd-gecko</td>
<td>Gecko Rendering Engine issues</td>
</tr>
<tr>
<td>freebsd-geom</td>
<td>GEOM-specific discussions and implementations</td>
</tr>
<tr>
<td>freebsd-git</td>
<td>Discussion of git use in the FreeBSD project</td>
</tr>
<tr>
<td>freebsd-gnome</td>
<td>Porting GNOME and GNOME applications</td>
</tr>
<tr>
<td>freebsd-hackers</td>
<td>General technical discussion</td>
</tr>
<tr>
<td>freebsd-haskell</td>
<td>FreeBSD-specific Haskell issues and discussions</td>
</tr>
<tr>
<td>freebsd-hardware</td>
<td>General discussion of hardware for running FreeBSD</td>
</tr>
<tr>
<td>freebsd-i18n</td>
<td>FreeBSD Internationalization</td>
</tr>
<tr>
<td>freebsd-ia32</td>
<td>FreeBSD on the IA-32 (Intel™ x86) platform</td>
</tr>
<tr>
<td>freebsd-ia64</td>
<td>Porting FreeBSD to Intel™'s upcoming IA64 systems</td>
</tr>
<tr>
<td>freebsd-infiniband</td>
<td>Infiniband on FreeBSD</td>
</tr>
<tr>
<td>freebsd-ipfw</td>
<td>Technical discussion concerning the redesign of the IP firewall code</td>
</tr>
<tr>
<td>freebsd-isdn</td>
<td>ISDN developers</td>
</tr>
<tr>
<td>freebsd-jail</td>
<td>Discussion about the jail(8) facility</td>
</tr>
<tr>
<td>freebsd-java</td>
<td>Java™ developers and people porting JDK™s to FreeBSD</td>
</tr>
<tr>
<td>freebsd-kde</td>
<td>Porting KDE and KDE applications</td>
</tr>
<tr>
<td>freebsd-lfs</td>
<td>Porting LFS to FreeBSD</td>
</tr>
<tr>
<td>freebsd-mips</td>
<td>Porting FreeBSD to MIPS™</td>
</tr>
<tr>
<td>freebsd-mobile</td>
<td>Discussions about mobile computing</td>
</tr>
<tr>
<td>freebsd-mono</td>
<td>Mono and C# applications on FreeBSD</td>
</tr>
<tr>
<td>freebsd-multimedia</td>
<td>Multimedia applications</td>
</tr>
<tr>
<td>freebsd-new-bus</td>
<td>Technical discussions about bus architecture</td>
</tr>
<tr>
<td>freebsd-net</td>
<td>Networking discussion and TCP/IP source code</td>
</tr>
<tr>
<td>FreeBSD Categories</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>freebsd-numerics</td>
<td>Discussions of high quality implementation of libm functions</td>
</tr>
<tr>
<td>freebsd-ocaml</td>
<td>FreeBSD-specific OCaml discussions</td>
</tr>
<tr>
<td>freebsd-office</td>
<td>Office applications on FreeBSD</td>
</tr>
<tr>
<td>freebsd-performance</td>
<td>Performance tuning questions for high performance/load installations</td>
</tr>
<tr>
<td>freebsd-perl</td>
<td>Maintenance of a number of Perl-related ports</td>
</tr>
<tr>
<td>freebsd-pf</td>
<td>Discussion and questions about the packet filter firewall system</td>
</tr>
<tr>
<td>freebsd-pkg</td>
<td>Binary package management and package tools discussion</td>
</tr>
<tr>
<td>freebsd-pkg-fallout</td>
<td>Fallout logs from package building</td>
</tr>
<tr>
<td>freebsd-pkgbase</td>
<td>Packaging the FreeBSD base system</td>
</tr>
<tr>
<td>freebsd-platforms</td>
<td>Concerning ports to non Intel™ architecture platforms</td>
</tr>
<tr>
<td>freebsd-ports</td>
<td>Discussion of the Ports Collection</td>
</tr>
<tr>
<td>freebsd-ports-announce</td>
<td>Important news and instructions about the Ports Collection (moderated)</td>
</tr>
<tr>
<td>freebsd-ports-bugs</td>
<td>Discussion of the ports bugs/PRs</td>
</tr>
<tr>
<td>freebsd-ppc</td>
<td>Porting FreeBSD to the PowerPC™</td>
</tr>
<tr>
<td>freebsd-proliant</td>
<td>Technical discussion of FreeBSD on HP ProLiant server platforms</td>
</tr>
<tr>
<td>freebsd-python</td>
<td>FreeBSD-specific Python issues</td>
</tr>
<tr>
<td>freebsd-rc</td>
<td>Discussion related to the rc.d system and its development</td>
</tr>
<tr>
<td>freebsd-realtime</td>
<td>Development of realtime extensions to FreeBSD</td>
</tr>
<tr>
<td>freebsd-ruby</td>
<td>FreeBSD-specific Ruby discussions</td>
</tr>
<tr>
<td>freebsd-scsi</td>
<td>The SCSI subsystem</td>
</tr>
<tr>
<td>freebsd-security</td>
<td>Security issues affecting FreeBSD</td>
</tr>
<tr>
<td>freebsd-small</td>
<td>Using FreeBSD in embedded applications (obsolete; use freebsd-embedded instead)</td>
</tr>
<tr>
<td>freebsd-snapshots</td>
<td>FreeBSD Development Snapshot Announcements</td>
</tr>
<tr>
<td>freebsd-sparc64</td>
<td>Porting FreeBSD to SPARC™ based systems</td>
</tr>
<tr>
<td>freebsd-standards</td>
<td>FreeBSD's conformance to the C99 and the POSIX™ standards</td>
</tr>
<tr>
<td>freebsd-sysinstall</td>
<td>sysinstall(8) development</td>
</tr>
<tr>
<td>freebsd-tcltk</td>
<td>FreeBSD-specific Tcl/Tk discussions</td>
</tr>
<tr>
<td>freebsd-testing</td>
<td>Testing on FreeBSD</td>
</tr>
<tr>
<td>freebsd-tex</td>
<td>Porting TeX and its applications to FreeBSD</td>
</tr>
<tr>
<td>freebsd-threads</td>
<td>Threading in FreeBSD</td>
</tr>
<tr>
<td>freebsd-tilera</td>
<td>Porting FreeBSD to the Tilera family of CPUs</td>
</tr>
<tr>
<td>freebsd-tokenring</td>
<td>Support Token Ring in FreeBSD</td>
</tr>
<tr>
<td>freebsd-toolchain</td>
<td>Maintenance of FreeBSD's integrated toolchain</td>
</tr>
</tbody>
</table>
Lists:
The following lists are for more specialized (and demanding) audiences and are probably not of interest to the general public. It is also a good idea to establish a presence in the technical lists before joining one of these limited lists in order to understand the communications etiquette involved.

FreeBSD:
- FreeBSD-translators
- FreeBSD-transport
- FreeBSD-usb
- FreeBSD-virtualization
- FreeBSD-vuxml
- FreeBSD-x11
- FreeBSD-xen
- FreeBSD-xfce
- FreeBSD-zope

Limited lists:
The following lists are for people interested in seeing the log messages for changes to various areas of the source tree. They are Read-Only lists and should not have mail sent to them.

SVN lists:
- SVN-doc-all
- SVN-doc-head
- SVN-doc-projects
- SVN-doc-svnadmin
- SVN-ports-all
List Source area

svn-ports-head
/usr/ports
All changes to the "head" branch of the ports Subversion repository

svn-ports-svnadmin
/usr/ports
All changes to the administrative scripts, hooks, and other configuration data of the ports Subversion repository

svn-src-all
/usr/src
All changes to the src Subversion repository (except for user and projects)

svn-src-head
/usr/src
All changes to the "head" branch of the src Subversion repository (the FreeBSD-CURRENT branch)

svn-src-projects
/usr/projects
All changes to the projects area of the src Subversion repository

svn-src-release
/usr/src
All changes to the releases area of the src Subversion repository

svn-src-releng
/usr/src
All changes to the releng branches of the src Subversion repository (the security /release engineering branches)

svn-src-stable
/usr/src
All changes to the all stable branches of the src Subversion repository

svn-src-stable-6
/usr/src
All changes to the stable/6 branch of the src Subversion repository

svn-src-stable-7
/usr/src
All changes to the stable/7 branch of the src Subversion repository

svn-src-stable-8
/usr/src
All changes to the stable/8 branch of the src Subversion repository

svn-src-stable-9
/usr/src
All changes to the stable/9 branch of the src Subversion repository

svn-src-stable-10
/usr/src
All changes to the stable/10 branch of the src Subversion repository

svn-src-stable-11
/usr/src
All changes to the stable/11 branch of the src Subversion repository

svn-src-stable-12
/usr/src
All changes to the stable/12 branch of the src Subversion repository

svn-src-stable-other
/usr/src
All changes to the older stable branches of the src Subversion repository

svn-src-svnadmin
/usr/src
All changes to the administrative scripts, hooks, and other configuration data of the src Subversion repository
To subscribe to a list, click the list name at http://lists.FreeBSD.org/mailman/listinfo. The page that is displayed should contain all of the necessary subscription instructions for that list.

To actually post to a given list, send mail to listname@FreeBSD.org. It will then be redistributed to mailing list members world-wide.

To unsubscribe from a list, click on the URL found at the bottom of every email received from the list. It is also possible to send an email to listname-unsubscribe@FreeBSD.org to unsubscribe.

It is important to keep discussion in the technical mailing lists on a technical track. To only receive important announcements, instead join the FreeBSD announcements mailing list, which is intended for infrequent traffic.

Rules of the road:

• The topic of any posting should adhere to the basic charter of the list it is posted to. If the list is about technical issues, the posting should contain technical discussion. Ongoing irrelevant chatter or flaming only detracts from the value of the mailing list for everyone on it and will not be tolerated. For free-form discussion on no particular topic, the FreeBSD chat mailing list is freely available and should be used instead.

• No posting should be made to more than 2 mailing lists, and only to 2 when a clear and obvious need to post to both lists exists. For most lists, there is already a great deal of subscriber overlap and except for the most esoteric mixes (say -stable & -scsi), there really is no reason to post to more than one list at a time. If a message is received with multiple mailing lists on the Cc line, trim the Cc line before replying. The person who replies is still responsible for cross-posting, no matter who the originator might have been.

• Personal attacks and profanity (in the context of an argument) are not allowed, and that includes users and developers alike. Gross breaches of netiquette, like excerpting or reposting private mail when permission to do so was not and would not be forthcoming, are frowned upon but not specifically enforced. However, there are also very few cases where such content would fit within the charter of a list and it would therefore probably rate a warning (or ban) on that basis alone.

• Advertising of non-FreeBSD related products or services is strictly prohibited and will result in an immediate ban if it is clear that the offender is advertising by spam.

Individual list charters:

freebsd-acpi
ACPI and power management development
This list is for discussion on porting and using AFS from CMU/Transarc.

This list is for people interested only in occasional announcements of significant FreeBSD events. This includes announcements about snapshots and other releases. It contains announcements of new FreeBSD capabilities. It may contain calls for volunteers etc. This is a low volume, strictly moderated mailing list.

This list is for discussion of the FreeBSD architecture. Messages will mostly be kept strictly technical in nature. Examples of suitable topics are:

• How to re-vamp the build system to have several customized builds running at the same time.
• What needs to be fixed with VFS to make Heidemann layers work.
• How do we change the device driver interface to be able to use the same drivers cleanly on many buses and architectures.
• How to write a network driver.

This is the forum where FreeBSD's Bluetooth™ users congregate. Design issues, implementation details, patches, bug reports, status reports, feature requests, and all matters related to Bluetooth™ are fair game.

The purpose of this list is to serve as a coordination and discussion forum for the Bugmeister, his Bugbusters, and any other parties who have a genuine interest in the PR database. This list is not for discussions about specific bugs, patches or PRs.

This is the mailing list for reporting bugs in FreeBSD. Whenever possible, bugs should be submitted using the web interface to it.

This list contains the overflow from the other lists about non-technical, social information. It includes discussion about whether Jordan looks like a toon ferret or not, whether or not to type in capitals, who is drinking too much coffee, where the best beer is brewed, who is brewing beer in their basement, and so on. Occasional announcements of important events (such as upcoming parties, weddings, births, new jobs, etc) can be made to the technical lists, but the follow ups should be directed to this -chat list.

This is a list for the discussion of Chromium support for FreeBSD. This is a technical list to
Running FreeBSD on various cloud platforms

This list discusses running FreeBSD on Amazon EC2, Google Compute Engine, Microsoft Azure, and other cloud computing platforms.

FreeBSD core team

This is an internal mailing list for use by the core members. Messages can be sent to it when a serious FreeBSD-related matter requires arbitration or high-level scrutiny.

FreeBSD-current

Discussions about the use of FreeBSD-CURRENT

This is the mailing list for users of FreeBSD-CURRENT. It includes warnings about new features coming out in -CURRENT that will affect the users, and instructions on steps that must be taken to remain -CURRENT. Anyone running "CURRENT" must subscribe to this list. This is a technical mailing list for which strictly technical content is expected.

FreeBSD-desktop

Using and improving FreeBSD on the desktop

This is a forum for discussion of FreeBSD on the desktop. It is primarily a place for desktop porters and users to discuss issues and improve FreeBSD's desktop support.

Dev-ci

Continuous Integration reports of build and test results

All Continuous Integration reports of build and test results

Dev-reviews

Notifications of work in progress in FreeBSD's review tool

Automated notifications of work in progress for review in FreeBSD's review tools, including patches.

FreeBSD-doc

Documentation Project

This mailing list is for the discussion of issues and projects related to the creation of documentation for FreeBSD. The members of this mailing list are collectively referred to as "The FreeBSD Documentation Project". It is an open list; feel free to join and contribute!

FreeBSD-drivers

Writing device drivers for FreeBSD

This is a forum for technical discussions related to device drivers on FreeBSD. It is primarily a place for device driver writers to ask questions about how to write device drivers using the APIs in the FreeBSD kernel.

FreeBSD-dtrace

Using and working on DTrace in FreeBSD

DTrace is an integrated component of FreeBSD that provides a framework for understanding the kernel as well as user space programs at run time. The mailing list is an archived discussion for developers of the code as well as those using it.
freebsd-eclipse
FreeBSD users of Eclipse IDE, tools, rich client applications and ports.
The intention of this list is to provide mutual support for everything to do with choosing,
installing, using, developing and maintaining the Eclipse IDE, tools, rich client applications on
the FreeBSD platform and assisting with the porting of Eclipse IDE and plugins to the FreeBSD
environment.
The intention is also to facilitate exchange of information between the Eclipse community and
the FreeBSD community to the mutual benefit of both.
Although this list is focused primarily on the needs of Eclipse users it will also provide a forum
for those who would like to develop FreeBSD specific applications using the Eclipse framework.

freebsd-embedded
Using FreeBSD in embedded applications
This list discusses topics related to using FreeBSD in embedded systems. This is a technical
mailing list for which strictly technical content is expected. For the purpose of this list,
embedded systems are those computing devices which are not desktops and which usually
serve a single purpose as opposed to being general computing environments. Examples include,
but are not limited to, all kinds of phone handsets, network equipment such as routers, switches
and PBXs, remote measuring equipment, PDAs, Point Of Sale systems, and so on.

freebsd-emulation
Emulation of other systems such as Linux/MS-DOS™/Windows™
This is a forum for technical discussions related to running programs written for other operating
systems on FreeBSD.

freebsd-enlightenment
Enlightenment
Discussions concerning the Enlightenment Desktop Environment for FreeBSD systems. This is a
technical mailing list for which strictly technical content is expected.

freebsd-eol
Peer support of FreeBSD-related software that is no longer supported by the FreeBSD Project.
This list is for those interested in providing or making use of peer support of FreeBSD-related
software for which the FreeBSD Project no longer provides official support in the form of security
advisories and patches.

freebsd-firewire
FireWire™ (iLink, IEEE 1394)
This is a mailing list for discussion of the design and implementation of a FireWire™ (aka IEEE
1394 aka iLink) subsystem for FreeBSD. Relevant topics specifically include the standards, bus
devices and their protocols, adapter boards/cards/chips sets, and the architecture and
implementation of code for their proper support.

freebsd-fortran
Fortran on FreeBSD
This is the mailing list for discussion of Fortran related ports on FreeBSD: compilers, libraries,
scientific and engineering applications from laptops to HPC clusters.

freebsd-fs
File systems
Discussions concerning FreeBSD filesystems. This is a technical mailing list for which strictly
technical content is expected.

freebsd-games
Games on FreeBSD
This is a technical list for discussions related to bringing games to FreeBSD. It is for individuals actively working on porting games to FreeBSD, to bring up problems or discuss alternative solutions. Individuals interested in following the technical discussion are also welcome.

freebsd-gecko
Gecko Rendering Engine
This is a forum about Gecko applications using FreeBSD. Discussion centers around Gecko Ports applications, their installation, their development and their support within FreeBSD.

freebsd-geom
GEOM
Discussions specific to GEOM and related implementations. This is a technical mailing list for which strictly technical content is expected.

freebsd-git
Use of git in the FreeBSD project
Discussions of how to use git in FreeBSD infrastructure including the github mirror and other uses of git for project collaboration. Discussion area for people using git against the FreeBSD github mirror. People wanting to get started with the mirror or git in general on FreeBSD can ask here.

freebsd-gnome
GNOME
Discussions concerning The GNOME Desktop Environment for FreeBSD systems. This is a technical mailing list for which strictly technical content is expected.

freebsd-infiniband
Infiniband on FreeBSD
Technical mailing list discussing Infiniband, OFED, and OpenSM on FreeBSD.

freebsd-ipfw
IP Firewall
This is the forum for technical discussions concerning the redesign of the IP firewall code in FreeBSD. This is a technical mailing list for which strictly technical content is expected.

freebsd-ia64
Porting FreeBSD to IA64
This is a technical mailing list for individuals actively working on porting FreeBSD to the IA-64 platform from Intel™, to bring up problems or discuss alternative solutions. Individuals interested in following the technical discussion are also welcome.

freebsd-isdn
ISDN Communications
This is the mailing list for people discussing the development of ISDN support for FreeBSD.
Java™ Development

This is the mailing list for people discussing the development of significant Java™ applications for FreeBSD and the porting and maintenance of JDK™s.

Jobs offered and sought

This is a forum for posting employment notices specifically related to FreeBSD and resumes from those seeking FreeBSD-related employment. This is not a mailing list for general employment issues since adequate forums for that already exist elsewhere.

Note that this list, like other FreeBSD.org mailing lists, is distributed worldwide. Be clear about the geographic location and the extent to which telecommuting or assistance with relocation is available.

Email should use open formats only—preferably plain text, but basic Portable Document Format (PDF), HTML, and a few others are acceptable to many readers. Closed formats such as Microsoft™ Word (.doc) will be rejected by the mailing list server.

KDE

Discussions concerning KDE on FreeBSD systems. This is a technical mailing list for which strictly technical content is expected.

Technical discussions

This is a forum for technical discussions related to FreeBSD. This is the primary technical mailing list. It is for individuals actively working on FreeBSD, to bring up problems or discuss alternative solutions. Individuals interested in following the technical discussion are also welcome. This is a technical mailing list for which strictly technical content is expected.

General discussion of FreeBSD hardware

General discussion about the types of hardware that FreeBSD runs on, various problems and suggestions concerning what to buy or avoid.

Mirror sites

Announcements and discussion for people who run FreeBSD mirror sites.

Issues for Internet Service Providers

This mailing list is for discussing topics relevant to Internet Service Providers (ISPs) using FreeBSD. This is a technical mailing list for which strictly technical content is expected.

Mono and C# applications on FreeBSD

This is a list for discussions related to the Mono development framework on FreeBSD. This is a technical mailing list. It is for individuals actively working on porting Mono or C# applications to FreeBSD, to bring up problems or discuss alternative solutions. Individuals interested in following the technical discussion are also welcome.
freebsd-platforms

Porting to Non Intel™ platforms

Cross-platform FreeBSD issues, general discussion and proposals for non Intel™ FreeBSD ports.

This is a technical mailing list for which strictly technical content is expected.

freebsd-ports

Discussion of "ports"

Discussions concerning FreeBSD's "ports collection" (/usr/ports), ports infrastructure, and general ports coordination efforts. This is a technical mailing list for which strictly technical content is expected.

freebsd-ports-announce

Important news and instructions about the FreeBSD "Ports Collection"

Important news for developers, porters, and users of the "Ports Collection" (/usr/ports), including architecture/infrastructure changes, new capabilities, critical upgrade instructions, and release engineering information. This is a low-volume mailing list, intended for announcements.

freebsd-ports-bugs

Discussion of "ports" bugs

Discussions concerning problem reports for FreeBSD's "ports collection" (/usr/ports), proposed ports, or modifications to ports. This is a technical mailing list for which strictly technical content is expected.

freebsd-proliant

Technical discussion of FreeBSD on HP ProLiant server platforms

This mailing list is to be used for the technical discussion of the usage of FreeBSD on HP ProLiant servers, including the discussion of ProLiant-specific drivers, management software, configuration tools, and BIOS updates. As such, this is the primary place to discuss the hpasmd, hpasmcli, and hpacucli modules.

freebsd-python

Python on FreeBSD

This is a list for discussions related to improving Python-support on FreeBSD. This is a technical mailing list. It is for individuals working on porting Python, its third party modules and Zope stuff to FreeBSD. Individuals interested in following the technical discussion are also welcome.

freebsd-questions

User questions

This is the mailing list for questions about FreeBSD. Do not send "how to" questions to the technical lists unless the question is quite technical.

freebsd-ruby

FreeBSD-specific Ruby discussions

This is a list for discussions related to the Ruby support on FreeBSD. This is a technical mailing list. It is for individuals working on Ruby ports, third party libraries and frameworks. Individuals interested in the technical discussion are also welcome.

freebsd-scsi

SCSI subsystem

750
This is the mailing list for people working on the SCSI subsystem for FreeBSD. This is a technical mailing list for which strictly technical content is expected.

freebsd-security

Security issues
FreeBSD computer security issues (DES, Kerberos, known security holes and fixes, etc). This is a technical mailing list for which strictly technical discussion is expected. Note that this is not a question-and-answer list, but that contributions (BOTH question AND answer) to the FAQ are welcome.

freebsd-security-notifications

Security Notifications
Notifications of FreeBSD security problems and fixes. This is not a discussion list. The discussion list is FreeBSD-security.

freebsd-small

Using FreeBSD in embedded applications
This list discusses topics related to unusually small and embedded FreeBSD installations. This is a technical mailing list for which strictly technical content is expected.

freebsd-embedded

This list has been obsoleted by FreeBSD-embedded.

freebsd-snapshots

FreeBSD Development Snapshot Announcements
This list provides notifications about the availability of new FreeBSD development snapshots for the head/ and stable/ branches.

freebsd-stable

Discussions about the use of FreeBSD-STABLE
This is the mailing list for users of FreeBSD-STABLE. "STABLE" is the branch where development continues after a RELEASE, including bug fixes and new features. The ABI is kept stable for binary compatibility. It includes warnings about new features coming out in -STABLE that will affect the users, and instructions on steps that must be taken to remain -STABLE. Anyone running "STABLE" should subscribe to this list. This is a technical mailing list for which strictly technical content is expected.

freebsd-standards

C99 & POSIX Conformance
This is a forum for technical discussions related to FreeBSD Conformance to the C99 and the POSIX standards.

freebsd-teaching

Teaching with FreeBSD
Non technical mailing list discussing teaching with FreeBSD.

freebsd-testing

Testing on FreeBSD
Technical mailing list discussing testing on FreeBSD, including ATF/Kyua, test build infrastructure, port tests to FreeBSD from other operating systems (NetBSD, …)
freebsd-tex
Porting TeX and its applications to FreeBSD
This is a technical mailing list for discussions related to TeX and its applications on FreeBSD. It is for individuals actively working on porting TeX to FreeBSD, to bring up problems or discuss alternative solutions. Individuals interested in following the technical discussion are also welcome.

freebsd-toolchain
Maintenance of FreeBSD's integrated toolchain
This is the mailing list for discussions related to the maintenance of the toolchain shipped with FreeBSD. This could include the state of Clang and GCC, but also pieces of software such as assemblers, linkers and debuggers.

freebsd-transport
Discussions of transport level network protocols in FreeBSD
The transport mailing list exists for the discussion of issues and designs around the transport level protocols in the FreeBSD network stack, including TCP, SCTP and UDP. Other networking topics, including driver specific and network protocol issues should be discussed on the FreeBSD networking mailing list.

freebsd-translators
Translating FreeBSD documents and programs
A discussion list where translators of FreeBSD documents from English into other languages can talk about translation methods and tools. New members are asked to introduce themselves and mention the languages they are interested in translating.

freebsd-usb
Discussing FreeBSD support for USB
This is a mailing list for technical discussions related to FreeBSD support for USB.

freebsd-user-groups
User Group Coordination List
This is the mailing list for the coordinators from each of the local area Users Groups to discuss matters with each other and a designated individual from the Core Team. This mail list should be limited to meeting synopsis and coordination of projects that span User Groups.

freebsd-virtualization
Discussion of various virtualization techniques supported by FreeBSD
A list to discuss the various virtualization techniques supported by FreeBSD. On one hand the focus will be on the implementation of the basic functionality as well as adding new features. On the other hand users will have a forum to ask for help in case of problems or to discuss their use cases.

freebsd-wip-status
FreeBSD Work-In-Progress Status
This mailing list can be used by developers to announce the creation and progress of FreeBSD related work. Messages will be moderated. It is suggested to send the message "To:" a more topical FreeBSD list and only "BCC:" this list. This way the WIP can also be discussed on the topical list, as no discussion is allowed on this list.

Look inside the archives for examples of suitable messages.
The FreeBSD mailing lists are filtered in multiple ways to avoid the distribution of spam, viruses, and other unwanted emails. The filtering actions described in this section do not include all those used to protect the mailing lists.

Only certain types of attachments are allowed on the mailing lists. All attachments with a MIME content type not found in the list below will be stripped before an email is distributed on the mailing lists.

- application/octet-stream
- application/pdf
- application/pgp-signature
- application/x-pkcs7-signature
- message/rfc822
- multipart/alternative
- multipart/related
- multipart/signed
- text/html
- text/plain
- text/x-diff
- text/x-patch

Some of the mailing lists might allow attachments of other MIME content types.
but the above list should be applicable for most of the mailing lists. If an email contains both an HTML and a plain text version, the HTML version will be removed. If an email contains only an HTML version, it will be converted to plain text.

C.3. Usenet

In addition to two FreeBSD specific newsgroups, there are many others in which FreeBSD is discussed or are otherwise relevant to FreeBSD users.

C.3.1. BSD 新聞群組

• comp.unix.bsd.freebsd.announce
• comp.unix.bsd.freebsd.misc
• de.comp.os.unix.bsd (German)
• fr.comp.os.bsd (French)

C.3.2. 其他相關的 UNIX™ 新聞群組

• comp.unix
• comp.unix.questions
• comp.unix.admin
• comp.unix.programmer
• comp.unix.shell
• comp.unix.misc
• comp.unix.bsd

C.3.3. X 視窗系統

• comp.windows.x

C.4. 官方鏡像站

Central Servers, Armenia, Australia, Austria, Czech Republic, Denmark, Finland, France, Germany, Hong Kong, Ireland, Japan, Latvia, Lithuania, Netherlands, Norway, Russia, Slovenia, South Africa, Spain, Sweden, Switzerland, Taiwan, United Kingdom, United States of America.

(as of UTC)

Central Servers

• https://www.FreeBSD.org/

Armenia

• http://www.at.FreeBSD.org/ (IPv6)

Australia

• http://www.au.FreeBSD.org/
• http://www2.au.FreeBSD.org/

Austria
Spain
• http://www.es.FreeBSD.org/
• http://www2.es.FreeBSD.org/

Sweden
• http://www.se.FreeBSD.org/

Switzerland
• http://www.ch.FreeBSD.org/ (IPv6)
• http://www2.ch.FreeBSD.org/ (IPv6)

Taiwan
• http://www.tw.FreeBSD.org/
• http://www2.tw.FreeBSD.org/
• http://www4.tw.FreeBSD.org/
• http://www5.tw.FreeBSD.org/ (IPv6)

United Kingdom
• http://www1.uk.FreeBSD.org
• http://www3.uk.FreeBSD.org/

United States of America
• http://www5.us.FreeBSD.org/ (IPv6)
The OpenPGP keys of the FreeBSD.org officers are shown here. These keys can be used to verify a signature or send encrypted email to one of the officers. A full list of FreeBSD OpenPGP keys is available in the PGP Keys article. The complete keyring can be downloaded at pgpkeyring.txt.

D.1. Officers

D.1.1. Security Officer Team

<security-officer@FreeBSD.org>

pub   rsa4096/D9AD2A18057474CB 2022-12-11 [C] [expires: 2026-01-24]
Key fingerprint = 0BE3 3275 D74C 953C 79F8 1107 D9AD 2A18 0574 74CB
uid                            FreeBSD Security Officer <security-officer@freebsd.org>

sub   rsa4096/6E58DE901F001AEF 2022-12-11 [S] [expires: 2024-01-05]
sub   rsa4096/46DB26D62F6039B7 2022-12-11 [E] [expires: 2024-01-05]

-----BEGIN PGP PUBLIC KEY BLOCK-----
mQINBGOVdeUBEADHF5VGg1iPbACB+7lomX6aDytUf0k2k2Yc/Kp6lfYv7JKU+1nrTcNF7Gt1YkajPSeWRKNZw/X94g4w5TEOHbJ6QQWx9g+N7RjEq75actQ/r2N5zY4SujfFTepbvgR55mLTxlxGKFBmNrfNbpHRyh4GwFRgPlxf5Jy9SB+0m54yFS4QlSdpIzO0CLkjHUFy/8S93oSK2zUkgok5gLWruBXom+8VC3OtBElkWswPkE1pKZvMQCvVyM+7BS+MCFXSdZczDZZoEzpQJGhUYFsdg0KqlLv6z1rP+HsgUYKTkRpcrumDQV0MMuCE4ECU6nFDDTnbR8Wn3LF5oTt0GtwS0nWf+nZ1SFTDURcSPR4Lp/PKjuDAkOSP8BaruCNx1ItHSwcnXw0gS4+h8FjtWNZpsawtzjjgApcl+m9KP6dkBcbN+i1DHm6NG6YQVtVWyN8aOKmoC/FEm1CWh1bv+ri9XOkF2EqT/ktbjbT1hFoFGBkS9/35y1G3KKyWtwKcyF4OXcArl6sQwGgiYnZEG3sUMaGrwQovRtMf7le3cAYsMkXyiAnEufadeuabYLD8qp9L/eNo+9aZmhJqQg4EQb+ePH7bGPNDZ+M5oGUwReX857FoWaPhs4LdAKQ1YwASxdKKh8wnaamjIeZSGP5TCjurH7pADAIaB3/D+ZNl2a7od+C1wARAQABtDdGcmVlQlNEIFNlY3VyaXR5IE9mZmljZXIgPHNlY3VyaXR5LW9mZmljZXJAZnJlZWJzZC5vcmc+iQJSBBMBCgA8AhsBBAsJCAcEFQoJCAUWAgMBAAIeBQIXgBYhBAvjMnXXTJU8efgRB9mtKhgFdHTLBQJjlXeQBQkF3u+rAAoJENmtKhgFdHTLOVoQALS3cj7rqYkHiV4zDYrgPEp9O1kAyGI8VdfGAMkDVTqr+wP4v/o7LIUrgwZl5qxesVFBVknFr0Wp5g9h0iAjasoI5sDd6tH2SmumhBHXFVdftzDQhrugxH6fWRhHs0SaFYCkQt5nFbcpUfWgtQ35XTbsL8iENdYpjKXsSFQrJneGSwxIjWYTFn6ps/AI3gwR8+BnOffEFdYugJ049O6Vu6YBFJHrnMO7NbF4v95dVYuLtpMIaXWM+V9KITmhaBzFz5fMQ7UOzcLlbxOYKNIWcp8QQk429mayKW5VUeUExUD1ZzBHn+P6ZG7QTMDu/RmBqiHewCMVz4n9uXT5BiOngE4CvS0WQwHzK+k9MLpG2u/Bo9+LT0Ceh9Ou1rfU5+0tRwlGyOFFjf3INS7I7gkcAwxQ7dzDItN/UQPZpg8y9mABU2x4enz0AvTnb61d/1dnTErtdNgU433he0ZnD1HurZCjBEWC656wv6iMdWcD8gjhMbmEpPmjvXcYlTO6zhEygSMDiwdQCWK2W4++YJerA6ULBi3niNWBpofOFH8XylV56ruhjtHCo7+/3carcMoPOJvlVZ1zCKxLro3TRBT15JTFBGqblRyTopFK3PuxW//GTnZOtpQEOV6yL4RAXcWeC1d1hb5k/YxUmRF6XsDNEH4b08T8ZO8dV3dAV43Wh1oiQEzBBABCAAdFiEEuyjUCzYO757